JP3325378B2 - Conductive ceramics and fuel cell using the same - Google Patents

Conductive ceramics and fuel cell using the same

Info

Publication number
JP3325378B2
JP3325378B2 JP02780594A JP2780594A JP3325378B2 JP 3325378 B2 JP3325378 B2 JP 3325378B2 JP 02780594 A JP02780594 A JP 02780594A JP 2780594 A JP2780594 A JP 2780594A JP 3325378 B2 JP3325378 B2 JP 3325378B2
Authority
JP
Japan
Prior art keywords
fuel cell
group
lacro
current collecting
conductive ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02780594A
Other languages
Japanese (ja)
Other versions
JPH07237968A (en
Inventor
高志 重久
吉健 寺師
祥二 山下
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP02780594A priority Critical patent/JP3325378B2/en
Publication of JPH07237968A publication Critical patent/JPH07237968A/en
Application granted granted Critical
Publication of JP3325378B2 publication Critical patent/JP3325378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LaCrO3系組成か
らなる導電性を有するセラミックスおよびその製造方法
に関し、詳細には、焼結性の改善に関するもので、特に
燃料電池セルのセパレータ、ガスディフューザ及びイン
ターコネクタや、MHD発電用の電極などに好適な導電
性セラミックスに関する。
BACKGROUND OF THE INVENTION This invention relates to ceramic and manufacturing method thereof conductivity comprising LaCrO 3 system composition, in particular, relates to the improvement of sinterability, in particular a fuel cell separator, the gas diffuser And a conductive ceramic suitable for an interconnector, an electrode for MHD power generation, and the like.

【0002】[0002]

【従来の技術】ランタンクロマイト系酸化物(LaCr
3)は、高温における化学的安定性に優れ、電子伝導
性が大きいことから固体電解質型燃料電池セルのセパレ
ータ、ガスディフューザ、及びインターコネクタとして
利用されている。
2. Description of the Related Art Lanthanum chromite oxide (LaCr)
O 3 ) is used as a separator, a gas diffuser, and an interconnector of a solid oxide fuel cell because of its excellent chemical stability at high temperature and high electron conductivity.

【0003】図1に平板形状の固体電解質型燃料電池セ
ルを示した。平板型燃料電池セルでは、例えばY23
定化ZrO2からなる固体電解質1の一方にLaMnO
系の空気極2、他方にNiージルコニア等の燃料極3が
設けられ、このセル間の接続はLaCrO3系よりなる
セパレータ(集電部材)4により行われている。燃料電
池セルにおいては、空気極側に酸素を含有するガス例え
ば空気を流し、燃料極側に燃料例えば水素ガスを流しな
がら、1000〜1050℃の温度で発電する。上述の
セパレータ材料としては、CaO、SrOあるいはMg
Oを固溶したLaCrO3系材料が利用される。
FIG. 1 shows a solid oxide fuel cell having a flat plate shape. In a flat fuel cell, for example, LaMnO 2 is used as one of the solid electrolytes 1 made of Y 2 O 3 stabilized ZrO 2.
A system air electrode 2 and a fuel electrode 3 such as Ni-zirconia are provided on the other side, and the connection between the cells is made by a LaCrO 3 -based separator (current collecting member) 4. In the fuel cell, power is generated at a temperature of 1000 to 1050 ° C. while flowing a gas containing oxygen, for example, air on the air electrode side and flowing a fuel, for example, hydrogen gas on the fuel electrode side. As the above separator material, CaO, SrO or Mg
A LaCrO 3 material in which O is dissolved is used.

【0004】[0004]

【発明が解決しようとする問題点】LaCrO3系材料
は陽イオンの拡散速度が遅いことに加えて、焼結過程に
おいて材料中からCr成分が揮発し、粒子の接触部(ネ
ック部)にCr23として凝縮堆積して焼結を阻害す
る。このため、大気中では2000℃以上の高温で焼結
させるか、あるいは還元性雰囲気でこのCr23の蒸発
凝縮を抑制しながら焼結させることが必要であるが、こ
の場合でも1800℃以上の高温度が必要である。この
ような高温焼結による材料の作製は、経済的な観点から
燃料電池セルの量産を著しく困難にさせるとともに、コ
ストを高める要因になっている。
Problems to be Solved by the Invention In addition to the slow diffusion rate of cations, the LaCrO 3 -based material volatilizes the Cr component from the material during the sintering process, and causes the Cr contact at the contact portion (neck portion) of the particles. It condenses and deposits as 2 O 3 and hinders sintering. For this reason, it is necessary to perform sintering at a high temperature of 2000 ° C. or more in the atmosphere or sintering in a reducing atmosphere while suppressing the evaporation and condensation of Cr 2 O 3. High temperature is required. The production of a material by such high-temperature sintering makes mass production of fuel cells extremely difficult from an economic viewpoint, and is a factor that increases the cost.

【0005】一方、LaCrO3系材料を低温で得るた
めの方法として、電気化学的気相合成(EVD)法が適
用されている。しかしながら、この方法は1400℃と
比較的低温でLaCrO3系材料が作製されるものの、
LaCrO3の成長速度が遅いため量産性に欠け、ま
た、この方法では主発原料として極めて高価な金属塩化
物を使用する必要があるために経済的にも問題があっ
た。
On the other hand, as a method for obtaining a LaCrO 3 -based material at a low temperature, an electrochemical vapor deposition (EVD) method has been applied. However, although this method produces a LaCrO 3 -based material at a relatively low temperature of 1400 ° C.,
Since the growth rate of LaCrO 3 is low, mass productivity is lacking. In addition, this method has a problem in terms of economy because it is necessary to use an extremely expensive metal chloride as a main raw material.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、上述の
問題点を解決し、低温での焼結性を高めるための方法に
ついて検討を重ねた結果、La、CrおよびMg、C
a、Srの群から選ばれる少なくとも1種のアルカリ土
類元素を含む系に対して、Ga、In、Sn、Pbの群
から選ばれる少なくとも1種の金属化合物を添加するこ
とにより、焼結性を高め、低温での焼成による緻密化が
可能になることを見いだし、本発明に至った。
Means for Solving the Problems The inventors of the present invention have studied the method for solving the above-mentioned problems and improving the sinterability at a low temperature, and as a result, have found that La, Cr and Mg, C
a, a group of Ga, In, Sn, and Pb with respect to a system containing at least one alkaline earth element selected from the group of a and Sr
It has been found that by adding at least one metal compound selected from the group consisting of sintering, sinterability is improved and densification by firing at a low temperature becomes possible, and the present invention has been achieved.

【0007】即ち、本発明を導電性セラミックスは、金
属元素の原子比を下記式 La x y Cr z u 式中、Aは、Mg、Ca、Srの群から選ばれる少なく
とも1種 Bは、Ga、In、Sn、Pbの群から選ばれる少なく
とも1種 と表したとき、x、y、zおよびuが 0.0001≦u/x+y+z≦0.2 0.01≦y/x+y+z≦0.2 を満足することを特徴とするものである。
That is, according to the present invention, the conductive ceramic is made of gold.
In atomic ratio of group element formula La x A y Cr z B u formula, A is less selected from Mg, Ca, the group of Sr
At least one type B is at least one selected from the group consisting of Ga, In, Sn, and Pb.
When both are represented by one type , x, y, z and u satisfy the condition of 0.0001 ≦ u / x + y + z ≦ 0.2 0.01 ≦ y / x + y + z ≦ 0.2.

【0008】また、本発明によれば、上記導電性セラミ
ックスを、燃料電池セルの単セル間を電気的に接続する
ための集電部材として用いることを特徴とするものであ
る。
Further, according to the present invention, the conductive ceramic is used as a current collecting member for electrically connecting single cells of a fuel cell.

【0009】本発明における導電性セラミックスにおい
ては、従来から知られるLa、Cr、およびMg、C
a、Srの群から選ばれる少なくとも1種のアルカリ土
類元素を含有する複合酸化物に対して、Ga、In、S
n、Pbの群から選ばれる少なくとも1種の金属を含有
せしめることが大きな特徴である。これらの金属元素は
前記式において、0.0001≦u/x+y+z≦0.
2を満足する量で配合される。これは、この値が0.0
001より少ないと、低温焼成により焼結体が充分に緻
密化できず、1%以上の開気孔率が存在することとな
り、この値が0.2を越えると電気伝導度が小さくなり
電極材料として適用できなくなるためである。また、本
発明の導電性セラミックスは水素および酸素雰囲気で安
定であるという性質を有するが、上記範囲を越えると水
素雰囲気安定性が悪くなり発電中に材料が分解するとい
う問題がある。この範囲内でも0.005≦u/x+y
+z≦0.1の範囲が良い。
In the conductive ceramics according to the present invention, La, Cr, Mg, C
Ga, In, S for a composite oxide containing at least one alkaline earth element selected from the group consisting of
A major feature is that at least one metal selected from the group consisting of n and Pb is contained. These metal elements are represented by 0.0001 ≦ u / x + y + z ≦ 0.
It is blended in an amount satisfying 2. This is because this value is 0.0
If it is less than 001, the sintered body cannot be sufficiently densified by low-temperature sintering, and an open porosity of 1% or more exists. This is because it cannot be applied. Further, the conductive ceramics of the present invention has a property that it is stable in an atmosphere of hydrogen and oxygen. However, if the above range is exceeded, there is a problem that stability in a hydrogen atmosphere is deteriorated and the material is decomposed during power generation. Even within this range, 0.005 ≦ u / x + y
The range of + z ≦ 0.1 is good.

【0010】また、本発明によれば、Mg、Ca、Sr
の群から選ばれる少なくとも1種のアルカリ土類元素量
yは、前記式において、0.01≦y/x+y+z≦
0.2であることも必要である。これは、これらの元素
が上記範囲より少ないと、電気伝導度が小さくなり、上
記範囲より多いと水素などの還元雰囲気中で分解するた
めである。なお、上記アルカリ土類元素量yは0.05
≦y/x+y+z≦0.15が最適である。
Further, according to the present invention, Mg, Ca, Sr
The amount y of at least one kind of alkaline earth element selected from the group represented by the formula is 0.01 ≦ y / x + y + z ≦
It must also be 0.2. This is because when these elements are less than the above ranges, the electric conductivity becomes small, and when these elements are more than the above ranges, they are decomposed in a reducing atmosphere such as hydrogen. The amount of the alkaline earth element y is 0.05
≦ y / x + y + z ≦ 0.15 is optimal.

【0011】本発明の上記導電性セラミックスは、La
23、Cr23や、MgCO3、CaCO3などの金属酸
化物、あるいは熱処理により酸化物を形成する水酸化
物、炭酸塩、硝酸塩、塩化物などの化合物粉末に対し
、Ga、In、Sn、Pbの群から選ばれる少なくと
も1種の金属の酸化物粉末、あるいは熱処理により酸化
物を形成し得る水酸化物や炭酸塩、硝酸塩などを前記比
率となるように、秤量混合し、これを所定の形状に成形
した後、大気などの酸化性雰囲気中で1300〜170
0℃で2〜5時間程度焼成することにより緻密化するこ
とができる。
The conductive ceramics of the present invention is La
For metal oxides such as 2 O 3 , Cr 2 O 3 , MgCO 3 , CaCO 3 , or compound powders such as hydroxides, carbonates, nitrates, and chlorides that form oxides by heat treatment , Ga, At least selected from the group consisting of In, Sn, and Pb
Also, one kind of metal oxide powder, or a hydroxide or a carbonate capable of forming an oxide by heat treatment, and weighed and mixed so as to have the above ratio, and after shaping this into a predetermined shape, 1300 to 170 in an oxidizing atmosphere such as air
Densification can be achieved by firing at 0 ° C. for about 2 to 5 hours.

【0012】その他、La23、Cr23や、MgO、
CaOなどのアルカリ土類元素化合物を一旦1200〜
1500℃で仮焼処理後ABO3型ペロブスカイト型複
合酸化物を作製し、これを粉砕したものに対して、
a、In、Sn、Pbの群から選ばれる少なくとも1種
の金属の酸化物粉末、あるいは熱処理により酸化物を形
成し得る水酸化物や炭酸塩、硝酸塩などを前記比率とな
るように、秤量混合し、これを所定の形状に成形した
後、大気などの酸化性雰囲気中で1300〜1700℃
で2〜5時間程度焼成することにより緻密化することが
できる。かかる製造方法によれば、開気孔率が1%以
下、特に0.5%以下まで緻密化することができる。
In addition, La 2 O 3 , Cr 2 O 3 , MgO,
Alkaline earth element compounds such as CaO
To produce a calcined after ABO 3 type perovskite composite oxide at 1500 ° C., with respect to those obtained by pulverizing this, G
at least one selected from the group consisting of a, In, Sn, and Pb
Metal oxide powders, or hydroxides and carbonates capable of forming an oxide by heat treatment, and weighed and mixed so as to have the above ratio, and after shaping this into a predetermined shape, such as air 1300-1700 ° C in oxidizing atmosphere
For about 2 to 5 hours for densification. According to such a production method, the density can be reduced to an open porosity of 1% or less, particularly 0.5% or less.

【0013】また、本発明の導電性セラミックスは、そ
の結晶組織としては、少なくともLa、Cr及び前記
ルカリ土類元素を構成元素とするペロブスカイト型結晶
が50体積%以上の主結晶相とするものであって、さら
にこの主結晶相以外の他相として、Ga、In、Sn、
Pbの群から選ばれる少なくとも1種の金属と、上記ペ
ロブスカイト型結晶の構成元素、特にLa23との化合
物あるいはガラス相からなるものである。この他相は、
ペロブスカイト型結晶の定比組成より過剰な成分が析出
したものである。
[0013] The conductive ceramic of the present invention has a crystal structure in which a perovskite-type crystal containing at least La, Cr and the above-mentioned alkali earth element as a constituent element is 50% by volume or more. And Ga, In, Sn, and other phases other than the main crystal phase .
It is composed of a compound or a glass phase of at least one metal selected from the group of Pb and a constituent element of the perovskite crystal, particularly La 2 O 3 . This other phase
Excess components are precipitated from the stoichiometric composition of the perovskite crystal.

【0014】本発明における導電性セラミックスは、例
えば、燃料電池セルにおける電極材料として好適に使用
される。そこで、図1に平板型燃料電池セルの典型的な
構造を示す。図1によれば、Y23安定化ZrO2など
のからなる板状の固体電解質1の片面には、LaSrM
nO3やLaCaMnO3などからなる空気極2が、また
他面にはNi−ZrO2(Y23安定化)サーメットな
どからなる燃料極3が形成され、これを単セルとしてセ
ル間を接続する部材として集電部材4がセルの空気極と
隣接するセルの燃料極と接続する位置に配置されてい
る。かかるセルにおいては、空気極2は、大気などの酸
素含有ガスが、燃料極3には水素ガスなどの燃料極が接
触し、空気極2および燃料極3のいずれも多孔質材料に
より構成されるが、集電部材4は、その片面は酸素含有
ガスと接触し、片方は水素ガスと接触しこれらを完全に
分離する役割を有することから、高緻密質、高電気伝導
性を有することが要求される。
The conductive ceramic according to the present invention is suitably used, for example, as an electrode material in a fuel cell. FIG. 1 shows a typical structure of a flat fuel cell. According to FIG. 1, one side of a plate-like solid electrolyte 1 made of Y 2 O 3 stabilized ZrO 2 or the like is provided with LaSrM
An air electrode 2 made of nO 3 or LaCaMnO 3 is formed, and a fuel electrode 3 made of Ni—ZrO 2 (Y 2 O 3 stabilized) cermet is formed on the other surface. The current collecting member 4 is disposed at a position where the current collecting member 4 is connected to the fuel electrode of the cell adjacent to the air electrode of the cell. In such a cell, the air electrode 2 is in contact with an oxygen-containing gas such as air, the fuel electrode 3 is in contact with a fuel electrode such as hydrogen gas, and both the air electrode 2 and the fuel electrode 3 are made of a porous material. However, the current collecting member 4 is required to have high density and high electrical conductivity because one side thereof is in contact with the oxygen-containing gas and one side is in contact with the hydrogen gas to completely separate them. Is done.

【0015】前述した導電性セラミックスは、前述した
通り、開気孔率が1%以下の高緻密体であるとともに、
電気伝導度、特に燃料電池の作動時(約1000℃)に
おける電気伝導度が15s/cm以上と高いことから、
集電部材が要求される特性を十分に満足するものであ
る。しかも、この導電性セラミックスは、水素に対する
耐久性に優れることから長期安定性に優れることも集電
部材として好適な1つの理由である。
As described above, the conductive ceramic is a dense body having an open porosity of 1% or less.
Since the electric conductivity, particularly when the fuel cell is operating (about 1000 ° C.), is as high as 15 s / cm or more,
The current collecting member sufficiently satisfies the required characteristics. In addition, this conductive ceramic is also excellent in durability against hydrogen, and is therefore excellent in long-term stability, which is one reason that it is suitable as a current collecting member.

【0016】[0016]

【作用】LaCrO3系材料は、結晶内の陽イオン拡散
速度が遅いことに加えて、Cr成分が優先的に蒸発しや
すく、大気中ではこれが焼結の際、粒子の接触部に凝縮
してCr23として堆積し、陽イオンの拡散を阻害し焼
結性を悪くする、いわゆるLaCrO3系材料の焼結は
蒸発凝縮機構が支配的である。
In the LaCrO 3 -based material, in addition to the slow cation diffusion rate in the crystal, the Cr component is liable to evaporate preferentially. The so-called LaCrO 3 -based material, which is deposited as Cr 2 O 3 and inhibits the diffusion of cations to deteriorate sinterability, is dominated by an evaporative condensation mechanism.

【0017】それに対して、本発明の材料では、Ga、
In、Sn、Pbの群から選ばれる少なくとも1種の金
を添加することにより、焼結時に液相または反応物が
生成され、Crの蒸発を抑制すると同時に、ペロブスカ
イト型結晶の構成元素中の陽イオンの拡散を促進させる
ことにより、低温での焼成によって緻密質なLaCrO
3系焼結体を得ることができる。
On the other hand, in the material of the present invention, Ga,
At least one type of gold selected from the group consisting of In, Sn, and Pb
By adding genus, liquid or reactant is generated in sintering, and simultaneously suppress evaporation of Cr, by promoting the diffusion of cations in component elements of the perovskite type crystal by firing at a low temperature Dense LaCrO
A 3 series sintered body can be obtained.

【0018】しかしながら、本材料は本質的に電気伝導
性を有することが必要であり、焼結後にはペロブスカイ
ト結晶の主結晶相からなるが、上述の液相は一部粒界に
おいて絶縁相を析出すると思われる。このため、粒界が
多いと電気伝導性が低下し、燃料電池セルの発電特性を
低下させる原因となる。このような理由から上記特定金
属の添加量の上限を設定した。このような結晶は量が少
なく電気伝導性に影響しないため、前記の添加量範囲を
満足すればこれを集電部材として用いても特に問題とは
ならないのである。
However, the present material is required to have essentially electrical conductivity, and after sintering, consists of a main crystal phase of perovskite crystals, but the above-mentioned liquid phase partially precipitates an insulating phase at grain boundaries. It seems to be. For this reason, if there are many grain boundaries, electric conductivity will be reduced, and this will cause the power generation characteristics of the fuel cell to deteriorate. For these reasons, the upper limit of the amount of the specific metal added is set. Since such crystals have a small amount and do not affect the electrical conductivity, they do not pose any problem even if they are used as a current collecting member as long as they satisfy the above-mentioned addition amount range.

【0019】[0019]

【実施例】市販の純度99.9%のLa23、MgCO
3、Cr23、SrCO3、CaCO3を用いて、これら
を所定の割合で混合した後、1300℃の酸化性雰囲気
中で24時間熱処理後粉砕して、平均粒径が3μmのL
a(Mg0.1Cr0.9)O3、(La0.9Sr0.1)Cr
3、(La0.9Ca0.1)CrO3固溶体粉末を得た。次
にこの固溶体粉末に、Ga、In、Sn、Pbの群から
選ばれる少なくとも1種の金属の酸化物粉末を所定量添
加し、ボールミルで24時間混合した後、5mm×5m
m、長さ45mmの四角柱に形成し、大気中1450〜
1600℃の温度で焼成した。
EXAMPLES La 2 O 3 , MgCO 3 having a purity of 99.9% commercially available
3 , Cr 2 O 3 , SrCO 3 , and CaCO 3 are mixed at a predetermined ratio, and then heat-treated in an oxidizing atmosphere at 1300 ° C. for 24 hours, and then pulverized to obtain a powder having an average particle size of 3 μm.
a (Mg 0.1 Cr 0.9) O 3, (La 0.9 Sr 0.1) Cr
O 3 , (La 0.9 Ca 0.1 ) CrO 3 solid solution powder was obtained. Next, this solid solution powder was added from the group of Ga, In, Sn, and Pb.
After adding a predetermined amount of at least one selected metal oxide powder and mixing for 24 hours in a ball mill, 5 mm × 5 m
m, formed into a square prism with a length of 45 mm.
It was fired at a temperature of 1600 ° C.

【0020】得られた焼結体に対して、アルキメデス法
により試料の開気孔率の測定を行い、焼結性を判断し
た。また、大きさ3mm×3mm×20mmの試料片を
上記のようにして作製し、4端子法により大気中100
0℃で電気伝導度を測定した。
With respect to the obtained sintered body, the open porosity of the sample was measured by the Archimedes method to determine the sinterability. Further, a sample piece having a size of 3 mm × 3 mm × 20 mm was prepared as described above, and 100
The electrical conductivity was measured at 0 ° C.

【0021】比較のため、市販のLa0.9Sr0.1CrO
3組成の原料を2000℃で2時間大気中で焼成したも
のを用い、開気孔率及び電気伝導度を測定した。また、
この焼結体を1000℃の水素雰囲気中に24時間保持
した後の試料の安定性を調べ、全く変化はなかったもの
に○、表面に分解が認められたものに×を付した。結果
を表1に示した。
For comparison, a commercially available La 0.9 Sr 0.1 CrO
The open porosity and the electric conductivity were measured using the raw materials of the three compositions fired in the air at 2000 ° C. for 2 hours. Also,
After the sintered body was kept in a hydrogen atmosphere at 1000 ° C. for 24 hours, the stability of the sample was examined. If no change was observed, ○ was given, and if the surface was decomposed, × was given. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果から明らかなように、従来品の
試料No,1では1550℃の焼成温度では開気孔率が
28%と大きく緻密化できなかった。これに対し て、
発明品はいずれも1450〜1600℃の焼成温度で開
気孔率1%以下まで緻密化することができ、しかも10
00℃における電気伝導度が15s/cm以上を示すと
ともに1000℃の水素中でも優れた安定性を示した。
As is clear from the results shown in Table 1 , in the sample No. 1 of the conventional product, the open porosity was as large as 28% at the firing temperature of 1550 ° C., and the densification was not possible. And contrast, the products of the present invention either can be densified to less than 1% open porosity at a firing temperature of 1,450 to 1,600 ° C., yet 10
The electric conductivity at 00 ° C. was 15 s / cm or more, and the stability was excellent even in hydrogen at 1000 ° C.

【0024】[0024]

【発明の効果】以上詳述した通り、LaCrO3系組成
物における焼結性を改善することができ、高い導電性を
有するとともに1600℃以下の焼成温度で緻密化する
ことができる。しかも、高温の水素雰囲気での安定性に
優れるものであり、例えば、燃料電池などの水素と接触
するインターコネクタ、セパレータ、ガスディフューザ
などの集電部材として好適に使用することにより、安価
でしかも燃料電池としての長期安定性に対応できる電極
材料を提供できる。
As described in detail above, the sinterability of the LaCrO 3 -based composition can be improved, and the LaCrO 3 composition has high conductivity and can be densified at a firing temperature of 1600 ° C. or less. In addition, it is excellent in stability in a high-temperature hydrogen atmosphere, and is preferably used as a current collecting member such as an interconnector, a separator, and a gas diffuser that comes into contact with hydrogen such as a fuel cell, so that it is inexpensive and has low fuel consumption. An electrode material that can cope with long-term stability as a battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平板型燃料電池セルの構造の概略図である。FIG. 1 is a schematic view of the structure of a flat fuel cell.

【符号の説明】[Explanation of symbols]

1 固体電解質 2 空気極 3 燃料極 4 集電部材 DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Air electrode 3 Fuel electrode 4 Current collecting member

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−219366(JP,A) 特開 平4−219364(JP,A) 特開 平4−108667(JP,A) 特開 平3−146465(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/50 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-219366 (JP, A) JP-A-4-219364 (JP, A) JP-A-4-108667 (JP, A) JP-A-3-219 146465 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/42-35/50

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属元素の原子比を下記式 Laxy Crzu 式中、Aは、Mg、Ca、Srの群から選ばれる少なく
とも1種 Bは、Ga、In、Sn、Pbの群から選ばれる少なく
とも1種 と表したとき、x、y、zおよびuが 0.0001≦u/x+y+z≦0.2 0.01≦y/x+y+z≦0.2 を満足する複合酸化物からなることを特徴とする導電性
セラミックス。
1. A in atomic ratio the formula La x A y Cr z B u type metal elements, A is, Mg, Ca, at least one B is selected from the group consisting of Sr is, Ga, In, Sn, Pb And x, y, z and u are represented by at least one member selected from the group consisting of: 0.0001 ≦ u / x + y + z ≦ 0.2 0.01 ≦ y / x + y + z ≦ 0.2 Conductive ceramics characterized by becoming.
【請求項2】セル間を電気的に接続するための集電部材
が請求項1記載の導電性セラミックスからなることを特
徴とする燃料電池セル。
2. A fuel cell according to claim 1, wherein a current collecting member for electrically connecting the cells is made of the conductive ceramic according to claim 1.
JP02780594A 1994-02-25 1994-02-25 Conductive ceramics and fuel cell using the same Expired - Fee Related JP3325378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02780594A JP3325378B2 (en) 1994-02-25 1994-02-25 Conductive ceramics and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02780594A JP3325378B2 (en) 1994-02-25 1994-02-25 Conductive ceramics and fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH07237968A JPH07237968A (en) 1995-09-12
JP3325378B2 true JP3325378B2 (en) 2002-09-17

Family

ID=12231201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02780594A Expired - Fee Related JP3325378B2 (en) 1994-02-25 1994-02-25 Conductive ceramics and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3325378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19514164C2 (en) * 1995-04-15 1999-02-11 Dornier Gmbh Lanthanum chromite-based connecting element for high-temperature fuel cells and high-temperature electrolysis cells
WO1999065099A2 (en) * 1998-06-12 1999-12-16 Ceramphysics, Inc. Ceramic fuel cell
FR2807421B1 (en) * 2000-04-07 2002-07-12 Rhodia Terres Rares COMPOUNDS DERIVED FROM LA2MO2O9 AND THEIR USE AS ION CONDUCTORS

Also Published As

Publication number Publication date
JPH07237968A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
JP3121982B2 (en) Conductive ceramics
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP3121993B2 (en) Method for producing conductive ceramics
JP3134882B2 (en) Lanthanum chromite complex oxides and applications
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JPH09180731A (en) Solid electrolyte fuel cell
JP2836852B2 (en) Solid oxide fuel cell separator
JP3220320B2 (en) Fuel cell and method for producing conductive ceramics
JP3342541B2 (en) Solid oxide fuel cell
JP3121991B2 (en) Conductive ceramics
US6447944B1 (en) Solid electrolyte, method of producing same and fuel cell using same
JP3389407B2 (en) Conductive ceramics and fuel cells
JP3199546B2 (en) Current collector for solid oxide fuel cell and method for producing conductive ceramics
JP3339936B2 (en) Method for producing conductive ceramics
JP3091100B2 (en) Method for producing conductive ceramics
JP3325388B2 (en) Conductive ceramics and fuel cell using the same
JP3350137B2 (en) Solid oxide fuel cell material
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JP3342571B2 (en) Solid oxide fuel cell
JP3210803B2 (en) Method for producing conductive ceramics
JP3740304B2 (en) Conductive ceramics
JP3134883B2 (en) Separator for solid oxide fuel cell
JPH1179836A (en) Electroconductive ceramics
JP3370460B2 (en) Method for producing conductive ceramics
JP3085632B2 (en) Method for producing conductive ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees