JPH08119732A - Production of solid electrolyte - Google Patents

Production of solid electrolyte

Info

Publication number
JPH08119732A
JPH08119732A JP6264784A JP26478494A JPH08119732A JP H08119732 A JPH08119732 A JP H08119732A JP 6264784 A JP6264784 A JP 6264784A JP 26478494 A JP26478494 A JP 26478494A JP H08119732 A JPH08119732 A JP H08119732A
Authority
JP
Japan
Prior art keywords
zro
rare earth
zro2
solid electrolyte
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6264784A
Other languages
Japanese (ja)
Other versions
JP3260988B2 (en
Inventor
Shoji Yamashita
祥二 山下
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26478494A priority Critical patent/JP3260988B2/en
Publication of JPH08119732A publication Critical patent/JPH08119732A/en
Application granted granted Critical
Publication of JP3260988B2 publication Critical patent/JP3260988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To obtain sintered solid electrolyte of high denseness by adding the compounds of at least one element selected from among Y and rare earth elements to a ZrO2 powder including a specific stabilizer in the form of solid solution, molding the mixture and firing the mixture in an oxidative atmosphere. CONSTITUTION: A ZrO2 powder including a stabilizer composed of the oxides of at least one element selected from among Y and rare earth elements, in the form of a solid solution is mixed with the compounds of at least one element selected from among Y and rare earth elements in an amount of 0.01-10 mole % calculated as oxides. The mixture is molded and fired at 1,200-1,700 deg.C in an oxidative atmosphere to give this solid electrolyte. According to this process, the addition of the oxides of at least one selected from among Y and rare earth elements which are a stabilizer for ZrO2 as a sintering aid for ZrO2 solid solution stops the growth of ZrO2 granules until these additives solid-solubilize in the ZrO2 crystals and only sintering proceeds and densification is accelerated as a result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
セルや、酸素センサなどに用いられる固体電解質の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolyte type fuel cell, a solid electrolyte used for an oxygen sensor and the like.

【0002】[0002]

【従来技術】ZrO2 を主体としてなる固体電解質は、
燃料電池セルや酸素センサ等をはじめ、各種の電気化学
セルに使用されている。これらの固体電解質は、ZrO
2 に対して安定化剤としてY2 3 、BaO、CaOな
どの安定化剤を固溶させたものが一般的に使用されてお
り、ZrO2 に対する焼結助剤としては、Al2 3
SiO2 などが主として用いられている。
2. Description of the Related Art A solid electrolyte mainly composed of ZrO 2 is
It is used in various electrochemical cells including fuel cells and oxygen sensors. These solid electrolytes are ZrO
A solid solution of a stabilizer such as Y 2 O 3 , BaO, or CaO is generally used for 2 as a stabilizer, and Al 2 O 3 is used as a sintering aid for ZrO 2 . And SiO 2 are mainly used.

【0003】例えば、固体電解質型燃料電池において
は、円筒型と平板型の2種類の燃料電池について知られ
ているが、平板型燃料電池セルの場合、図1に示すよう
に、Y2 3 あるいはYb2 3 で安定化したZrO2
からなる固体電解質1の一方の面に多孔性のLaの20
原子%のCaで、あるいは15原子%のSrで置換した
LaMnO3 系材料からなる空気極2が形成され、他方
の面に多孔性のNi−ZrO2 (Y2 3 含有)サーメ
ットの燃料極3が設けられている。単セルの接続にはセ
パレータ4と呼ばれる緻密質のMgOやCaOを添加し
たLaCrO3 固溶体が用いられる。発電は、セルの空
気極側に空気(酸素)、燃料極側に燃料(水素)を供給
して1000〜1050℃の温度で行われる。
For example, in solid oxide fuel cells, two types of fuel cells, cylindrical type and flat type, are known. In the case of flat type fuel cells, as shown in FIG. 1, Y 2 O 3 is used. Or ZrO 2 stabilized with Yb 2 O 3
On one surface of the solid electrolyte 1 made of
An air electrode 2 made of a LaMnO 3 -based material substituted with atomic% Ca or 15 atomic% Sr is formed, and a porous Ni-ZrO 2 (Y 2 O 3 -containing) cermet fuel electrode is formed on the other surface. 3 is provided. For connecting the single cells, a solid solution of LaCrO 3 to which a dense MgO or CaO is added, which is called a separator 4, is used. Power generation is performed at a temperature of 1000 to 1050 ° C. by supplying air (oxygen) to the air electrode side of the cell and fuel (hydrogen) to the fuel electrode side.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、図1
に示した構造において、固体電解質は100〜300μ
mの厚みのY2 3 あるいはYb2 3 で安定化したZ
rO2 からなる固体電解質が用いられているが、従来の
電解質粉末はかなり焼結性が改善されているものの、燃
料電池セルでは上述のように厚みが薄いために十分に緻
密化しているとは言いがたく特に結晶が粒成長しやす
く、その結果、少量のガスのリークが起こり本来の発電
性能を示さないという問題があった。
However, the problem shown in FIG.
In the structure shown in FIG.
Z stabilized with m 2 of Y 2 O 3 or Yb 2 O 3
A solid electrolyte made of rO 2 is used. Although the conventional electrolyte powder has considerably improved sinterability, it is said that the fuel cell is sufficiently densified because of its thin thickness as described above. It is difficult to say that crystals are particularly likely to grow grains, and as a result, a small amount of gas leaks and the original power generation performance is not exhibited.

【0005】しかも、従来からZrO2 に対する焼結助
剤として用いられるAl2 3 やSiO2 などは、焼結
体中においてZrO2 結晶粒子の粒界に析出し電解質の
電気伝導度を低下させたり、燃料電池セルにおいては運
転中に空気極中に拡散して空気極の電極性能を劣化させ
るなどの弊害があった。
[0005] Moreover, the like Al 2 O 3, SiO 2 conventionally used as a sintering aid for ZrO 2, reduces the electrical conductivity of the ZrO 2 electrolyte deposited on the grain boundaries of crystal grains in the sintered body In the fuel cell, there is an adverse effect such as diffusion into the air electrode during operation and deterioration of the electrode performance of the air electrode.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、安定化
ZrO2 からなる固体電解質の焼結性を改善すべく検討
を重ねた結果、安定化剤を含有するZrO2 固溶体粉末
に対して、Yおよび希土類元素から選ばれる少なくとも
1種の元素の酸化物を添加(以下、後添加物ということ
もある。)してこれを焼成すると、ZrO2 の粒成長が
抑制される結果、焼結体の緻密化が促進されることを知
見した。
[Means for Solving the Problems] As a result of repeated studies to improve the sinterability of a solid electrolyte made of stabilized ZrO 2 , the present inventors have found that a ZrO 2 solid solution powder containing a stabilizer is used. Then, when an oxide of at least one element selected from Y and rare earth elements is added (hereinafter sometimes referred to as a post-additive) and baked, the grain growth of ZrO 2 is suppressed. It was found that densification of the union is promoted.

【0007】即ち、本発明の固体電解質の製造方法は、
Yおよび希土類元素から選ばれる少なくとも1種の酸化
物からなる安定化剤を固溶したZrO2 粉末に後添加物
としてYおよび希土類元素から選ばれる少なくとも1種
を含む化合物を酸化物換算で0.01〜10モル%添加
混合し、この混合物を成形した後、1200〜1700
℃の酸化性雰囲気中で焼成することを特徴とするもので
ある。
That is, the method for producing a solid electrolyte of the present invention comprises:
A compound containing at least one selected from Y and a rare earth element as an after-addition is added to ZrO 2 powder in which a stabilizer made of at least one oxide selected from Y and a rare earth element is solid-dissolved in terms of oxide. After adding and mixing 01 to 10 mol% and molding this mixture, 1200 to 1700
It is characterized by firing in an oxidizing atmosphere at ℃.

【0008】以下、本発明を詳述する。本発明による固
体電解質の製造方法によれば、出発原料としてまず、安
定化剤を固溶するZrO2 粉末を作製する。このZrO
2 粉末中に固溶させる安定化剤としてはYおよび希土類
元素から選ばれる少なくとも1種の元素の酸化物が挙げ
られる。これら安定化剤は、ZrO2 固溶体粉末中に1
〜20モル%の割合で含有され、その結果、ZrO2
一部または全部安定化され、結晶相としては一部安定化
された場合には、正方晶または立方晶を主体とし場合に
よりわずかな単斜晶が含まれる場合もある。また、完全
安定化された場合には立方晶ZrO2 のみから構成され
る。
The present invention will be described in detail below. According to the method for producing a solid electrolyte according to the present invention, as a starting material, first, ZrO 2 powder in which a stabilizer is solid-dissolved is produced. This ZrO
2 As the stabilizer to be dissolved in the powder, an oxide of at least one element selected from Y and rare earth elements can be mentioned. These stabilizers were added to the ZrO 2 solid solution powder at 1%.
When ZrO 2 is partially or wholly stabilized and partially stabilized as a crystal phase, it is mainly tetragonal or cubic and may be slightly contained. It may also contain monoclinic crystals. Further, when completely stabilized, it is composed only of cubic ZrO 2 .

【0009】このZrO2 固溶体粉末は、ZrO2 粉末
に所定の割合でY、Yb、Sc、Er、Nd、Dy、C
e、SmおよびGdの群から選ばれる少なくとも1種の
元素の酸化物を安定化剤として添加混合したものを10
00〜1700℃の酸化性雰囲気中で熱処理して固相反
応することにより得ることができる。その他、例えばY
Cl3 、ZrOCl2 などを用いた周知の共沈法、凍結
乾燥法などによって作製されたものも使用できる。な
お、安定化剤固溶ZrO2 粉末は、原料粉末として平均
粒径が0.1〜5μm程度になるように所望により粉砕
などにより粒度調整することが望ましい。
This ZrO 2 solid solution powder contains Y, Yb, Sc, Er, Nd, Dy and C at a predetermined ratio to the ZrO 2 powder.
and a mixture of oxides of at least one element selected from the group consisting of e, Sm and Gd as a stabilizer,
It can be obtained by heat treatment in an oxidizing atmosphere at 00 to 1700 ° C. and solid-phase reaction. Others, for example Y
Those produced by a well-known coprecipitation method using Cl 3 , ZrOCl 2, or the like, a freeze-drying method, or the like can also be used. The stabilizer-dissolved ZrO 2 powder is preferably pulverized or the like so that the average particle diameter of the raw material powder is about 0.1 to 5 μm.

【0010】本発明によれば、このZrO2 固溶体粉末
に対して、さらにYおよび希土類元素から選ばれる少な
くとも1種の元素を含む化合物を0.01〜10モル
%、特に1〜5モル%の割合で添加することが重要であ
る。この添加物の量が0.01モル%より少ないと焼結
性の改善効果がなく、10モル%を越えると固体電解質
の電気伝導度が低下し電解質として使用できない。この
後添加物であるYおよび希土類元素から選ばれる少なく
とも1種の元素を含む化合物としては、酸化物粉末の他
に硝酸塩、硫酸塩、酢酸塩などの形態で添加することも
できるが、ZrO2 の粒成長抑制効果は、この添加物が
均一に分散しているほど効果的であることから、望まし
くは、溶液状態で添加することが望ましい。硝酸塩、硫
酸塩を使用する場合には、一度焼成前に400〜100
0℃で熱処理して分解し酸化物を形成することもでき
る。
According to the present invention, a compound containing at least one element selected from Y and rare earth elements is added to the ZrO 2 solid solution powder in an amount of 0.01 to 10 mol%, particularly 1 to 5 mol%. It is important to add in proportion. If the amount of this additive is less than 0.01 mol%, the effect of improving the sinterability will not be obtained. As the compound containing at least one element selected from Y and a rare earth element, which is an additive after this, it is possible to add in the form of nitrate, sulfate, acetate, etc. in addition to the oxide powder, but ZrO 2 The effect of suppressing grain growth is more effective when the additive is uniformly dispersed. Therefore, it is desirable to add the additive in a solution state. When using nitrates or sulfates, 400 to 100 before firing once.
It can also be decomposed by heat treatment at 0 ° C. to form an oxide.

【0011】なお、ZrO2 固溶体に添加されるYおよ
び希土類元素から選ばれる少なくとも1種の元素を含む
化合物として酸化物粉末を用いる場合には、平均粒径と
して0.01〜3μm、特に0.1〜1μmが好まし
い。これは、平均粒径が上記範囲を逸脱すると、ZrO
2 に対する粒成長を抑制し、焼結性を高める効果が小さ
いためである。
When an oxide powder is used as the compound containing at least one element selected from Y and rare earth elements added to the ZrO 2 solid solution, the average particle size is 0.01 to 3 μm, and particularly 0.1. 1 to 1 μm is preferable. This is because when the average particle size deviates from the above range, ZrO
This is because the effect of suppressing grain growth and increasing sinterability for 2 is small.

【0012】また、本発明品においては、Al、Siは
酸化物換算でそれぞれ3重量%以下、特に1重量%以下
に制御することが望ましい。Al、Si量が上記割合よ
り多いと粒成長が著しく、Yおよび希土類元素の添加効
果が小さくなるためである。
In the product of the present invention, Al and Si are preferably controlled to 3% by weight or less, especially 1% by weight or less in terms of oxide. This is because if the amount of Al and Si is larger than the above ratio, grain growth is remarkable and the effect of adding Y and the rare earth element is reduced.

【0013】次に、上記のように添加物を添加した混合
物を所望の成形手段、例えば、金型プレス,冷間静水圧
プレス,押出成形、ドクターブレード法等により任意の
形状に成形した後、その成形体を大気などの酸化性雰囲
気中で1200〜1700℃、特に1300〜1600
℃の温度で焼成することにより固体電解質を作製するこ
とができる。
Next, the mixture to which the additives are added as described above is molded into a desired shape by a desired molding means, for example, a mold press, a cold isostatic press, an extrusion molding, a doctor blade method or the like, The molded product is 1200 to 1700 ° C., particularly 1300 to 1600, in an oxidizing atmosphere such as air.
A solid electrolyte can be produced by firing at a temperature of ° C.

【0014】本発明において用いられる後添加物の成分
としてはYおよび希土類元素としては、Sc、La、C
e、Pr、Nd、Sm、Gd、Dy、Er、Ybが挙げ
られる。
Y is used as a component of the post additive used in the present invention, and Sc, La and C are used as rare earth elements.
Examples thereof include e, Pr, Nd, Sm, Gd, Dy, Er and Yb.

【0015】最終的に得られる固体電解質中のYおよび
希土類元素から選ばれる少なくとも1種の元素の酸化物
の全含有量は2〜20モル%が適当である。これは2モ
ル%より少ないか、20モル%より多いと電気伝導度が
小さくなり電解質としての利用ができなくなるためであ
る。
The total content of oxides of at least one element selected from Y and rare earth elements in the finally obtained solid electrolyte is preferably 2 to 20 mol%. This is because if it is less than 2 mol% or more than 20 mol%, the electric conductivity becomes small and it cannot be used as an electrolyte.

【0016】本発明の固体電解質は、図1に示したよう
な燃料電池セルに有用である。燃料電池において使用さ
れる場合、固体電解質は緻密質であることが重要であ
り、気孔率として1%以下、特に0.5%以下であるこ
とが望ましい。
The solid electrolyte of the present invention is useful for a fuel cell as shown in FIG. When used in a fuel cell, it is important that the solid electrolyte be dense, and the porosity is preferably 1% or less, particularly 0.5% or less.

【0017】また、燃料電池セルを作製する場合、固体
電解質は、厚みが100〜300μm程度のシートとし
て使用される場合が多いため、それ自体の強度が要求さ
れる。この強度の点から固体電解質のZrO2 を平均結
晶粒径は0.1〜20μm、特に1〜10μm、さらに
は2〜5μmであることが望ましい。
In the case of producing a fuel cell, the solid electrolyte is often used as a sheet having a thickness of about 100 to 300 μm, and therefore the strength of itself is required. From the viewpoint of this strength, the average crystal grain size of ZrO 2 of the solid electrolyte is preferably 0.1 to 20 μm, particularly 1 to 10 μm, and further preferably 2 to 5 μm.

【0018】なお、本発明における固体電解質において
は、焼成条件等によりZrO2 固溶体に後添加したY、
Yb等がZrO2 中に完全に固溶せずに一部Y2 3
Yb2 3 の酸化物として副相を形成する場合がある
が、その量は少ないために電気伝導などに影響を与える
ことはない。
In the solid electrolyte according to the present invention, Y added afterwards to the ZrO 2 solid solution due to firing conditions and the like,
Yb or the like does not completely form a solid solution in ZrO 2 and a part of Y 2 O 3 ,
A subphase may be formed as an oxide of Yb 2 O 3 , but since the amount thereof is small, it does not affect electric conduction or the like.

【0019】[0019]

【作用】本発明によれば、ZrO2 固溶体の焼結助剤と
して、ZrO2 の安定化であるYおよび希土類元素から
選ばれる少なくとも1種を添加すると、これらの添加物
がZrO2 結晶内に固溶するまでZrO2 の粒成長が起
こらず、焼結のみが進行して緻密化が促進されることを
見いだした。この理由については、定かではないが、お
そらくこれらの添加物が焼結中に粒界に存在し粒界エネ
ルギーを低下させ粒成長を抑制するためと考えられ、そ
の結果、焼結のみが進行し緻密化が促進されるものと考
えられる。
According to the present invention, when at least one selected from Y which is a stabilizer of ZrO 2 and a rare earth element is added as a sintering aid of the ZrO 2 solid solution, these additives are incorporated into the ZrO 2 crystal. It was found that ZrO 2 grain growth did not occur until a solid solution was formed, and only sintering proceeded to promote densification. The reason for this is not clear, but it is considered that these additives are present at the grain boundaries during sintering and lower the grain boundary energy to suppress grain growth, and as a result, only sintering proceeds. It is considered that densification is promoted.

【0020】従来のZrO2 の焼結助剤としては、Al
2 3 やSiO2 などが主として用いられるが、これら
の添加物は粒界に析出し電解質の電気伝導度を低下させ
たり、燃料電池セルにおいては運転中に空気極中に拡散
して空気極の電極性能を劣化させるなどの弊害があっ
た。
As a conventional sintering aid for ZrO 2 , Al is used.
2 O 3 and SiO 2 are mainly used, but these additives are deposited on the grain boundaries to reduce the electrical conductivity of the electrolyte, and in fuel cells, they diffuse into the air electrode during operation and the air electrode There was an adverse effect such as deterioration of the electrode performance of.

【0021】それに対して、本発明によれば、添加物は
焼結後はほとんど安定化ZrO2 中の固溶されるため
に、粒界に析出し電気伝導度を劣化させたり、空気極中
に拡散して電極性能を低下させることがない。また、本
発明による固体電解質は、粒成長を抑制しているため、
結晶粒子が小さく、後添加物を全く添加しない場合に比
較して高強度であるという特長も有する。
On the other hand, according to the present invention, since the additive is almost solid-soluted in the stabilized ZrO 2 after the sintering, it is precipitated at the grain boundary and deteriorates the electric conductivity, or in the air electrode. There is no possibility that the electrode performance will be deteriorated by diffusing into. Further, since the solid electrolyte according to the present invention suppresses grain growth,
It also has the features of small crystal grains and higher strength than when no post-additives are added.

【0022】[0022]

【実施例】【Example】

実施例1 市販の純度99.9%以上、平均粒径が0.5〜0.8
μmのY2 3 を10モル%固溶する安定化ZrO2
末、Yb2 3 を10モル%固溶する安定化ZrO2
よびSc2 3 を14モル%固溶する安定化ZrO2
末をそれぞれ準備した。これにLa、Y、Yb、Sc、
Er、Nd、Sm、Ce、Gdの少なくとも1種の元素
を含む硝酸塩、あるいは平均粒径が0.5〜1μmの酸
化物粉末、酢酸塩、硫酸塩、および塩化物を酸化物換算
で表1に示す量で添加し、メタノール溶液中でZrO2
ボールを用いて10時間混合した。この後、混合粉末を
乾燥し、5×5×40mmの大きさに成形して1500
℃で3時間大気中で焼成した。
Example 1 Commercial purity of 99.9% or more, average particle size of 0.5 to 0.8
μm of Y 2 O 3 10 mol% solid solution stabilized ZrO 2 powder, Yb 2 O 3 stabilized solid solution 10 mol% ZrO 2 and Sc 2 O 3 of 14 mol% solid solution stabilized ZrO 2 Each powder was prepared. La, Y, Yb, Sc,
A nitrate containing at least one element of Er, Nd, Sm, Ce, and Gd, or an oxide powder having an average particle size of 0.5 to 1 μm, acetate, sulfate, and chloride in terms of oxide is shown in Table 1. And added in an amount of ZrO 2 in a methanol solution.
Mix using a ball for 10 hours. After this, the mixed powder is dried and molded into a size of 5 × 5 × 40 mm and 1500
Firing was performed in the air for 3 hours at ℃.

【0023】また、比較のために、硝酸塩等を何ら含ま
ない、上記各種の安定化ZrO2 粉末を用いて上記と同
様な条件で焼成した。
For comparison, various types of stabilized ZrO 2 powders containing no nitrate or the like were used and fired under the same conditions as above.

【0024】得られた各焼結体に対してアルキメデス法
により開気孔率の測定と、大気中1000℃における電
気伝導度を直流4端子法により測定した。
The open porosity of each of the obtained sintered bodies was measured by the Archimedes method, and the electric conductivity at 1000 ° C. in the atmosphere was measured by the DC 4-terminal method.

【0025】[0025]

【表1】 [Table 1]

【0026】表1によれば、安定化剤を固溶し完全安定
化されたZrO2 粉末をそのまま成形し焼成した試料N
o.1、23では、いずれも開気孔率が2%を越えるもの
であり、緻密性に欠けることがわかる。これに対して、
後添加物としてYおよび希土類元素から選ばれる少なく
とも1種を含む化合物を加えることにより、焼結性が改
善され、開気孔率1%以下の高緻密体を有し、さらに1
000℃における電気伝導度も0.10s/cm以上が
達成された。
According to Table 1, Sample N was obtained by directly molding and firing ZrO 2 powder in which a stabilizer was solid-solved and completely stabilized.
In both Nos. 1 and 23, the open porosity exceeds 2% in both cases, and it can be seen that the compactness is lacking. On the contrary,
By adding a compound containing at least one selected from Y and rare earth elements as a post additive, the sinterability is improved, and a highly dense body having an open porosity of 1% or less is further added.
The electric conductivity at 000 ° C. was also 0.10 s / cm or more.

【0027】しかし、添加物の量が0.01モル%より
少ない試料No.2では焼結性の向上が見られず、10モ
ル%を越える試料No.10では電気伝導度が低下したた
め、この添加物の量は0.01〜10モル%が適当であ
ることがわかった。
However, in sample No. 2 containing less than 0.01 mol% of the additive, no improvement in sinterability was observed, and in sample No. 10 exceeding 10 mol%, the electrical conductivity decreased, so It has been found that an appropriate amount of additive is 0.01 to 10 mol%.

【0028】また、本発明品では、後添加物のない試料
に対して結晶粒子径が小さく粒成長が抑制されているこ
とがわかる。また、本発明品は結晶粒子径が小さいため
強度も高いものであった。
Further, in the product of the present invention, it is found that the crystal grain size is small and the grain growth is suppressed as compared with the sample without the post-addition. Further, the product of the present invention has a small crystal grain size and thus has high strength.

【0029】[0029]

【発明の効果】以上詳述したように、本発明の固体電解
質の製造方法によれば、ZrO2 の粒成長を抑制し、し
かも隣接する電極などに悪影響を及ぼすことなく、焼結
体の緻密化を促進することができる。従って、燃料電池
セルや酸素センサなどの電気化学装置に用いた場合、こ
れらの装置の信頼性を高めることができる。
As described above in detail, according to the method for producing a solid electrolyte of the present invention, it is possible to suppress the grain growth of ZrO 2 and to prevent the adjacent electrodes from being adversely affected by the compactness of the sintered body. Can be promoted. Therefore, when used in electrochemical devices such as fuel cells and oxygen sensors, the reliability of these devices can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】平板型燃料電池セルの構造を説明するための概
略図である。
FIG. 1 is a schematic diagram for explaining the structure of a flat-plate fuel cell unit.

【符号の説明】[Explanation of symbols]

1 固体電解質 2 空気極 3 燃料極 4 セパレータ 1 solid electrolyte 2 air electrode 3 fuel electrode 4 separator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Yおよび希土類元素から選ばれる少なくと
も1種の酸化物からなる安定化剤を固溶したZrO2
末にYおよび希土類元素から選ばれる少なくとも1種を
含む化合物を酸化物換算で0.01〜10モル%の割合
で添加混合し、この混合物を成形後、1200〜170
0℃の酸化性雰囲気中で焼成することを特徴とする固体
電解質の製造方法。
1. A ZrO 2 powder in which a stabilizer composed of at least one oxide selected from Y and rare earth elements is solid-dissolved, and a compound containing at least one selected from Y and rare earth elements is converted to oxide. Add and mix in a proportion of 0.01 to 10 mol%, and after molding this mixture, 1200 to 170
A method for producing a solid electrolyte, which comprises firing in an oxidizing atmosphere at 0 ° C.
JP26478494A 1994-10-28 1994-10-28 Method for producing solid electrolyte Expired - Fee Related JP3260988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26478494A JP3260988B2 (en) 1994-10-28 1994-10-28 Method for producing solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26478494A JP3260988B2 (en) 1994-10-28 1994-10-28 Method for producing solid electrolyte

Publications (2)

Publication Number Publication Date
JPH08119732A true JPH08119732A (en) 1996-05-14
JP3260988B2 JP3260988B2 (en) 2002-02-25

Family

ID=17408154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26478494A Expired - Fee Related JP3260988B2 (en) 1994-10-28 1994-10-28 Method for producing solid electrolyte

Country Status (1)

Country Link
JP (1) JP3260988B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097859A (en) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell and manufacture thereof
JP2002134121A (en) * 2000-10-23 2002-05-10 Toho Gas Co Ltd Solid electrolyte fuel cell
JP2002145663A (en) * 2000-11-02 2002-05-22 Nippon Shokubai Co Ltd Zirconia-based ceramic and method of producing the same
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
JP2004362913A (en) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP2005082429A (en) * 2003-09-08 2005-03-31 Nitsukatoo:Kk Zirconia-made heat treating member
JP2005259556A (en) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd Solid electrolyte and its manufacturing method
JP2011242145A (en) * 2010-05-14 2011-12-01 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
WO2012105580A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid oxide fuel cell
WO2012105579A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid electrolyte material and solid oxide fuel cell provided with same
JP2013505884A (en) * 2009-09-10 2013-02-21 中国砿業大学(北京) Composite sintering aid and method for producing nanocrystalline ceramic at low temperature using the same
JP2015207487A (en) * 2014-04-22 2015-11-19 株式会社ノリタケカンパニーリミテド Low-temperature operation type solid oxide fuel cell, and method for manufacturing the same
JP2018006319A (en) * 2016-06-28 2018-01-11 ケーセラセル カンパニー リミテッド Scandia-stabilized zirconia electrolyte for solid oxide fuel cell with reduction atmosphere stability improved

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097859A (en) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell and manufacture thereof
JP2002134121A (en) * 2000-10-23 2002-05-10 Toho Gas Co Ltd Solid electrolyte fuel cell
JP2002145663A (en) * 2000-11-02 2002-05-22 Nippon Shokubai Co Ltd Zirconia-based ceramic and method of producing the same
JP4652551B2 (en) * 2000-11-02 2011-03-16 株式会社日本触媒 Zirconia ceramics and process for producing the same
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
JP2004362913A (en) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP2005082429A (en) * 2003-09-08 2005-03-31 Nitsukatoo:Kk Zirconia-made heat treating member
JP2005259556A (en) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd Solid electrolyte and its manufacturing method
JP2013505884A (en) * 2009-09-10 2013-02-21 中国砿業大学(北京) Composite sintering aid and method for producing nanocrystalline ceramic at low temperature using the same
JP2011242145A (en) * 2010-05-14 2011-12-01 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
WO2012105579A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid electrolyte material and solid oxide fuel cell provided with same
WO2012105580A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid oxide fuel cell
CN103477482A (en) * 2011-01-31 2013-12-25 Toto株式会社 Solid electrolyte material and solid oxide fuel cell provided with same
CN103534854A (en) * 2011-01-31 2014-01-22 Toto株式会社 Solid oxide fuel cell
JPWO2012105580A1 (en) * 2011-01-31 2014-07-03 Toto株式会社 Solid oxide fuel cell
JPWO2012105579A1 (en) * 2011-01-31 2014-07-03 Toto株式会社 Solid electrolyte material and solid oxide fuel cell having the same
JP5725449B2 (en) * 2011-01-31 2015-05-27 Toto株式会社 Solid oxide fuel cell
JP5729572B2 (en) * 2011-01-31 2015-06-03 Toto株式会社 Solid electrolyte material and solid oxide fuel cell having the same
EP2672557A4 (en) * 2011-01-31 2015-11-04 Toto Ltd Solid electrolyte material and solid oxide fuel cell provided with same
US9799905B2 (en) 2011-01-31 2017-10-24 Toto Ltd. Solid oxide fuel cell
JP2015207487A (en) * 2014-04-22 2015-11-19 株式会社ノリタケカンパニーリミテド Low-temperature operation type solid oxide fuel cell, and method for manufacturing the same
JP2018006319A (en) * 2016-06-28 2018-01-11 ケーセラセル カンパニー リミテッド Scandia-stabilized zirconia electrolyte for solid oxide fuel cell with reduction atmosphere stability improved

Also Published As

Publication number Publication date
JP3260988B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3260988B2 (en) Method for producing solid electrolyte
JP2003208902A (en) Solid electrolyte-type fuel cell
JP3359413B2 (en) Solid oxide fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP3121993B2 (en) Method for producing conductive ceramics
JPH04219364A (en) Lanthanum chromite-based oxide and its use
JP2836852B2 (en) Solid oxide fuel cell separator
JP3342541B2 (en) Solid oxide fuel cell
JP3342571B2 (en) Solid oxide fuel cell
JP4120432B2 (en) Solid oxide fuel cell
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP3389407B2 (en) Conductive ceramics and fuel cells
JP3359412B2 (en) Solid oxide fuel cell
JP3091100B2 (en) Method for producing conductive ceramics
JP3121991B2 (en) Conductive ceramics
JP3740304B2 (en) Conductive ceramics
JP3134883B2 (en) Separator for solid oxide fuel cell
JPH0359953A (en) Solid electrolyte-type fuel cell
JPH06243872A (en) Fuel electrode for solid electrolyte type fuel cell
JP4644326B2 (en) Lanthanum gallate sintered body
JP2003068324A (en) Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same
JPH10321239A (en) Electrode of fuel cell
JP3325388B2 (en) Conductive ceramics and fuel cell using the same
JPH07237967A (en) Electrically conductive ceramics and production thereof and fuel cell using the same
JP2001068130A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees