JP3210803B2 - Method for producing conductive ceramics - Google Patents

Method for producing conductive ceramics

Info

Publication number
JP3210803B2
JP3210803B2 JP14290294A JP14290294A JP3210803B2 JP 3210803 B2 JP3210803 B2 JP 3210803B2 JP 14290294 A JP14290294 A JP 14290294A JP 14290294 A JP14290294 A JP 14290294A JP 3210803 B2 JP3210803 B2 JP 3210803B2
Authority
JP
Japan
Prior art keywords
oxide
temperature
fuel cell
periodic table
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14290294A
Other languages
Japanese (ja)
Other versions
JPH0812421A (en
Inventor
吉健 寺師
高志 重久
雅英 秋山
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14290294A priority Critical patent/JP3210803B2/en
Publication of JPH0812421A publication Critical patent/JPH0812421A/en
Application granted granted Critical
Publication of JP3210803B2 publication Critical patent/JP3210803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LaCrO3 系組成か
らなる導電性を有するセラミックスの製造方法に関し、
詳細には焼結性の改善に関するもので、特に燃料電池セ
ルのセパレータ、ガスディフューザ及びインターコネク
タなどの集電部材や、MHD発電用の集電部材などに好
適な導電性セラミックスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive ceramic having a LaCrO 3 composition.
More specifically, the present invention relates to a method for producing a conductive ceramic suitable for a current collecting member such as a separator, a gas diffuser, and an interconnector of a fuel cell, and a current collecting member for MHD power generation.

【0002】[0002]

【従来の技術】ランタンクロマイト系酸化物(LaCr
3 )は、高温における化学的安定性に優れるとともに
電子伝導性が大きいことから固体電解質型燃料電池セル
のセパレータ、ガスディフューザ、及びインターコネク
タなどの集電部材として利用されている。
2. Description of the Related Art Lanthanum chromite oxide (LaCr)
O 3 ) is used as a current collecting member such as a separator, a gas diffuser, and an interconnector of a solid oxide fuel cell because of its excellent chemical stability at high temperature and high electron conductivity.

【0003】図1に平板形状の固体電解質型燃料電池セ
ルを示した。平板型燃料電池セルでは、例えばY2 3
安定化ZrO2 からなる固体電解質1の一方に(LaS
r)MnO3 や(LaCa)MnO3 系の空気極2、他
方にNiーY2 3 安定化ジルコニアサーメット等の燃
料極3が設けられ、このセル間の接続はLaCrO3
セラミックスからなるセパレータ4により行われてい
る。燃料電池セルにおいては、空気極2側に空気などの
酸素を含有するガスを、燃料極3側に水素ガスなどの燃
料ガスを流しながら、1000〜1050℃の温度で発
電する。上述のセパレータ用セラミックスとしては、C
aOあるいはSrOを固溶したLaCrO3 系材料が利
用される。
FIG. 1 shows a solid oxide fuel cell having a flat plate shape. In a flat fuel cell, for example, Y 2 O 3
One of the solid electrolytes 1 made of stabilized ZrO 2 has (LaS
r) MnO 3 or (lacA) MnO 3 system of the air electrode 2, Ni over Y 2 O 3 fuel electrode 3, such as stabilized zirconia cermet is provided on the other, the connection between the cell consists of LaCrO 3 based ceramic separator 4 is performed. The fuel cell generates power at a temperature of 1000 to 1050 ° C. while flowing a gas containing oxygen such as air on the side of the air electrode 2 and a fuel gas such as hydrogen gas on the side of the fuel electrode 3. As the above-mentioned ceramics for separators, C
A LaCrO 3 -based material in which aO or SrO is dissolved is used.

【0004】[0004]

【発明が解決しようとする問題点】LaCrO3 系セラ
ミックスは陽イオンの拡散速度が遅いことに加えて、焼
結過程において材料中からCr成分が揮発し、粒子の接
触部(ネック部)にCr23 として凝縮堆積して焼結
を阻害する。このため、大気中では2000℃以上の高
温で焼結させるか、あるいは還元性雰囲気でこのCr2
3 の蒸発凝縮を抑制しながら焼結させることが必要で
あるが、この場合でも1800℃以上の高温度が必要で
ある。このような高温焼結による材料の作製は、経済的
な観点から燃料電池セルの量産を著しく困難にさせると
ともに、コストを高める要因になっている。
Problems to be Solved by the Invention In addition to the slow diffusion rate of cations, LaCrO 3 -based ceramics volatilize Cr components from the material during the sintering process, and cause Cr contact at the contact portion (neck portion) of the particles. It condenses and deposits as 2 O 3 and hinders sintering. Therefore, the Cr 2 In either in the atmosphere is sintered at a high temperature of at least 2000 ° C., or a reducing atmosphere
It is necessary to perform sintering while suppressing the evaporation and condensation of O 3 , but even in this case, a high temperature of 1800 ° C. or more is required. The production of a material by such high-temperature sintering makes mass production of fuel cells extremely difficult from an economic viewpoint, and is a factor that increases the cost.

【0005】一方、LaCrO3 系セラミックスを低温
で得るための方法として、電気化学的気相合成(EV
D)法が適用されている。しかしながら、この方法は1
400℃と比較的低温でLaCrO3 系材料が作製され
るものの、LaCrO3 の成長速度が遅いため量産性に
欠け、また、この方法では出発原料として極めて高価な
金属塩化物を使用する必要があるために経済的にも問題
があった。
On the other hand, as a method for obtaining LaCrO 3 ceramics at a low temperature, electrochemical vapor phase synthesis (EV
D) Method is applied. However, this method is
Although LaCrO 3 system material is made relatively low temperature and 400 ° C., lacks mass productivity for the growth rate of the LaCrO 3 is low, also, it is necessary to use a very expensive metal chloride as the starting material in this method Therefore, there was an economic problem.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、上述の
問題点を解決し、低温での焼結性を高めるための方法に
ついて検討を重ねた結果、少なくともLaとCrを含む
ペロブスカイト型複合酸化物粉末を合成した後、この粉
末に対して周期律表第3a族元素酸化物およびMgOを
所定の割合で複合添加することにより、飛躍的に焼結性
を高めることができ、これにより1450〜1600℃
の低温での焼成による高緻密化が可能になることを見い
だし、本発明に至った。
Means for Solving the Problems The inventors of the present invention have solved the above-mentioned problems and have studied various methods for improving the sinterability at a low temperature. As a result, a perovskite type containing at least La and Cr has been obtained. After synthesizing the composite oxide powder, the sinterability can be dramatically improved by adding a composite oxide of a Group 3a element of the periodic table and MgO at a predetermined ratio to this powder. 1450-1600 ° C
It has been found that high densification by firing at a low temperature becomes possible, and the present invention has been achieved.

【0007】即ち、本発明の導電性セラミックスの製造
方法は、少なくとも金属元素としてLaとCrとを含む
ペロブスカイト型複合酸化物粉末に対して、周期律表第
3a族元素酸化物を0.01〜30重量%、MgOを
0.01〜30重量%の割合で添加した粉末混合物を所
定の形状に成形した後、1450〜1600℃の酸化性
雰囲気中で焼成して高緻密体とすることを特徴とするも
のである。
That is, in the method for producing a conductive ceramic of the present invention, a perovskite-type composite oxide powder containing at least La and Cr as metal elements is added with an oxide of a Group 3a element of the periodic table in an amount of 0.01 to 0.01%. A powder mixture containing 30% by weight and MgO at a ratio of 0.01 to 30% by weight is formed into a predetermined shape, and then fired in an oxidizing atmosphere at 1450 to 1600 ° C. to obtain a high-density body. It is assumed that.

【0008】以下、本発明を詳述する。本発明における
導電性セラミックスの製造方法によれば、まず、少なく
ともLa,Crを含むペロブスカイト型複合酸化物粉末
を合成する。この複合酸化物としては、Laの一部をC
a,Srなどアルカリ土類元素により置換したものなど
も採用することができ、具体的には、全体組成を下記化
Hereinafter, the present invention will be described in detail. According to the method for producing a conductive ceramic of the present invention, first, a perovskite-type composite oxide powder containing at least La and Cr is synthesized. In this composite oxide, part of La is C
Those substituted with an alkaline earth element such as a or Sr can also be employed.

【0009】[0009]

【化1】 Embedded image

【0010】と表した時、式中のx,yおよびzが0.
01≦x≦0.5、0.8≦y≦1.2、0≦z≦0.
3を満足するものが好適に採用される。
When x, y and z in the formula are 0.
01 ≦ x ≦ 0.5, 0.8 ≦ y ≦ 1.2, 0 ≦ z ≦ 0.
Those satisfying No. 3 are preferably adopted.

【0011】かかる複合酸化物粉末は、上記複合酸化物
を構成する金属元素の酸化物、あるいは熱処理により酸
化物を形成することのできる硝酸塩、炭酸塩、酢酸塩な
どの粉末を用いて、前記化1で示された関係を満足する
ように調合した後、これを1000〜1500℃の温度
で熱処理することにより、ペロブスカイト型複合酸化物
を合成することができる。
The composite oxide powder can be prepared by using an oxide of a metal element constituting the composite oxide or a powder of a nitrate, carbonate, acetate or the like capable of forming an oxide by heat treatment. After blending so as to satisfy the relationship shown in No. 1, by subjecting this to a heat treatment at a temperature of 1000 to 1500 ° C., a perovskite-type composite oxide can be synthesized.

【0012】次に、本発明によれば、上記のようにして
合成したペロブスカイト型複合酸化物粉末に対して、周
期律表第3a族元素酸化物およびMgOの粉末を複合添
加するものである。周期律表第3a族元素酸化物は全量
中、0.01〜30重量%、特に1〜10重量%、Mg
Oは0.01〜30重量%、特に1〜10重量%の割合
で添加される。これらの添加成分の量を上記の範囲に限
定したのは、周期律表第3a族元素酸化物およびMgO
がいずれか一方、あるいは上記成分が上記下限値より少
ない場合、優れた焼結性が発揮されず、気孔を有する焼
結体が形成され、逆に各成分が上記上限値を越えると焼
結体の導電性が添加成分により阻害され、電気伝導度が
低下してしまう。また、周期律表第3a族元素酸化物と
してLa2 3 を選択した場合には、30重量%を越え
ると水素/水蒸気雰囲気における安定性が低下する。さ
らに、添加成分量の合量は、50重量%以下であること
が電気伝導度の低下を抑制するために望ましい。
Next, according to the present invention, a powder of a Group 3a element oxide of the periodic table and a powder of MgO are added to the perovskite-type composite oxide powder synthesized as described above. The oxide of the Group 3a element of the periodic table accounts for 0.01 to 30% by weight, particularly 1 to 10% by weight,
O is added at a rate of 0.01 to 30% by weight, particularly 1 to 10% by weight. The reason why the amounts of these additional components were limited to the above ranges was that the oxides of the Group 3a elements of the periodic table and MgO were used.
When either one or the above components are less than the above lower limit, excellent sinterability is not exhibited, and a sintered body having pores is formed, and conversely, when each component exceeds the above upper limit, the sintered body becomes Is inhibited by the added component, and the electric conductivity is reduced. When La 2 O 3 is selected as the Group 3a element oxide of the periodic table, if it exceeds 30% by weight, the stability in a hydrogen / steam atmosphere is reduced. Further, the total amount of the added components is desirably 50% by weight or less in order to suppress a decrease in electric conductivity.

【0013】上記の割合で添加混合された複合酸化物お
よび添加成分は、ボールミルなどにより十分に混合した
後、所望の成形手段、例えば、金型プレス,冷間静水圧
プレス,押出し成形等の他、ドクターブレード法やスラ
リーディップ法によりシート状あるいは薄膜状に成形し
た後、焼成する。
The mixed oxide and the added components added and mixed in the above ratios are sufficiently mixed by a ball mill or the like, and then mixed with a desired forming means, for example, a die press, a cold isostatic press, an extrusion molding or the like. After forming into a sheet or a thin film by a doctor blade method or a slurry dipping method, firing is performed.

【0014】焼成は、大気などの酸化性雰囲気中で13
00〜1700℃、特に1450〜1600℃の温度で
焼成することができる。この時の焼成温度が1300℃
未満では十分な焼結が望めないためである。しかし、焼
成温度が高すぎると焼成炉などの制約が発生したり、焼
成に要する費用も増大することから上限を1700℃に
定めた。
The firing is performed in an oxidizing atmosphere such as air.
It can be fired at a temperature of from 00 to 1700C, especially from 1450 to 1600C. The firing temperature at this time is 1300 ° C
If it is less than 30, sufficient sintering cannot be expected. However, if the firing temperature is too high, restrictions such as a firing furnace occur and the cost required for firing increases, so the upper limit was set to 1700 ° C.

【0015】本発明によれば、上記の製造方法により作
製される導電性セラミックスは、開気孔率が0.5%以
下の高密度焼結体であって、その結晶組織としては、少
なくともLa、Cr、場合によってはCa,Sr,Ba
などのアルカリ土類元素を含むペロブスカイト型結晶を
主結晶相とするもので、さらに本発明によれば、この主
結晶相以外の他相として、添加成分に起因する周期律表
第3a族元素を含む酸化物とMgO、あるいはMgCr
24からなる相が粒界相として分散した組織からなる。
これらペロブスカイト型結晶相以外の相は、主結晶粒子
の2粒子間に存在すると粒界を横切る電子の移動を阻害
し、焼結体の電気伝導性を低下させる要因となることか
ら、ペロブスカイト型主結晶粒子3つの界面、いわゆる
3重点に50nm〜3μm、特に50nm〜1μmの大
きさで析出することが望ましい。このように3重点に存
在させるためには、焼成を10-3気圧以上の酸素分圧
下、1450〜1600℃の温度にて1時間以上保持す
ることにより粒界相の成分を3重点に凝集させることが
できる。この焼結体は、高緻密体であることに加え、酸
化性および還元性雰囲気において化学的に安定で、かつ
燃料電池の作動温度(1000℃)で電気伝導度が10
s/cmと高いものである。
According to the present invention, the conductive ceramic produced by the above production method is a high-density sintered body having an open porosity of 0.5% or less, and has a crystal structure of at least La, Cr, possibly Ca, Sr, Ba
And a perovskite-type crystal containing an alkaline earth element as the main crystal phase. Further, according to the present invention, as a phase other than the main crystal phase, a Group 3a element of the periodic table due to the additive component is used. Containing oxide and MgO or MgCr
It has a structure in which a phase composed of 2 O 4 is dispersed as a grain boundary phase.
The phase other than the perovskite-type crystal phase, if present between the two main crystal grains, impedes the transfer of electrons across the grain boundary and causes a reduction in the electrical conductivity of the sintered body. It is desirable that the crystal grains be precipitated at a size of 50 nm to 3 μm, particularly 50 nm to 1 μm at an interface between three crystal grains, a so-called triple point. In order to make the grain boundary phase exist at the triple point, the components of the grain boundary phase are aggregated at the triple point by maintaining the firing at a temperature of 1450 to 1600 ° C. for 1 hour or more under an oxygen partial pressure of 10 −3 atm or more. be able to. This sintered body is, in addition to being a high-density body, chemically stable in an oxidizing and reducing atmosphere and having an electric conductivity of 10 at the operating temperature (1000 ° C.) of the fuel cell.
It is as high as s / cm.

【0016】従って、本発明における導電性セラミック
スは、例えば、燃料電池セルにおける電極材料として好
適に使用される。具体的には、図1の平板型燃料電池セ
ルにおいて、セル間を接続する部材として使用されるセ
パレータ(集電部材)4はその片面は酸素含有ガスと接
触し、片方は水素ガスと接触しこれらを完全に分離する
役割を有し、高緻密質、高電気伝導性を有することが要
求される。
Therefore, the conductive ceramic according to the present invention is suitably used, for example, as an electrode material in a fuel cell. Specifically, in the flat fuel cell of FIG. 1, a separator (current collecting member) 4 used as a member for connecting between the cells has one surface in contact with an oxygen-containing gas and one with a hydrogen gas. It is required to have a role of completely separating them, and to have high density and high electrical conductivity.

【0017】前述した導電性セラミックスは、前述した
通り、開気孔率が1%以下の高緻密体であるとともに、
電気伝導度、特に燃料電池の作動時(約1000℃)に
おける電気伝導度が10s/cm以上と高いことから、
前記集電部材として要求される特性を十分に満足するも
のである。しかも、この導電性セラミックスは、水素に
対する耐久性に優れることから長期安定性に優れること
も集電部材として好適な1つの理由である。従って、図
1の平板型燃料電池セルにおいて、セパレータ4として
最も好適に用いられる。さらに、円筒型燃料電池セルに
おいては、セル間を接続するためのインターコネクタと
して用いることができる。
As described above, the above-described conductive ceramic is a high-density body having an open porosity of 1% or less.
Since the electric conductivity, particularly when the fuel cell operates (about 1000 ° C.), is as high as 10 s / cm or more,
The characteristics required as the current collecting member are sufficiently satisfied. In addition, this conductive ceramic is also excellent in durability against hydrogen, and is therefore excellent in long-term stability, which is one reason that it is suitable as a current collecting member. Therefore, it is most suitably used as the separator 4 in the flat fuel cell of FIG. Furthermore, in a cylindrical fuel cell, it can be used as an interconnector for connecting between cells.

【0018】[0018]

【作用】LaCrO3 系材料は、結晶内の陽イオン拡散
速度が遅いことに加えて、Cr成分が優先的に蒸発しや
すく、大気中ではこれが焼結の際、粒子の接触部に凝縮
してCr2 3 として堆積し、陽イオンの拡散を阻害し
焼結性を悪くする、いわゆるLaCrO3 系材料の焼結
は蒸発凝縮機構が支配的である。
In the LaCrO 3 -based material, in addition to the slow cation diffusion rate in the crystal, the Cr component is liable to evaporate preferentially. The so-called LaCrO 3 -based material, which is deposited as Cr 2 O 3 and inhibits the diffusion of cations to deteriorate sinterability, is dominated by an evaporative condensation mechanism.

【0019】それに対して、本発明の材料では周期律表
第3a族元素酸化物およびMgOを添加することによ
り、周期律表第3a族元素と蒸発してきたCr成分とが
反応することによって液相を生成し、これがMgOとの
相互作用により低融点の液相を生成することから、Cr
成分の蒸発を抑制するとともに粒界相における陽イオン
の拡散速度が大きくなり焼結性が大きく向上すると考え
られる。
On the other hand, in the material of the present invention, by adding an oxide of a Group 3a element of the periodic table and MgO, the element of the Group 3a of the periodic table reacts with the evaporated Cr component to form a liquid phase. Which interacts with MgO to form a liquid phase with a low melting point.
It is considered that the evaporation of the components is suppressed and the diffusion rate of the cation in the grain boundary phase is increased, so that the sinterability is greatly improved.

【0020】このような周期律表第3a族元素酸化物お
よびMgOの添加により、1450〜1600℃の低温
での焼結を実現するとともに、気孔率0.5%以下の高
緻密体を作製することができるのである。
By the addition of the Group 3a element oxide and MgO of the periodic table, sintering at a low temperature of 1450 to 1600 ° C. is realized, and a dense body having a porosity of 0.5% or less is produced. You can do it.

【0021】従って、従来のように1800℃以上の高
い温度での焼成を必要としないために耐熱性の特殊な焼
成炉などを使用する必要がなく、安価な費用で導電性セ
ラミックスを作製することができる。
Therefore, it is not necessary to fire at a high temperature of 1800 ° C. or more as in the prior art, so that it is not necessary to use a special heat-resisting firing furnace or the like. Can be.

【0022】さらに、本発明によって得られる導電性セ
ラミックスは、高緻密体であると同時に高温で高い導電
性を有することから、燃料電池セルのセル間を接続する
ための集電部材や燃料極として用いることができる。そ
の場合、セルの構成するLaMnO3 系電極材料やY2
3 安定化ZrO2 などの固体電解質と1500〜17
00℃の温度範囲で同時に焼成することも可能となり、
燃料電池セルの製造コストを削減することも可能であ
る。
Further, since the conductive ceramic obtained by the present invention is highly dense and has high conductivity at a high temperature, it can be used as a current collecting member or a fuel electrode for connecting fuel cells. Can be used. In that case, the LaMnO 3 -based electrode material or Y 2
Solid electrolyte such as O 3 -stabilized ZrO 2 and 1500 to 17
Simultaneous firing in a temperature range of 00 ° C is also possible,
It is also possible to reduce the manufacturing cost of the fuel cell.

【0023】また、本発明の導電性セラミックスを燃料
電池セルなどの電極材料として用いる場合には、高い電
気伝導度が要求される。LaCrO3 において、Laを
Caで置換すると、下記化2に従い、ホールが生成され
る。
When the conductive ceramic of the present invention is used as an electrode material for a fuel cell or the like, high electric conductivity is required. When La is replaced by Ca in LaCrO 3 , holes are generated according to the following formula 2.

【0024】[0024]

【化2】 Embedded image

【0025】上記式によると、電気伝導度はLaを置換
したCaイオン濃度に比例する。LaCrO3 において
は、Ca、Sr、Mgなどの置換量が小さいと電気伝導
度は小さくなり、また置換量が大きくなると置換せずに
析出し電気伝導度を低下させることから、電極材料とし
ては、前述した化1で示されるペロブスカイト型複合酸
化物の組成において、Laに対するアルカリ土類元素の
置換比率xを前述した範囲に特定した。
According to the above equation, the electric conductivity is proportional to the concentration of Ca ions substituted for La. In LaCrO 3 , if the substitution amount of Ca, Sr, Mg, etc. is small, the electric conductivity is small, and if the substitution amount is large, it is precipitated without substitution and lowers the electric conductivity. In the composition of the perovskite-type composite oxide represented by Chemical Formula 1 described above, the substitution ratio x of the alkaline earth element with respect to La was specified in the above-described range.

【0026】これにより、本発明の導電性セラミックス
は、高い導電性を有するとともに、還元雰囲気下におい
ても高い安定性を有するもので、これにより燃料電池の
集電部材などの電極材料として有用なものである。
As a result, the conductive ceramic of the present invention has high conductivity and high stability even in a reducing atmosphere, and is thus useful as an electrode material for a current collecting member of a fuel cell. It is.

【0027】[0027]

【実施例】【Example】

実施例1 市販の純度99.9%のLa2 3 、Cr2 3 、Sr
CO3 、CaCO3 、BaCO3 を用いて、これらを表
1に示す割合で混合した後、ジルコニアボールを用いた
ボールミルにて12時間混合した後、1400℃で5時
間仮焼して固相反応を行わせ、ペロブスカイト型複合酸
化物粉末を作製した。さらに、この粉末に対して表1に
示す割合で周期律表第3a族元素酸化物粉末およびMg
O粉末を添加して再度ジルコニアボールを用いて10時
間混合粉砕した。この混合物を一片が5mm×5mm、
長さ45mmの四角柱に成形し、大気中、表1に示す焼
成条件で焼成した。
Example 1 Commercially available La 2 O 3 , Cr 2 O 3 , Sr with a purity of 99.9%
Using CO 3 , CaCO 3 , and BaCO 3 , they were mixed at the ratios shown in Table 1, mixed for 12 hours in a ball mill using zirconia balls, and calcined at 1400 ° C. for 5 hours to perform solid phase reaction. Was performed to produce a perovskite-type composite oxide powder. Further, the powder of the Group 3a element oxide of the periodic table and Mg
O powder was added and mixed and pulverized again using zirconia balls for 10 hours. One piece of this mixture is 5 mm x 5 mm,
It was formed into a square prism having a length of 45 mm and fired in the air under the firing conditions shown in Table 1.

【0028】得られた焼結体に対して、アルキメデス法
により試料の開気孔率の測定を行い、焼結性を判断し
た。また、大きさ3mm×3mm、長さ20mmの試料
片を上記のようにして作製し、4端子法により大気中1
000℃で電気伝導度を測定した。比較のため、市販の
La0.9 Sr0.1 CrO3 組成の原料を2100℃で1
時間大気中で焼成したものを用い、開気孔率及び電気伝
導度を測定した。また、この試料の水素雰囲気安定性を
調べるために1000℃で5%の水蒸気を含む水素雰囲
気中に24時間保持した後、試料の表面に全く変化はな
かったものに○、表面に分解、または顕著な表面のエッ
チングが認められたものに×を付した。結果を表1に示
した。
With respect to the obtained sintered body, the open porosity of the sample was measured by the Archimedes method to determine the sinterability. In addition, a sample piece having a size of 3 mm × 3 mm and a length of 20 mm was prepared as described above, and one piece in air was prepared by a four-terminal method.
The electrical conductivity was measured at 000 ° C. For comparison, a commercially available raw material having a composition of La 0.9 Sr 0.1 CrO 3 was added at 2100 ° C. for 1 hour.
Open porosity and electrical conductivity were measured using the material fired in the atmosphere for a period of time. In order to examine the stability of the sample in a hydrogen atmosphere, the sample was kept at 1000 ° C. in a hydrogen atmosphere containing 5% water vapor for 24 hours. A mark of X in which remarkable surface etching was observed was given. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から、明らかなように周期律表
第3a族元素酸化物やMgOを全く添加しない試料No.
1およびMgOのみを添加した試料No.2では、170
0℃の温度でも緻密化することができなかった。また、
La2 3 のみを添加した試料No.3では、1400℃
の焼成温度において開気孔率が1.5%と緻密化が不十
分であり、また、La2 3 、Y2 3 およびMgOが
30重量%を越える試料No.10、17、24は電気伝
導度が小さく、また、水素/水蒸気雰囲気での安定性も
悪かった。
As is clear from the results shown in Table 1, Sample No. 3 containing no Group 3a element oxide or MgO at all in the periodic table.
In Sample No. 2 to which only MgO 1 and MgO were added, 170
Densification was not possible even at a temperature of 0 ° C. Also,
In sample No. 3 to which only La 2 O 3 was added, 1400 ° C.
Samples Nos. 10, 17, and 24 in which the densification was insufficient at an open porosity of 1.5% at the calcination temperature, and La 2 O 3 , Y 2 O 3 and MgO exceeded 30% by weight, The conductivity was low and the stability in a hydrogen / water vapor atmosphere was poor.

【0031】これらの比較例に対して、周期律表第3a
族元素酸化物とMgOを複合添加した本発明の方法によ
れば、気孔率0.5%以下の高緻密質な焼結体を作製す
ることができた。しかも、この焼結体は、1000℃に
おける電気伝導度も10s/cm以上と高く、電極材料
として十分使用できることも確認した。また高温水素雰
囲気において分解などのない優れたものであった。
For these comparative examples, the periodic table 3a
According to the method of the present invention in which the group-group element oxide and MgO are added in combination, a highly dense sintered body having a porosity of 0.5% or less could be produced. In addition, it was confirmed that this sintered body had a high electric conductivity at 1000 ° C. of 10 s / cm or more, and was sufficiently usable as an electrode material. Further, it was excellent without decomposition in a high-temperature hydrogen atmosphere.

【0032】なお、本発明の焼結体に対してEPMA、
X線回折測定、走査型電子顕微鏡写真およびTEM分析
した結果、ペロブスカイト型主結晶相粒界の3重点に周
期律表第3a族元素酸化物とMgOの50nm〜1μm
の大きさの析出物が検出された。
In addition, EPMA,
As a result of X-ray diffraction measurement, scanning electron micrograph, and TEM analysis, 50 nm to 1 μm of the Group 3a element oxide of the periodic table and MgO were formed at the triple point of the perovskite-type main crystal phase grain boundary.
A precipitate having a size of was detected.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明によれば、L
aCrO3系組成物における焼結性を改善し、高電気伝
導度を有するとともに1450〜1600℃の低温で高
緻密体を作製することができる。しかも、高温の水素雰
囲気での安定性に優れるものであり、例えば、燃料電池
などの水素と接触するインターコネクタ、セパレータ、
ガスディフューザなどの集電部材として好適に使用する
ことにより、安価でしかも燃料電池としての長期安定性
に対応できる集電材料を提供できる。
As described in detail above, according to the present invention, L
The sinterability of the aCrO 3 -based composition is improved, high electrical conductivity is obtained, and a dense body can be produced at a low temperature of 1450 to 1600 ° C. Moreover, it has excellent stability in a high-temperature hydrogen atmosphere. For example, interconnectors, separators,
By being suitably used as a current collecting member such as a gas diffuser, it is possible to provide a current collecting material which is inexpensive and can cope with long-term stability as a fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平板型燃料電池セルの概略図である。FIG. 1 is a schematic view of a flat fuel cell.

【符号の説明】[Explanation of symbols]

1 固体電解質 2 空気極 3 燃料極 4 集電部材 DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Air electrode 3 Fuel electrode 4 Current collecting member

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−108667(JP,A) 特開 平7−187768(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/50 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-108667 (JP, A) JP-A-7-187768 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/42-35/50 CA (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも金属元素としてLaとCrとを
含むペロブスカイト型複合酸化物粉末に対して、周期律
表第3a族元素酸化物を0.01〜30重量%、MgO
を0.01〜30重量%の割合で添加した粉末混合物を
所定の形状に成形した後、1450〜1600℃の酸化
性雰囲気中で焼成して高緻密体とすることを特徴とする
導電性セラミックスの製造方法。
1. An oxide of a Group 3a element of the periodic table in an amount of 0.01 to 30% by weight based on a perovskite-type composite oxide powder containing at least La and Cr as metal elements.
Is formed into a predetermined shape by adding a powder mixture having a content of 0.01 to 30% by weight, and then fired in an oxidizing atmosphere at 1450 to 1600 ° C. to form a high-density ceramic. Manufacturing method.
JP14290294A 1994-06-24 1994-06-24 Method for producing conductive ceramics Expired - Fee Related JP3210803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14290294A JP3210803B2 (en) 1994-06-24 1994-06-24 Method for producing conductive ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14290294A JP3210803B2 (en) 1994-06-24 1994-06-24 Method for producing conductive ceramics

Publications (2)

Publication Number Publication Date
JPH0812421A JPH0812421A (en) 1996-01-16
JP3210803B2 true JP3210803B2 (en) 2001-09-25

Family

ID=15326269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14290294A Expired - Fee Related JP3210803B2 (en) 1994-06-24 1994-06-24 Method for producing conductive ceramics

Country Status (1)

Country Link
JP (1) JP3210803B2 (en)

Also Published As

Publication number Publication date
JPH0812421A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
CA2095102A1 (en) Air electrode material having controlled sinterability
JP3121993B2 (en) Method for producing conductive ceramics
JP4191821B2 (en) Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte
JP3359413B2 (en) Solid oxide fuel cell
JP3210803B2 (en) Method for producing conductive ceramics
JPH04219364A (en) Lanthanum chromite-based oxide and its use
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP3677386B2 (en) Solid oxide fuel cell
JP3220320B2 (en) Fuel cell and method for producing conductive ceramics
JP3389407B2 (en) Conductive ceramics and fuel cells
JP3325388B2 (en) Conductive ceramics and fuel cell using the same
JP3199546B2 (en) Current collector for solid oxide fuel cell and method for producing conductive ceramics
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
JP3091100B2 (en) Method for producing conductive ceramics
JP3121991B2 (en) Conductive ceramics
JP3339936B2 (en) Method for producing conductive ceramics
JP3350137B2 (en) Solid oxide fuel cell material
JP3370460B2 (en) Method for producing conductive ceramics
JPH0785875A (en) Solid electrolytic fuel cell
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JP3370446B2 (en) Method for producing conductive ceramics
JP3134883B2 (en) Separator for solid oxide fuel cell
JP3085632B2 (en) Method for producing conductive ceramics
JPH1179836A (en) Electroconductive ceramics
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees