JPH04219364A - Lanthanum chromite-based oxide and its use - Google Patents

Lanthanum chromite-based oxide and its use

Info

Publication number
JPH04219364A
JPH04219364A JP3067437A JP6743791A JPH04219364A JP H04219364 A JPH04219364 A JP H04219364A JP 3067437 A JP3067437 A JP 3067437A JP 6743791 A JP6743791 A JP 6743791A JP H04219364 A JPH04219364 A JP H04219364A
Authority
JP
Japan
Prior art keywords
lanthanum chromite
oxide
alkaline earth
lanthanum
perovskite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3067437A
Other languages
Japanese (ja)
Other versions
JP3134882B2 (en
Inventor
Hiroshi Seto
浩志 瀬戸
Yoshiyuki Someya
染谷 喜幸
Toshihiko Yoshida
利彦 吉田
Satoshi Sakurada
櫻田 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP03067437A priority Critical patent/JP3134882B2/en
Publication of JPH04219364A publication Critical patent/JPH04219364A/en
Application granted granted Critical
Publication of JP3134882B2 publication Critical patent/JP3134882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Ceramic Engineering (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve electric conductivity by mixing raw material powders, then calcining the resultant powder mixture, subsequently burning the obtained double oxide and providing a sintered compact expressed by a specific formula. CONSTITUTION:Respective raw material powders are mixed at a prescribed ratio and the resultant powder mixture is then calcined at a prescribed temperature to provide a lanthanum chromite-based double oxide, expressed by the formula [M is alkaline earth metal except Mg; M' is two or more different elements in Fe, Ni, Co, Zn, Cu, Al, Mn, V, Ir, Mo, W, Pd, Y, Pt, Rh, Mg, Ti, Si and B, except combination of Co with Zn and Ni with Zn; 0<x<=0.50; 0<y<=0.50; 0.95<=(b/a)<1 or 1<(b/a)<=1.05] and having a perovskite structure. The resultant double oxide is subsequently burned at to afford a sintered compact, which is used as a separator 4 for an integrated cell of unit cells and external output terminals 5. Flow passages of air 6 and a fuel 7 are formed and separated to simultaneously electrically connect the anodes 3 to the cathodes 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は新規なランタンクロマイ
ト系複合酸化物とその高温導電性材料及び高温型燃料電
池セパレータとしての用途に係る。この新規なランタン
クロマイト系複合酸化物は高導電性かつ緻密であり、高
温型燃料電池、MHD発電その他の高温導電性材料に利
用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new lanthanum chromite complex oxide and its use as a high temperature conductive material and a high temperature fuel cell separator. This new lanthanum chromite-based composite oxide is highly conductive and dense, and can be used for high-temperature fuel cells, MHD power generation, and other high-temperature conductive materials.

【0002】0002

【従来の技術】ランタンクロマイト(LaCrO3 )
は高温において導電性をもち、かつ耐酸化性、耐還元性
に優れるために、高温の腐食性雰囲気で使用する導体材
料として極めて有望視されている酸化物系セラミックス
である。ランタンクロマイトにマグネシウム、カルシウ
ム、ストロンチウム、バリウムなどのアルカリ土類金属
を微量不純物元素として添加することにより、ドーパン
トとして作用し導電率を向上させることができる。ラン
タンクロマイトはペロブスカイト構造(ABO3 〔式
中、A,Bは金属元素、Oは酸素である。〕)をなして
いる。添加したカルシウム、ストロンチウム、バリウム
はランタンクロマイト格子中ランタン位置に置換固溶し
ており、一方マグネシウムはクロム位置に置換固溶して
いる。
[Prior art] Lanthanum chromite (LaCrO3)
is an oxide-based ceramic that is highly promising as a conductive material for use in high-temperature corrosive atmospheres because it has electrical conductivity at high temperatures and has excellent oxidation and reduction resistance. By adding an alkaline earth metal such as magnesium, calcium, strontium, or barium to lanthanum chromite as a trace impurity element, it can act as a dopant and improve electrical conductivity. Lanthanum chromite has a perovskite structure (ABO3 [wherein A and B are metal elements and O is oxygen]). The added calcium, strontium, and barium are substituted in solid solution at the lanthanum position in the lanthanum chromite lattice, while magnesium is substituted in solid solution at the chromium position.

【0003】0003

【発明が解決しようとする課題】上記、微量元素添加ラ
ンタンクロマイトは導電率の点では十分な性能を有して
いるが、常圧大気中では緻密な焼結が得られにくく空隙
が生じるためにガスを十分に遮断できないという欠点が
ある。したがって、例えば固体電解質燃料電池のセパレ
ータ材料としてランタンクロマイトを用いようとした場
合、燃料ガスと空気を完全に分離することが不可能であ
り、この目的に用いることができなかった。
[Problems to be Solved by the Invention] The above-mentioned lanthanum chromite added with trace elements has sufficient performance in terms of electrical conductivity, but it is difficult to obtain dense sintering in normal pressure atmosphere, and voids occur. The disadvantage is that the gas cannot be shut off sufficiently. Therefore, for example, when attempting to use lanthanum chromite as a separator material for a solid electrolyte fuel cell, it is impossible to completely separate fuel gas and air, and it cannot be used for this purpose.

【0004】ランタンクロマイトにおいて容易に緻密な
焼結体が得られないのは、第一に焼成温度において酸化
クロムの蒸気圧が高く、ランタンクロマイトの分解によ
って生じた酸化クロム蒸気が焼結体粒界における気孔の
移動を阻害するため、焼結体中に微細な空隙として残留
するためであり(工業材料1987年11月号別冊、1
8ページ)、第二にイオンの体積拡散がきわめて遅く原
料粉末の界面が移動しにくいためである。
[0004] The reason why it is not easy to obtain a dense sintered body in lanthanum chromite is that the vapor pressure of chromium oxide is high at the sintering temperature, and the chromium oxide vapor generated by the decomposition of lanthanum chromite flows into the grain boundaries of the sintered body. This is because they remain as fine voids in the sintered body to inhibit the movement of pores in the sintered body (Industrial Materials, November 1987 issue, special issue, 1).
(page 8), and secondly, the volumetric diffusion of ions is extremely slow and the interface of the raw material powder is difficult to move.

【0005】そこで、本発明はこの点を解決し緻密な焼
結体を常圧大気中で容易に得られるようにするとともに
、導電率においても従来よりも向上せしめることを目的
とする。
The object of the present invention is therefore to solve this problem and to make it possible to easily obtain a dense sintered body in normal pressure atmosphere, as well as to improve the electrical conductivity compared to the conventional one.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、先に、ランタンクロマイトのランタ
ンの1部をアルカリ土類金属で置換し、クロムの1部を
コバルトで置換した新規なランタンクロマイト系複合酸
化物を開示した(特開平1−196785号)。そして
、上記において、コバルトに代えて2以上の特定金属元
素でクロムの1部を置換した場合にも同様の効果が奏せ
られることを見い出し、本発明に到達した。
[Means for Solving the Problems] In order to achieve the above object, the present inventors first replaced a part of lanthanum in lanthanum chromite with an alkaline earth metal, and replaced a part of chromium with cobalt. A novel lanthanum chromite-based composite oxide has been disclosed (Japanese Patent Application Laid-Open No. 196785/1999). Further, in the above, it has been found that the same effect can be achieved even when a part of chromium is replaced with two or more specific metal elements instead of cobalt, and the present invention has been achieved.

【0007】こうして、本発明は、上記目的を達成する
ために一般式La1−x Ax Cr1−y My O
3 (式中、Aはマグネシウムを除くアルカリ土類金属
であり、MはFe,Ni,Zn,Cu,Co,Alから
選ばれる2以上の異元素であるがCoとZn及びNiと
Znの組合せは除き、0<x≦0.5、0<y≦0.5
である。)で表わされかつペロブスカイト構造を持つこ
とを特徴とする新規なランタンクロマイト系複合酸化物
を提供する。
[0007] Thus, in order to achieve the above object, the present invention has the general formula La1-x Ax Cr1-y My O
3 (In the formula, A is an alkaline earth metal excluding magnesium, and M is two or more different elements selected from Fe, Ni, Zn, Cu, Co, and Al, but combinations of Co and Zn and Ni and Zn except 0<x≦0.5, 0<y≦0.5
It is. ) and is characterized by having a perovskite structure.

【0008】同様にして、本発明は、一般式(La1−
x Ax )a (Cr1−y My )b O3 〔
式中、Aはマグネシウムを除くアルカリ土類金属であり
、MはFe,Ni,Co,Zn,Cu,Al,Mn,V
,Ir,Mo,W,Pd,Y,Pt,Rh,Mg,Ti
,Si,Bから選ばれる2以上の異元素であるがCoと
Zn、及びNiとZnの組合せは除き、0<x≦0.5
、0<y≦0.5であり、そして0.95≦b/a<1
又は1<b/a≦1.05である。〕で表わされ主とし
てペロブスカイト構造からなることを特徴とするランタ
クロマイト系複合酸化物を提供する。
Similarly, the present invention provides the general formula (La1-
x Ax )a (Cr1-y My )b O3 [
In the formula, A is an alkaline earth metal excluding magnesium, and M is Fe, Ni, Co, Zn, Cu, Al, Mn, V
, Ir, Mo, W, Pd, Y, Pt, Rh, Mg, Ti
, Si, and B, excluding combinations of Co and Zn and Ni and Zn, 0<x≦0.5
, 0<y≦0.5, and 0.95≦b/a<1
Or 1<b/a≦1.05. The present invention provides a lantachromite-based composite oxide represented by the following formula, characterized in that it mainly consists of a perovskite structure.

【0009】さらに、本発明によれば、上記のランタン
クロマイト系複合酸化物を用いた高温導電性材料及び高
温型燃料電池のセパレータを提供する。一般式La1−
x Ax Cr1−y My O3 で表わされるペロ
ブスカイト構造を持つランタンクロマイト系複合酸化物
は、最も理想的には、ペロブスカイト型(ABO3 )
構造のAサイトにLa、BサイトにCrが配置したラン
タンクロマイトの基本構造において、Laの一部がアル
カリ土類金属で置換され、かつさらにCrの一部がFe
で置換された構造をなしていると考えられる。
Furthermore, the present invention provides a high temperature conductive material and a separator for a high temperature fuel cell using the above lanthanum chromite complex oxide. General formula La1-
The lanthanum chromite complex oxide having a perovskite structure represented by x Ax Cr1-y My O3 is most ideally a perovskite type (ABO3)
In the basic structure of lanthanum chromite, in which La is placed at the A site and Cr is placed at the B site, a portion of La is replaced with an alkaline earth metal, and a portion of Cr is also replaced with Fe.
It is thought that it has a structure substituted with .

【0010】また、一般式(La1−x Ax )a 
(Cr1−y My )b O3 で表わされる主とし
てペロブスカイト構造からなるランタンクロマイト系複
合酸化物は上記のペロブスカイト構造(b/a=1の場
合)からBサイトとAサイトの比b/aが僅かにずれた
分だけ、ペロブスカイト構造以外の構造が含まれている
と考えられる。Laの一部をアルカリ土類金属で置換す
ることによって導電性が向上する。ただし、マグネシウ
ムはAサイトのLaではなくBサイトのCrと置換する
ので、本発明では用いない。アルカリ土類金属の置換量
は、モル比で0.5まで、好ましくは0.05〜0.3
である。これらのアルカリ土類金属による置換がこの範
囲内で多いほど導電性は高くなるが、この範囲を越えて
増加するともはやLaと置換しきれなくなり、ペロブス
カイト構造以外の複合酸化物(例えばCaCrO4 ,
SrCrO4 など)を生じ、その特性を著しく低下さ
せる。
[0010] Furthermore, the general formula (La1-x Ax) a
The lanthanum chromite-based composite oxide mainly consisting of a perovskite structure represented by (Cr1-y My )b O3 has a slight ratio b/a of the B site and A site from the above perovskite structure (when b/a = 1). It is thought that structures other than perovskite structures are included by the amount of deviation. Conductivity is improved by replacing a portion of La with an alkaline earth metal. However, since magnesium replaces La at the A site but Cr at the B site, it is not used in the present invention. The amount of alkaline earth metal substitution is up to 0.5 in molar ratio, preferably from 0.05 to 0.3.
It is. The more substitution by these alkaline earth metals within this range, the higher the conductivity becomes. However, if the amount increases beyond this range, it is no longer possible to replace La, and complex oxides other than perovskite structures (e.g. CaCrO4,
SrCrO4, etc.) and significantly deteriorate its properties.

【0011】金属Mはランタンクロマイト格子のBサイ
トのクロムの一部と置換して酸化クロムの蒸気圧を下げ
、その蒸発を抑制するために緻密な焼結体を得ることを
可能にする異種金属である。このような金属としては、
第一には異種金属の添加によりクロムのイオン価数を変
化させる結果、蒸気圧を下げるもの、第二には焼結で緻
密化するのに重要な体積拡散又は粒界拡散を促進させる
ものが好ましい。この条件を満たす金属として、Fe,
Ni,Co,Zn,Cu,Alから選ばれることができ
る。但し、CoとZn,NiとZnの組合せは別途出願
されているので本発明より除かれる。
Metal M is a dissimilar metal that replaces a part of chromium at the B site of the lanthanum chromite lattice to lower the vapor pressure of chromium oxide and suppress its evaporation, making it possible to obtain a dense sintered body. It is. Such metals are
The first is that the ionic valence of chromium is changed by adding a different metal, which lowers the vapor pressure.The second is that it promotes volumetric diffusion or grain boundary diffusion, which is important for sintering to achieve densification. preferable. Metals that satisfy this condition include Fe,
It can be selected from Ni, Co, Zn, Cu, and Al. However, combinations of Co and Zn and Ni and Zn are excluded from the present invention because they have been filed separately.

【0012】また、金属Mの添加も焼結体の導電率を向
上させる効果があり、Mを添加しない場合の2倍以上の
導電率が得られる。Mの置換量の合計はモル比で0<y
≦0.5、好ましくは0.05≦y≦0.3である。M
の添加量が多くなると、ランタンクロマイト格子中への
固溶が困難になり、Feが過剰ならLaFeO3 同様
にNi,Co,Zn,Co,Al,Mn,V,Ir,M
o,W,Pd,Y,Pt,Rh,Mg,Ti,Si,B
はそれぞれLaNiO3 ,LaCoO3 ,ZnO,
CuO,Al2 O3 ,Mn2 O3 ,V2 O5
 ,Ir2 O3 ,MoO3 ,WO3 ,PdO,
Y2 O3 ,PtO,Rh2 O3 ,MgO,Ti
O2 ,SiO2 ,B2 O3 が生成するようにな
る。LaNiO3 ,LaCoO3 ,CuOなどは電
子導電性のほかに酸素イオン導電性を有し、また、還元
性雰囲気下で不安定なのでランタンクロマイトとしての
特性を劣化させる。またZnO,Al2 O3 などは
酸化雰囲気下で電子導電性が低く、電気導電材料として
は不向きである。従って、Mの添加量はこれらの酸化物
が生成しない量か、生成してもその量ができるだけ少な
いことが望ましい。
[0012] Addition of metal M also has the effect of improving the electrical conductivity of the sintered body, and the electrical conductivity can be more than twice that of the case where M is not added. The total amount of substitution of M is 0<y in molar ratio
≦0.5, preferably 0.05≦y≦0.3. M
As the amount of addition increases, solid solution in the lanthanum chromite lattice becomes difficult, and if Fe is excessive, Ni, Co, Zn, Co, Al, Mn, V, Ir, M
o, W, Pd, Y, Pt, Rh, Mg, Ti, Si, B
are LaNiO3, LaCoO3, ZnO, respectively.
CuO, Al2 O3, Mn2 O3, V2 O5
, Ir2 O3 , MoO3 , WO3 , PdO,
Y2 O3 , PtO, Rh2 O3 , MgO, Ti
O2, SiO2, B2 O3 come to be generated. LaNiO3, LaCoO3, CuO, etc. have oxygen ion conductivity in addition to electronic conductivity, and are unstable in a reducing atmosphere, which deteriorates the properties of lanthanum chromite. Further, ZnO, Al2 O3, etc. have low electronic conductivity in an oxidizing atmosphere and are unsuitable as electrically conductive materials. Therefore, it is desirable that the amount of M added be such that these oxides are not produced, or even if they are produced, the amount is as small as possible.

【0013】一般式(La1−x Ax )a (Cr
1−y My )b O3 においてb/aは必ずしも
1である必要はなく、その前後でも同様な効果を奏する
ことができるが、b/aを1から若干ずらした場合には
セラミックスの強度を向上する効果を奏する。本発明の
材料は特にFeの添加により焼結性に優れ、緻密な焼結
体を得ることができるが、焼結体は多結晶より構成され
ており、一般的に焼結性の向上は結晶粒径の拡大を促し
、結晶粒径が大きくなるにつれてセラミックス強度が低
下する。これはアルミナや安定化ジルコニアにおいても
よく知られた現象である。そこで、b/aの比を1から
若干ずらすことによって、多結晶中にペロブスカイト構
造以外の構造を入れることで、粒径を抑制し、これによ
ってセラミックス強度の向上を図ることができる。但し
、b/aが1からあまり大きくずれてしまうと、ペロブ
スカイト構造以外のランタン酸化物やクロム酸化物など
が増加し、これらは粒子界面にあって電気導電性を低下
させるので好ましくない。そこで、b/aは0.95〜
1.05の範囲内とする。
General formula (La1-x Ax )a (Cr
1-y My ) b O3, b/a does not necessarily have to be 1, and the same effect can be achieved even before or after that, but if b/a is slightly shifted from 1, the strength of the ceramic will be improved. It has the effect of The material of the present invention has excellent sinterability, especially due to the addition of Fe, and a dense sintered body can be obtained, but the sintered body is composed of polycrystals, and generally the improvement in sinterability is due to crystallization. It promotes grain size expansion, and as the crystal grain size increases, the ceramic strength decreases. This is a well-known phenomenon in alumina and stabilized zirconia. Therefore, by slightly shifting the b/a ratio from 1 and introducing a structure other than the perovskite structure into the polycrystal, the grain size can be suppressed, thereby improving the ceramic strength. However, if b/a deviates too much from 1, lanthanum oxides, chromium oxides, etc. other than the perovskite structure will increase, and these will be present at the particle interface and reduce electrical conductivity, which is not preferable. Therefore, b/a is 0.95~
It shall be within the range of 1.05.

【0014】本発明の新規なランタンクロマイト系複合
酸化物の製造手法自体は慣用法に従うことができる。す
なわち、ランタン源、アルカリ土類金属源、クロム源、
M源を所定比に混合した粉末混合物を所定の温度、一般
的には、1000〜1600℃、好ましくは1000〜
1200℃で仮焼して得ることができる。仮焼時間は一
般に1〜数十時間、好ましくは1〜10時間である。仮
焼雰囲気は大気中等の酸素含有雰囲気中で行なう。仮焼
時の圧力は大気圧でよい。
The novel lanthanum chromite-based composite oxide of the present invention can be produced by any conventional method. Namely, lanthanum source, alkaline earth metal source, chromium source,
A powder mixture containing M sources in a predetermined ratio is heated to a predetermined temperature, generally 1000 to 1600°C, preferably 1000 to 1000°C.
It can be obtained by calcining at 1200°C. The calcination time is generally 1 to several tens of hours, preferably 1 to 10 hours. The calcination atmosphere is performed in an oxygen-containing atmosphere such as the air. The pressure during calcination may be atmospheric pressure.

【0015】仮焼粉末の成形、焼成も慣用法に従うこと
ができるが、焼成温度は一般に1300℃以上で、好ま
しくは1500℃〜1600℃、焼成時間は焼成体の形
状に依存するが一般に1〜10時間、好ましくは1〜2
時間、焼成雰囲気は酸素含有雰囲気である。本発明のラ
ンタンクロマイト系複合酸化物は常圧焼結でも緻密な焼
結体が得られることを特徴としているが、加圧下で焼結
することを排斥するわけではない。
[0015] Molding and firing of the calcined powder can also follow conventional methods, but the firing temperature is generally 1300°C or higher, preferably 1500°C to 1600°C, and the firing time is generally 1 to 100°C, although it depends on the shape of the fired product. 10 hours, preferably 1-2
The firing atmosphere is an oxygen-containing atmosphere. Although the lanthanum chromite-based composite oxide of the present invention is characterized in that a dense sintered body can be obtained even by normal pressure sintering, sintering under pressure is not excluded.

【0016】こうして得られる微量元素添加ランタンク
ロマイト焼結体は、常圧大気中における焼成によっても
95%以上の相対密度を得ることができ、かつ導電率も
従来組成のものと比較して2倍以上の値を得ることがで
きる。しかも、この焼結体は耐酸化性、耐還元性に優れ
ているので、高温下で耐食性と導電性の両方が要求され
る高温導電性材料として有用である。とくに、導電性を
有しかつ耐食性と緻密性を有する点で、固体電解質型燃
料電池のセパレータ材料として有用である。
The trace element-added lanthanum chromite sintered body obtained in this way can obtain a relative density of 95% or more even by firing in the atmosphere at normal pressure, and has twice the electrical conductivity as compared to that of the conventional composition. It is possible to obtain the above values. Moreover, since this sintered body has excellent oxidation resistance and reduction resistance, it is useful as a high-temperature conductive material that requires both corrosion resistance and conductivity at high temperatures. In particular, it is useful as a separator material for solid oxide fuel cells because it has electrical conductivity, corrosion resistance, and denseness.

【0017】図1にプラナー型固体電解質燃料電池の構
造の例を示す。同図中、1は固体電解質(例、Y安定化
ジルコニア)のシートで上面にカソード(例、La0.
9 Sr0.1 MnO3 )2、下面にアノード(例
、NiO/ZrO2 サーメット)3が形成されている
。4がセパレータで本発明の新規なランタンクロマイト
系複合酸化物で作る。5は4と同じくランタンクロマイ
ト系複合酸化物で作るが、外部出力端子として使われる
。図1に見られる通り、セパレータ4はそれに形成され
た溝によって空気6及び燃料(例、水素)7の流路を構
成しかつ空気6と燃料7を分離するセパレータであると
共に、隣接する単位セルのアノード3とカソード2とを
電気的に接続する役割をも担うものである。外部出力端
子5は集積された単位セルの両端部において空気6と燃
料7の流路を形成すると共にアノード3又はカソード2
との電気的接続を行なう部材でもあり、これも本発明の
ランタンクロマイト系複合酸化物で構成する。また、図
1は2つの単位セルを集積した燃料電池を示したが、3
つ以上の単位セルを集積することも可能で、その場合に
は各単位セル間にセパレータ4を挿入する。
FIG. 1 shows an example of the structure of a planar solid electrolyte fuel cell. In the figure, 1 is a sheet of solid electrolyte (eg, Y-stabilized zirconia) with a cathode (eg, La0.
9 Sr0.1 MnO3 ) 2, and an anode (eg, NiO/ZrO2 cermet) 3 is formed on the lower surface. 4 is a separator made of the novel lanthanum chromite complex oxide of the present invention. 5 is made of lanthanum chromite complex oxide like 4, but is used as an external output terminal. As seen in FIG. 1, the separator 4 is a separator that forms a flow path for air 6 and fuel (e.g. hydrogen) 7 by grooves formed therein, and separates the air 6 and fuel 7 from adjacent unit cells. It also plays the role of electrically connecting the anode 3 and cathode 2 of. The external output terminal 5 forms a flow path for air 6 and fuel 7 at both ends of the integrated unit cell, and also connects to the anode 3 or cathode 2.
It is also a member for electrical connection with the lanthanum chromite complex oxide of the present invention. In addition, although Fig. 1 shows a fuel cell in which two unit cells are integrated, three
It is also possible to integrate more than one unit cell, in which case a separator 4 is inserted between each unit cell.

【0018】[0018]

【実施例】実施例1(b/a=1)酸化ランタン26.
065g、炭酸ストロンチウム5.905g、酸化第二
クロム12.919g、四三酸化コバルト0.803g
、酸化第二ニッケル0.827g、酸化亜鉛0.814
gを秤量し、メノウ乳鉢を用いて湿式混合した。この組
成はLa0.8 Sr0.2 Cr0.85CO0.0
5Ni0.05Zn0.05O3 に相当する。この混
合粉末を1200℃にて1時間仮焼した。昇温速度は2
0℃/minである。こうして得られたランタンクロマ
イト粉末をX線回折法により分析した結果、第二相の存
在は確認できず、コバルト、ニッケル及び亜鉛はペロブ
スカイト構造をもったランタンクロマイト格子中に固溶
していることがわかった。この粉末を300Kgf/c
m2の荷重でフローティング成形し、1600℃にて2
時間本焼成した(昇温速度は5℃/min)。こうして
得られた焼結体について、密度ならびに導電率を測定し
た。その結果、密度にして6.3g/cm3 、空気中
1000℃における導電率にして40S/cmを得た。 また、この焼結体を走査型電子顕微鏡ならびにEDX分
光分析によって元素の分布を観察したが、偏析等は見ら
れず添加したコバルト、ニッケル及び亜鉛は均一にクロ
ムと置換していることがわかった。
[Example] Example 1 (b/a=1) Lanthanum oxide 26.
065g, strontium carbonate 5.905g, chromic oxide 12.919g, tricobalt tetroxide 0.803g
, nickel oxide 0.827g, zinc oxide 0.814
g was weighed and wet mixed using an agate mortar. This composition is La0.8 Sr0.2 Cr0.85CO0.0
It corresponds to 5Ni0.05Zn0.05O3. This mixed powder was calcined at 1200° C. for 1 hour. The heating rate is 2
The temperature is 0°C/min. As a result of analyzing the thus obtained lanthanum chromite powder by X-ray diffraction, the presence of a second phase could not be confirmed, and it was found that cobalt, nickel, and zinc were solidly dissolved in the lanthanum chromite lattice having a perovskite structure. Understood. 300Kgf/c of this powder
Floating molding with a load of m2, 2 at 1600℃
Main firing was carried out for an hour (temperature increase rate: 5° C./min). The density and conductivity of the sintered body thus obtained were measured. As a result, a density of 6.3 g/cm 3 and a conductivity in air at 1000° C. of 40 S/cm were obtained. In addition, the distribution of elements in this sintered body was observed using a scanning electron microscope and EDX spectroscopy, and no segregation was observed, indicating that the added cobalt, nickel, and zinc were uniformly replaced with chromium. .

【0019】比較のために、以上のものと同製法にて作
成したLa0.8 Sr0.2 CrO3 組成の焼結
体(比較例)においては密度5.0g/cm3 (相対
密度76%)、1000℃における導電率にして18S
/cmであった。このように、ランタンクロマイト中の
クロムの一部を他の複数の遷移金属元素で置換すること
によって密度、導電率ともに向上することがわかる。 実施例2(b/a=0.97)酸化ランタン26.06
5g、炭酸ストロンチウム5.905g、酸化第二クロ
ム12.531g、四三酸化コバルト0.779g、酸
化第二ニッケル0.802gおよび酸化亜鉛0.790
gを秤量し、メノウ乳鉢を用いて湿式混合した。この組
成はLa0.8 Sr0.2 Cr0.825 Co0
.048 Ni0.048 Zn0.048 O3 に
相当する。この混合粉末を実施例1と同様にして焼成し
た。
For comparison, a sintered body (comparative example) with a composition of La0.8 Sr0.2 CrO3 produced by the same manufacturing method as the above one had a density of 5.0 g/cm3 (relative density 76%) and a sintered body of 1000 18S in terms of conductivity at °C
/cm. In this way, it can be seen that both density and electrical conductivity are improved by substituting a part of chromium in lanthanum chromite with other plurality of transition metal elements. Example 2 (b/a=0.97) Lanthanum oxide 26.06
5g, strontium carbonate 5.905g, chromic oxide 12.531g, tricobalt tetroxide 0.779g, nickel oxide 0.802g and zinc oxide 0.790
g was weighed and wet mixed using an agate mortar. This composition is La0.8 Sr0.2 Cr0.825 Co0
.. 048 Ni0.048 Zn0.048 O3. This mixed powder was fired in the same manner as in Example 1.

【0020】得られた焼成生成物(粉末)はX線回折法
により分析すると、殆んどペロブスカイト構造であった
。この粉末を用いて実施例1と同様にして焼結体を調製
し、密度、導電率、曲げ強度、平均粒径を測定した。 結果を表1に示す。 実施例3(b/a=1.02)酸化ランタン26.06
5g、炭酸ストロンチウム5.905g、酸化第二クロ
ム13.177g、四三酸化コバルト0.819g、酸
化第二ニッケル0.843gおよび酸化亜鉛0.830
gを秤量し、メノウ乳鉢を用いて湿式混合した。この組
成はLa0.8 Sr0.2 Cr0.867 Co0
.051 Ni0.051 Zn0.051 O3 に
相当する。この混合粉末を実施例1と同様にして焼成し
た。
[0020] When the obtained fired product (powder) was analyzed by X-ray diffraction, it was found that most of it had a perovskite structure. A sintered body was prepared using this powder in the same manner as in Example 1, and the density, electrical conductivity, bending strength, and average particle size were measured. The results are shown in Table 1. Example 3 (b/a=1.02) Lanthanum oxide 26.06
5g, strontium carbonate 5.905g, chromic oxide 13.177g, tricobalt tetroxide 0.819g, nickel oxide 0.843g and zinc oxide 0.830
g was weighed and wet mixed using an agate mortar. This composition is La0.8 Sr0.2 Cr0.867 Co0
.. 051 Ni0.051 Zn0.051 O3. This mixed powder was fired in the same manner as in Example 1.

【0021】得られた焼成生成物(粉末)はX線回折法
により分析すると、殆んどペロブスカイト構造であった
。この粉末を用いて実施例1と同様にして焼結体を調製
し、密度、導電率、曲げ強度、平均粒径を測定した。 結果を表1に示す。
[0021] When the obtained fired product (powder) was analyzed by X-ray diffraction, it was found that most of it had a perovskite structure. A sintered body was prepared using this powder in the same manner as in Example 1, and the density, electrical conductivity, bending strength, and average particle size were measured. The results are shown in Table 1.

【0022】[0022]

【表1】 表1の結果より、Sr,Co,Ni及びZnの添加によ
り焼結体の密度(焼結性)、導電率ともに向上している
こと、またAサイト、Bサイトの組成比b/aを1から
若干ずらすことにより機械的強度が向上し、かつ密度、
導電率は損なわれていないことが見られる。
[Table 1] From the results in Table 1, the addition of Sr, Co, Ni, and Zn improves both the density (sinterability) and electrical conductivity of the sintered body, and the composition ratio of the A site and B site b By slightly shifting /a from 1, mechanical strength is improved, and density,
It can be seen that the conductivity is intact.

【0023】[0023]

【発明の効果】本発明により提供される新規ランタンク
ロマイト系複合酸化物は、常圧大気中で容易に緻密化し
、かつ導電率も優れているので、高温で使用する安定な
導体材料を提供することができ、とくに高温型燃料電池
のセパレータとして有用である。
[Effects of the Invention] The novel lanthanum chromite-based composite oxide provided by the present invention is easily densified in normal pressure atmosphere and has excellent electrical conductivity, so it provides a stable conductive material that can be used at high temperatures. It is particularly useful as a separator for high-temperature fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】平板型固体電解質型燃料電池の模式図である。FIG. 1 is a schematic diagram of a flat plate solid electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1…固体電解質 2…カソード 3…アノード 4…接合体 5…外部出力端子 6…空気 7…燃料 1...Solid electrolyte 2...Cathode 3...Anode 4...Zygote 5...External output terminal 6...Air 7...Fuel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  一般式La1−x Ax Cr1−y
 My O3 (式中、Aはマグネシウムを除くアルカ
リ土類金属であり、MはFe,Ni,Co,Zn,Cu
,Al,Mn,V,Ir,Mo,W,Pd,Y,Pt,
Rh,Mg,Ti,Si,Bから選ばれる2以上の異元
素であるがCoとZn、及びNiとZnの組合せは除き
、0<x≦0.5、0<y≦0.5である。)で表わさ
れかつペロブスカイト構造を持つことを特徴とするラン
タンクロマイト系複合化合物。
Claim 1: General formula La1-x Ax Cr1-y
My O3 (wherein A is an alkaline earth metal excluding magnesium, M is Fe, Ni, Co, Zn, Cu
, Al, Mn, V, Ir, Mo, W, Pd, Y, Pt,
Two or more different elements selected from Rh, Mg, Ti, Si, and B, excluding combinations of Co and Zn and Ni and Zn, where 0<x≦0.5, 0<y≦0.5 . ) and is characterized by having a perovskite structure.
【請求項2】  一般式(La1−x Ax )a (
Cr1−y My )b O3 〔式中、Aはマグネシ
ウムを除くアルカリ土類金属であり、MはFe,Ni,
Co,Zn,Cu,Al,Mn,V,Ir,Mo,W,
Pd,Y,Pt,Rh,Mg,Ti,Si,Bから選ば
れる2以上の異元素であるがCoとZn、及びNiとZ
nの組合せは除き、0<x≦0.5、0<y≦0.5で
あり、そして0.95≦b/a<1又は1<b/a≦1
.05である。〕で表わされ主としてペロブスカイト構
造からなることを特徴とするランタンクロマイト系複合
酸化物。
Claim 2: General formula (La1-x Ax) a (
Cr1-y My )b O3 [In the formula, A is an alkaline earth metal other than magnesium, and M is Fe, Ni,
Co, Zn, Cu, Al, Mn, V, Ir, Mo, W,
Two or more different elements selected from Pd, Y, Pt, Rh, Mg, Ti, Si, and B, but Co and Zn, and Ni and Z
Except for the combination of n, 0<x≦0.5, 0<y≦0.5, and 0.95≦b/a<1 or 1<b/a≦1
.. It is 05. ] A lanthanum chromite-based composite oxide characterized by being mainly composed of a perovskite structure.
【請求項3】  請求項1又は2記載のランタンクロマ
イト系複合酸化物からなる高温導電性材料。
3. A high temperature conductive material comprising the lanthanum chromite complex oxide according to claim 1 or 2.
【請求項4】  請求項1又は2記載のランタンクロマ
イト系複合酸化物からなるセパレータを有する高温型燃
料電池セパレータ。
4. A high-temperature fuel cell separator comprising a separator made of the lanthanum chromite complex oxide according to claim 1 or 2.
JP03067437A 1990-03-30 1991-03-30 Lanthanum chromite complex oxides and applications Expired - Fee Related JP3134882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03067437A JP3134882B2 (en) 1990-03-30 1991-03-30 Lanthanum chromite complex oxides and applications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8125890 1990-03-30
JP2-81258 1990-03-30
JP03067437A JP3134882B2 (en) 1990-03-30 1991-03-30 Lanthanum chromite complex oxides and applications

Publications (2)

Publication Number Publication Date
JPH04219364A true JPH04219364A (en) 1992-08-10
JP3134882B2 JP3134882B2 (en) 2001-02-13

Family

ID=26408654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03067437A Expired - Fee Related JP3134882B2 (en) 1990-03-30 1991-03-30 Lanthanum chromite complex oxides and applications

Country Status (1)

Country Link
JP (1) JP3134882B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108667A (en) * 1990-08-29 1992-04-09 Nitsukatoo:Kk Heat-resistant conductive ceramics and its production
JPH0616471A (en) * 1991-06-28 1994-01-25 Nitsukatoo:Kk Heat resistant conductive sintered body
JPH06309920A (en) * 1993-04-21 1994-11-04 Nitsukatoo:Kk Heat resistant electroconductive ceramic
WO1995019053A1 (en) * 1994-01-11 1995-07-13 Forschungszentrum Jülich GmbH Perovskite electrodes and high temperature fuel cells fitted therewith
JPH0859341A (en) * 1994-08-12 1996-03-05 Nitsukatoo:Kk Heat resistant electrical conductive ceramics
CN113149088A (en) * 2021-06-15 2021-07-23 中钢集团洛阳耐火材料研究院有限公司 High-emissivity infrared energy-saving high-entropy material with perovskite structure and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3871085B2 (en) 1997-05-12 2007-01-24 富士通株式会社 Disk device and disk device calibration method
JP4972248B2 (en) * 2000-05-29 2012-07-11 中部キレスト株式会社 Manufacturing method of conductive ceramics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108667A (en) * 1990-08-29 1992-04-09 Nitsukatoo:Kk Heat-resistant conductive ceramics and its production
JPH0616471A (en) * 1991-06-28 1994-01-25 Nitsukatoo:Kk Heat resistant conductive sintered body
JPH06309920A (en) * 1993-04-21 1994-11-04 Nitsukatoo:Kk Heat resistant electroconductive ceramic
WO1995019053A1 (en) * 1994-01-11 1995-07-13 Forschungszentrum Jülich GmbH Perovskite electrodes and high temperature fuel cells fitted therewith
JPH0859341A (en) * 1994-08-12 1996-03-05 Nitsukatoo:Kk Heat resistant electrical conductive ceramics
CN113149088A (en) * 2021-06-15 2021-07-23 中钢集团洛阳耐火材料研究院有限公司 High-emissivity infrared energy-saving high-entropy material with perovskite structure and preparation method thereof

Also Published As

Publication number Publication date
JP3134882B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
Dutta et al. Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells
WO1992007393A1 (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
KR20120016293A (en) Cathode
Jo et al. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs
JPH04219364A (en) Lanthanum chromite-based oxide and its use
JP3121982B2 (en) Conductive ceramics
JP4158966B2 (en) Composite oxide, oxide ion conductor, oxide ion conductive membrane and electrochemical cell
JP2836852B2 (en) Solid oxide fuel cell separator
JP3121993B2 (en) Method for producing conductive ceramics
KR20120123639A (en) Cathode material for fuel cell, cathode for fuel cell and solid oxide fuel cell including the material
KR20120135463A (en) Cathode material for fuel cell, and cathode for fuel cell and solid oxide fuel cell including the material
US5747184A (en) Joining element on a lanthanum chromite base for high-temperature fuel cells and high-temperature electrolysis cells
JPH04219365A (en) Lanthanum chromite-based double oxide and its use
JP3134883B2 (en) Separator for solid oxide fuel cell
KR20210050098A (en) Perobskite based cathode material, cathode containing the same, and solid oxide fuel cell containing the same
JPH0785875A (en) Solid electrolytic fuel cell
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JPH04214069A (en) Lanthanum chromite-based multiple oxide and its application
JP3389407B2 (en) Conductive ceramics and fuel cells
KR101180058B1 (en) Double Perovskite Interconnect Materials and their Application Methods for Solid Oxide Fuel Cells
JP3342571B2 (en) Solid oxide fuel cell
JP3091100B2 (en) Method for producing conductive ceramics
JPH04219367A (en) Lanthanum chromite-based double oxide and its use

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees