JPH1179836A - Electroconductive ceramics - Google Patents

Electroconductive ceramics

Info

Publication number
JPH1179836A
JPH1179836A JP9234627A JP23462797A JPH1179836A JP H1179836 A JPH1179836 A JP H1179836A JP 9234627 A JP9234627 A JP 9234627A JP 23462797 A JP23462797 A JP 23462797A JP H1179836 A JPH1179836 A JP H1179836A
Authority
JP
Japan
Prior art keywords
present
perovskite
composite oxide
weight
type composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9234627A
Other languages
Japanese (ja)
Inventor
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9234627A priority Critical patent/JPH1179836A/en
Publication of JPH1179836A publication Critical patent/JPH1179836A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain electroconductive ceramics capable of enhancing the sinterability and carrying out the densification at a low temperature without deteriorating excellent electroconductivity possessed by LaCrO3 . SOLUTION: The electroconductive ceramics comprise La, Cr and Mg as metallic elements and contain a perovskite type compound oxide as a main crystal phase and Ca and at least one of Y, Yb, Sc, Sm, Nd, Dy and Pr in respective amounts of 0.01-2.0 pts.wt., based on 100 pts.wt. perovskite type compound oxide and expressed in terms of oxides.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性セラミックス
に関し、詳細には、焼結性を改善した導電性セラミック
スに関するもので、特に燃料電池セルのセパレータ、ガ
スディフューザおよびインターコネクタや、MHD発電
用の電極などに好適な導電性セラミックスに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive ceramics, and more particularly to conductive ceramics having improved sinterability. The present invention relates to a conductive ceramic suitable for an electrode or the like.

【0002】[0002]

【従来の技術】従来から、ランタンクロマイト系酸化物
(LaCrO3 )は、高温での化学的安定性に優れ、電
子伝導性が大きいことから固体電解質型燃料電池セルの
セパレータ、ガスディフューザ、およびインターコネク
タとして利用されている。
2. Description of the Related Art Conventionally, lanthanum chromite-based oxides (LaCrO 3 ) have excellent chemical stability at high temperatures and high electron conductivity, and therefore have a high performance in a separator, a gas diffuser and an interface of a solid oxide fuel cell. Used as a connector.

【0003】図1に平板形状の固体電解質型燃料電池セ
ルを示した。この平板型燃料電池セルでは、例えばY2
3 安定化ZrO2 からなる固体電解質1の上面にLa
MnO3 系の空気極2、下面にNiージルコニア等の燃
料極3が設けられ、このセル間の接続はLaCrO3
よりなるセパレータ4により行われている。
FIG. 1 shows a solid oxide fuel cell having a flat plate shape. In this flat fuel cell, for example, Y 2
La on the upper surface of the solid electrolyte 1 made of O 3 stabilized ZrO 2
A MnO 3 -based air electrode 2 and a fuel electrode 3 such as Ni-zirconia are provided on the lower surface, and the connection between the cells is made by a LaCrO 3 -based separator 4.

【0004】燃料電池セルにおいては、空気極側に酸素
を含有するガス、例えば空気を流し、燃料極側に燃料、
例えば水素ガスを流しながら、1000〜1050℃の
温度で発電する。上述のセパレータ材料としては、Ca
あるいはSrを固溶したLaCrO3 系材料が利用され
る。
In a fuel cell unit, a gas containing oxygen, for example, air is flowed to the air electrode side, and fuel or fuel is flown to the fuel electrode side.
For example, power is generated at a temperature of 1000 to 1050 ° C. while flowing hydrogen gas. As the above separator material, Ca
Alternatively, a LaCrO 3 material in which Sr is dissolved is used.

【0005】また、円筒型燃料電池セルは平板型燃料電
池セルと同じ材料を用いて、空気極材料からなる支持管
上に固体電解質および燃料極、並びにインタ−コネクタ
と呼ばれる集電体が略同心円状に形成されている。円筒
型燃料電池セルにおいては、セル同士は例えば一つのセ
ルの集電体とそれに隣接するセルの燃料極とがNiフェ
ルトなどを介して接続される。
The cylindrical fuel cell uses the same material as the flat fuel cell, and a solid electrolyte, a fuel electrode, and a current collector called an interconnector are substantially concentric on a support tube made of an air electrode material. It is formed in a shape. In a cylindrical fuel cell, for example, a current collector of one cell and a fuel electrode of an adjacent cell are connected to each other via Ni felt or the like.

【0006】[0006]

【発明が解決しようとする課題】LaCrO3 系材料は
陽イオンの拡散速度が遅いことに加えて、焼結過程にお
いて材料中からCr成分が揮発し、粒子の接触部(ネッ
ク部)にCr2 3 として凝縮堆積して焼結を阻害す
る。このため、大気中では2000℃以上の高温で焼結
させるか、あるいは還元性雰囲気でこのCrの蒸発凝縮
を抑制しながら焼結させることが必要であるが、この場
合でも1800℃以上の高温度が必要である。このよう
な高温焼結による材料の作製は、経済的な観点から燃料
電池セルの量産を著しく困難にさせるとともに、コスト
を高める要因になっている。
The LaCrO 3 -based material has a slow diffusion rate of cations, and a Cr component volatilizes from the material during the sintering process, so that the Cr 2 O 3 material is formed at the contact portion (neck portion) of the particles. It condenses and deposits as O 3 and inhibits sintering. For this reason, it is necessary to perform sintering at a high temperature of 2000 ° C. or higher in the air or sintering in a reducing atmosphere while suppressing the evaporation and condensation of Cr. is necessary. The production of a material by such high-temperature sintering makes mass production of fuel cells extremely difficult from an economic viewpoint, and is a factor that increases the cost.

【0007】一方、LaCrO3 系材料を低温で得るた
めの方法として、電気化学的気相合成(EVD)法が適
用されている。しかしながら、この方法は1400℃と
比較的低温でLaCrO3 系材料が作製されるものの、
LaCrO3 の成長速度が遅いため量産性に欠け、ま
た、この方法では出発原料として極めて高価な金属塩化
物を使用する必要があるために経済的にも問題があっ
た。
On the other hand, as a method for obtaining a LaCrO 3 -based material at a low temperature, an electrochemical vapor deposition (EVD) method has been applied. However, although this method produces a LaCrO 3 -based material at a relatively low temperature of 1400 ° C.,
Since the growth rate of LaCrO 3 is low, mass productivity is lacking. In addition, this method has an economical problem because it requires the use of extremely expensive metal chloride as a starting material.

【0008】[0008]

【課題を解決するための手段】本発明者は、低温での焼
結性を高めるための方法について検討を重ねた結果、L
a、CrおよびMgを含むLaCrO3 系材料に対し
て、Caと、Y、Yb、Sc、Sm、Nd、Dy、Pr
のうちの少なくとも一種を同時に添加することにより、
LaCrO3 のもつ優れた電気伝導性を損なうことな
く、焼結性を高め、低温で緻密化が可能になることを見
い出し、本発明に至った。
The inventor of the present invention has studied a method for improving the sinterability at a low temperature, and as a result,
a, Cr, Y, Yb, Sc, Sm, Nd, Dy, Pr for LaCrO 3 -based material containing a, Cr and Mg
By simultaneously adding at least one of
The present inventors have found that sinterability can be improved and densification can be performed at a low temperature without impairing the excellent electrical conductivity of LaCrO 3 , and the present invention has been accomplished.

【0009】即ち、本発明の導電性セラミックスは、金
属元素としてLa、CrおよびMgを含み、ペロブスカ
イト型複合酸化物を主結晶相とし、前記ペロブスカイト
型複合酸化物100重量部に対して、Caと、Y、Y
b、Sc、Sm、Nd、DyおよびPrのうち少なくと
も一種を酸化物換算でそれぞれ0.01〜2.0重量部
含有するものである。
That is, the conductive ceramic of the present invention contains La, Cr and Mg as metal elements, has a perovskite-type composite oxide as a main crystal phase, and contains Ca and 100 parts by weight of the perovskite-type composite oxide. , Y, Y
At least one of b, Sc, Sm, Nd, Dy and Pr is contained in an amount of 0.01 to 2.0 parts by weight in terms of oxide.

【0010】[0010]

【作用】LaCrO3 系材料は、結晶内の陽イオン拡散
速度が遅いことに加えて、Cr成分が優先的に蒸発しや
すく、大気中ではこれが焼結の際、粒子の接触部に凝縮
してCr2 3 として堆積し、陽イオンの拡散を阻害し
焼結性を悪くする、いわゆるLaCrO3 系材料の焼結
は蒸発凝縮機構が支配的である。
In the LaCrO 3 -based material, in addition to the slow cation diffusion rate in the crystal, the Cr component is liable to evaporate preferentially. The so-called LaCrO 3 -based material, which is deposited as Cr 2 O 3 and inhibits the diffusion of cations to deteriorate sinterability, is dominated by an evaporative condensation mechanism.

【0011】それに対して、本発明の材料が低温度で焼
結する機構については現在明確でないが、以下のように
解釈される。LaMgCrO3 系材料おいて、CaとY
等の希土類元素が共存すると、CaとY等の希土類元素
が化合物を形成し、さらに1400℃付近以上の温度で
液相を生成する。
In contrast, the mechanism by which the material of the present invention sinters at a low temperature is not clear at present, but is interpreted as follows. Ca and Y in LaMgCrO 3 material
When rare earth elements such as Ca coexist, a rare earth element such as Ca and Y forms a compound, and further generates a liquid phase at a temperature of about 1400 ° C. or higher.

【0012】そのため、本材料では粒界相における陽イ
オンの拡散速度が大きくなると同時に、Crの蒸発を抑
制し焼結性が大きく向上する。この際、CaとY等の希
土類元素の含有量が比較的多いと、焼結後この液相はC
aと希土類元素の化合物として表面に析出する。
Therefore, in the present material, the diffusion rate of cations in the grain boundary phase is increased, and at the same time, the evaporation of Cr is suppressed and the sinterability is greatly improved. At this time, if the content of rare earth elements such as Ca and Y is relatively large, after sintering, this liquid phase becomes C
It precipitates on the surface as a compound of a and a rare earth element.

【0013】また、本発明の導電性セラミックスを燃料
電池セルなどの電極材料として用いる場合には、高い電
気伝導度が要求される。LaCrO3 において、Crを
Mgで置換すると、下記化1に従い、ホールが生成され
る。
When the conductive ceramic of the present invention is used as an electrode material for a fuel cell or the like, high electric conductivity is required. When La is replaced with Mg in LaCrO 3 , holes are generated according to the following formula 1.

【0014】[0014]

【化1】 Embedded image

【0015】上記式によると、電気伝導度はCrを置換
したMgイオン濃度に比例する。従って、本発明の導電
性セラミックスは、高い導電性を有するとともに、還元
雰囲気下においても高い安定性を有するもので、これに
より燃料電池の集電部材などの電極材料として有用なも
のである。
According to the above equation, the electric conductivity is proportional to the concentration of Mg ions substituted for Cr. Therefore, the conductive ceramic of the present invention has high conductivity and high stability even in a reducing atmosphere, and is thus useful as an electrode material for a current collecting member of a fuel cell.

【0016】[0016]

【発明の実施の形態】本発明の導電性セラミックスにお
いては、従来から知られるLa、CrおよびMgを含有
するLaCrO3 系複合酸化物に対して、Caと、Y、
Yb等の希土類元素を同時に含有することが大きな特徴
である。LaCrO3 はABO3 型ペロブスカイト型複
合酸化物を主結晶相とし、LaはAサイト、Mg、Cr
はBサイトを構成する元素で、ABO3 型ペロブスカイ
ト型複合酸化物は、理想的にはAサイト構成元素/Bサ
イト構成元素(原子比)=1である。
BEST MODE FOR CARRYING OUT THE INVENTION In the conductive ceramics according to the present invention, Ca, Y, and Y are used in comparison with a conventionally known LaCrO 3 -based composite oxide containing La, Cr and Mg.
It is a great feature that a rare earth element such as Yb is simultaneously contained. LaCrO 3 has an ABO 3 type perovskite type composite oxide as a main crystal phase, and La has an A site, Mg, Cr
Is an element constituting the B site, and the ABO 3 type perovskite composite oxide ideally has an A site element / B site element (atomic ratio) = 1.

【0017】それに対して、本発明では、上記ペロブス
カイト型複合酸化物100重量部に対して、Caと、
Y、Yb、Sc、Sm、Nd、DyおよびPrのうち少
なくとも一種を酸化物換算でそれぞれ0.01〜2.0
重量部含有するものである。
On the other hand, in the present invention, Ca and 100 parts by weight of the perovskite-type composite oxide are
At least one of Y, Yb, Sc, Sm, Nd, Dy, and Pr is 0.01 to 2.0 in terms of oxide.
It contains parts by weight.

【0018】ここで、Caと、Y、Yb等の希土類元素
との組み合わせを含有せしめたのは、Caと、Y、Yb
等の希土類元素を共存させて液相を生じさせるためであ
る。
The reason why the combination of Ca and rare earth elements such as Y and Yb is included is that Ca, Y and Yb
This is for generating a liquid phase by coexisting with rare earth elements such as.

【0019】そして、その量をそれぞれペロブスカイト
型複合酸化物100重量部に対して0.01〜2.0重
量部としたのは、Caと、Y、Yb等の希土類元素がそ
れぞれ酸化物換算で0.01重量部よりも少ない場合に
は焼結性が低下するからであり、2.0重量部よりも多
い場合には、還元雰囲気中での材料の安定性が悪くなり
分解するからである。Caと、Y、Yb、Sc、Sm、
Nd、DyおよびPrのうち少なくとも一種は、ペロブ
スカイト型複合酸化物100重量部に対して酸化物換算
で0.1〜1.0重量部の範囲が望ましい。特には、C
aとYとの組み合わせが望ましい。
The reason that the amount is 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the perovskite-type composite oxide is that Ca and rare earth elements such as Y and Yb are converted into oxides respectively. If the amount is less than 0.01 part by weight, the sinterability is deteriorated. If the amount is more than 2.0 parts by weight, the stability of the material in a reducing atmosphere is deteriorated and the material is decomposed. . Ca, Y, Yb, Sc, Sm,
At least one of Nd, Dy and Pr is desirably in the range of 0.1 to 1.0 part by weight in terms of oxide based on 100 parts by weight of the perovskite-type composite oxide. In particular, C
A combination of a and Y is desirable.

【0020】本発明の導電性セラミックスでは、大きな
電気伝導性を持たせる観点と、還元雰囲気中での材料の
膨張を小さくする観点から、MgのCrに対する置換比
率としては原子比で5〜35原子%まで、特に10〜2
0原子%までが優れる。また、本発明によれば、本発明
による作用効果に影響を与えない範囲で、Crの一部を
Mn、Ni、Co、Feなどにより置換することもでき
るが、具体的な置換比率はCrに対して30原子%以
下、特に10原子%以下が好ましい。
In the conductive ceramics of the present invention, the substitution ratio of Mg to Cr is 5 to 35 atoms in terms of atomic ratio from the viewpoint of imparting large electric conductivity and reducing the expansion of the material in a reducing atmosphere. %, Especially 10 to 2
Up to 0 atomic% is excellent. Further, according to the present invention, a part of Cr can be replaced by Mn, Ni, Co, Fe, or the like as long as the effect of the present invention is not affected, but the specific replacement ratio is Cr. On the other hand, it is preferably at most 30 atomic%, particularly preferably at most 10 atomic%.

【0021】また、本発明の導電性セラミックスは、そ
の結晶組織としては、少なくともLa、CrおよびMg
を元素とするペロブスカイト型複合酸化物を主結晶相と
するもので、主結晶相の粒界に、液相形成成分としてC
aと、Y等の希土類元素が存在している。Caや、Y等
の希土類元素はペロブスカイト型複合酸化物中に少々固
溶する場合もある。
The conductive ceramic of the present invention has a crystal structure of at least La, Cr and Mg.
The main crystal phase is a perovskite-type composite oxide having an element represented by the formula:
a and rare earth elements such as Y are present. Rare earth elements such as Ca and Y may be slightly dissolved in the perovskite-type composite oxide.

【0022】また、主結晶相の他にMgの置換比率が3
0原子%を越えるとMgOが析出する場合があり、さら
にまた、焼結温度が1500℃付近を越えるとCaと、
Y、Yb等の希土類元素の化合物が析出する場合がある
が、本発明の範囲においては電気伝導度は充分大きな値
を有する。
In addition to the main crystal phase, the substitution ratio of Mg is 3
If it exceeds 0 atomic%, MgO may precipitate, and if the sintering temperature exceeds about 1500 ° C., Ca and
In some cases, compounds of rare earth elements such as Y and Yb are precipitated, but within the scope of the present invention, the electric conductivity has a sufficiently large value.

【0023】本発明の導電性セラミックスは、例えば、
La、Cr、Mgの酸化物あるいは炭酸塩を、混合粉砕
を行った後、1000〜1400℃で仮焼処理後ABO
3 型ペロブスカイト型複合酸化物を作製し、このABO
3 型ペロブスカイト型複合酸化物に、Caの酸化物ある
いは炭酸塩と、Y、Yb、Sc、Sm、Nd、Dyおよ
びPrのうち少なくとも一種の酸化物あるいは炭酸塩と
を、上記ペロブスカイト型複合酸化物100重量部に対
して、酸化物換算でそれぞれ0.01〜2.0重量部添
加し、混合粉砕を行った後、これを所定の形状に成形
し、大気などの酸化性雰囲気中で1300〜1700℃
で2〜5時間程度焼成することにより得られる。かかる
焼成によれば、主結晶相の平均粒径は1〜20μmのも
のが得られる。尚、焼結を促進させるという点から、酸
化性雰囲気における酸素分圧は、10-3気圧以上とする
のが良い。
The conductive ceramic of the present invention is, for example,
After mixing and pulverizing oxides or carbonates of La, Cr, and Mg, the mixture is calcined at 1000 to 1400 ° C., and ABO is applied.
A 3- type perovskite-type composite oxide was prepared, and this ABO
The perovskite-type composite oxide is obtained by adding a Ca oxide or a carbonate and at least one oxide or carbonate among Y, Yb, Sc, Sm, Nd, Dy, and Pr to the 3-type perovskite-type composite oxide. To 100 parts by weight, 0.01 to 2.0 parts by weight in terms of oxide were added, and after mixing and pulverization, the mixture was molded into a predetermined shape. 1700 ° C
For about 2 to 5 hours. According to such baking, a main crystal phase having an average particle size of 1 to 20 μm is obtained. From the viewpoint of promoting sintering, the oxygen partial pressure in the oxidizing atmosphere is preferably set to 10 -3 atm or more.

【0024】尚、例えば、La、Cr、Mg、Ca、Y
の酸化物あるいは炭酸塩を、混合粉砕を行った後、10
00〜1400℃で仮焼処理後ABO3 型ペロブスカイ
ト型複合酸化物を作製し、これを0.1〜5μmの大き
さの粒子に粉砕したものを所定の形状に成形した後、大
気中などの酸化性雰囲気中で焼成しても良い。
Incidentally, for example, La, Cr, Mg, Ca, Y
After mixing and grinding oxides or carbonates of
After calcination at 00 to 1400 ° C., an ABO 3 type perovskite-type composite oxide is prepared, and crushed into particles having a size of 0.1 to 5 μm. It may be fired in an oxidizing atmosphere.

【0025】本発明における導電性セラミックスは、例
えば、燃料電池セルにおけるセパレ−タやインタ−コネ
クタなど集電材として好適に使用される。そこで、図1
に平板型燃料電池セルの典型的な構造を示す。図1によ
れば、Y2 3 安定化ZrO2 などからなる板状の固体
電解質1の上面には、(La,Sr)MnO3 や(L
a,Ca)MnO3 などからなる空気極2が、また下面
にはNi−ZrO2 (Y2 3 含有)サーメットなどか
らなる燃料極3が形成され、これを単セルとしてセル間
を接続する部材として集電部材4(セパレータ)が配置
されている。
The conductive ceramic according to the present invention is suitably used as a current collector such as a separator or an interconnector in a fuel cell. Therefore, FIG.
Fig. 1 shows a typical structure of a flat fuel cell. According to FIG. 1, (La, Sr) MnO 3 or (L) is formed on the upper surface of a plate-like solid electrolyte 1 made of Y 2 O 3 stabilized ZrO 2 or the like.
a, Ca) An air electrode 2 made of MnO 3 and the like, and a fuel electrode 3 made of Ni—ZrO 2 (containing Y 2 O 3 ) cermet and the like are formed on the lower surface, and these are used as single cells to connect the cells. A current collecting member 4 (separator) is disposed as a member.

【0026】かかるセルにおいては、空気極2は、大気
などの酸素含有ガスが、燃料極3には水素ガスなどが接
触し、空気極2および燃料極3のいずれも多孔質材料に
より構成されるが、集電部材4は、その片面は酸素含有
ガスと接触し、片方は水素ガスと接触しこれらを完全に
分離する役割を有することから、高緻密質、高電気伝導
性を有することが要求される。本発明の導電性セラミッ
クスは、この集電部材4として最も好適に使用される。
In such a cell, the air electrode 2 is in contact with an oxygen-containing gas such as air, the fuel electrode 3 is in contact with hydrogen gas or the like, and both the air electrode 2 and the fuel electrode 3 are made of a porous material. However, the current collecting member 4 is required to have high density and high electrical conductivity because one side thereof is in contact with the oxygen-containing gas and one side is in contact with the hydrogen gas to completely separate them. Is done. The conductive ceramic of the present invention is most preferably used as the current collecting member 4.

【0027】また、円筒型燃料電池セルにおいても、本
発明の導電性セラミックスを、セル間を接続するための
集電部材(インターコネクタ)材料として用いることが
できる。
Further, also in the cylindrical fuel cell, the conductive ceramic of the present invention can be used as a current collecting member (interconnector) material for connecting the cells.

【0028】前述した導電性セラミックスは、前述した
通り、高緻密体であるとともに、電気伝導度、特に燃料
電池の作動時(約1000℃)における電気伝導度が1
5s/cm以上と高いことから、集電部材が要求される
特性を十分に満足するものである。しかも、この導電性
セラミックスは、水素に対する耐久性に優れることから
長期安定性に優れることも集電部材として好適な1つの
理由である。
As described above, the above-mentioned conductive ceramic is a high-density body and has an electric conductivity of 1 particularly when the fuel cell is operated (about 1000 ° C.).
Since it is as high as 5 s / cm or more, it sufficiently satisfies the characteristics required of the current collecting member. In addition, this conductive ceramic is also excellent in durability against hydrogen, and is therefore excellent in long-term stability, which is one reason that it is suitable as a current collecting member.

【0029】[0029]

【実施例】【Example】

実施例1 市販の純度99.9%のLa2 3 、MgCO3 、Cr
2 3 粉末を用いて、これらを表1に示す割合で混合し
た後、ジルコニアボールを用いたボールミルにて12時
間混合した後、1200℃で5時間仮焼して固相反応を
行わせ、ペロブスカイト型複合酸化物粉末を作製した。
この後、さらにこのペロブスカイト型複合酸化物粉末1
00重量部に対して、市販の純度99.9%のCaCO
3 粉末と、Y2 3 、Yb2 3 、Sm2 3 、Sc2
3 、Nd2 3 、PrO粉末を表1に示す量だけ添加
し、再度ジルコニアボールを用いて10時間混合粉砕し
た。これを一辺が5mm×5mm、長さ45mmの四角
柱に成形し、大気中(酸素分圧0.2気圧)で表1に示
す条件で焼成した。
Example 1 Commercially available La 2 O 3 , MgCO 3 , Cr having a purity of 99.9%
Using 2 O 3 powder, these were mixed at the ratios shown in Table 1, then mixed for 12 hours in a ball mill using zirconia balls, and calcined at 1200 ° C. for 5 hours to perform a solid phase reaction. A perovskite-type composite oxide powder was produced.
Thereafter, the perovskite-type composite oxide powder 1
100 parts by weight, commercially available 99.9% pure CaCO 3
3 powder, Y 2 O 3 , Yb 2 O 3 , Sm 2 O 3 , Sc 2
O 3 , Nd 2 O 3 , and PrO powders were added in the amounts shown in Table 1 and mixed and pulverized again using zirconia balls for 10 hours. This was formed into a square prism having a side of 5 mm × 5 mm and a length of 45 mm, and fired in the atmosphere (oxygen partial pressure: 0.2 atm) under the conditions shown in Table 1.

【0030】得られた焼結体に対して、アルキメデス法
により試料の開気孔率の測定を行い、焼結性を判断し
た。また、大きさ3mm×3mm、長さ20mmの試料
片を上記のようにして作製し、4端子法により大気中1
000℃で電気伝導度を測定した。また、これらの試料
の水素雰囲気安定性を調べるために、1000℃で水素
雰囲気中に24時間保持した後、試料の表面に全く変化
はなかったものに○、表面に分解が認められたものに×
を付した。これらの結果を表1に示した。
With respect to the obtained sintered body, the open porosity of the sample was measured by the Archimedes method, and the sinterability was determined. In addition, a sample piece having a size of 3 mm × 3 mm and a length of 20 mm was prepared as described above, and one piece in air was prepared by a four-terminal method.
The electrical conductivity was measured at 000 ° C. In order to examine the stability of these samples in a hydrogen atmosphere, the samples were kept in a hydrogen atmosphere at 1000 ° C. for 24 hours, and then, when no change was observed on the surfaces of the samples, ×
Is attached. The results are shown in Table 1.

【0031】比較のために、市販のLaMg0.10Cr
0.90の粉末を2000℃、Ar中で3時間焼成し、上記
の方法に従い開気孔率と電気伝導度を測定した。この結
果を表1の試料No.1に記載する。
For comparison, a commercially available LaMg 0.10 Cr
The 0.90 powder was calcined in Ar at 2000 ° C. for 3 hours, and the open porosity and electric conductivity were measured according to the above-mentioned methods. The result is shown in Sample No. 1 of Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】この表1より、CaとY、Yb等の希土類
元素の含有量が0.01重量部より少ない試料No.2で
は、開気孔率が大きく焼結性が悪い。それに対して、試
料No.7のようにその含有量が2.0重量%を越えると
水素雰囲気中で分解が始まり、燃料電池セルのセパレー
タ等に用いることができない。本発明のものは、すべて
電気伝導性が16s/cm以上と高く、還元雰囲気中で
の材料の安定も充分優れていることが判る。
As can be seen from Table 1, Sample No. 2 in which the contents of Ca and rare earth elements such as Y and Yb are less than 0.01 part by weight has a large open porosity and poor sinterability. On the other hand, if the content exceeds 2.0% by weight as in sample No. 7, decomposition starts in a hydrogen atmosphere and cannot be used as a fuel cell separator or the like. It can be seen that all of the present invention have a high electric conductivity of 16 s / cm or more, and the stability of the material in a reducing atmosphere is sufficiently excellent.

【0034】実施例2 上記実施例1中のNo.1、2、4、5、8、16の試料
を用いて、図1に示した構造の大きさ50mm×50m
m、厚み3mmのセパレータを作製した。このセパレー
タの平均結晶粒径は4〜10μmであった。また、市販
の純度99.9%の8mol%Y2 3 −92mol%
ZrO2 粉末を用い、理論密度比99.3%の緻密な厚
み0.25mmの固体電解質板を作製した。この下面に
30μmの厚みに70wt%NiOー30wt%ジルコ
ニア(8mol%Y2 3 を含有)の混合粉末を塗布
し、1400℃で2時間焼き付け燃料極とした。
Example 2 Using the samples of Nos. 1, 2, 4, 5, 8, and 16 in the above Example 1, the structure shown in FIG.
m, a separator having a thickness of 3 mm was produced. The average crystal grain size of this separator was 4 to 10 μm. 8 mol% of commercially available 99.9% purity Y 2 O 3 -92 mol%
Using ZrO 2 powder, a dense solid electrolyte plate having a theoretical density ratio of 99.3% and a thickness of 0.25 mm was produced. A mixed powder of 70 wt% NiO-30 wt% zirconia (containing 8 mol% Y 2 O 3 ) having a thickness of 30 μm was applied to the lower surface, and baked at 1400 ° C. for 2 hours to obtain a fuel electrode.

【0035】その後、固体電解質板の上面にLa0.9
0.1 MnO3 粉末を30μmの厚みに塗布し、120
0℃で2時間焼き付けし、空気極とした。これを上記の
セパレータで挟み空気極側に酸素ガスを、燃料極側に水
素ガスを流し1000℃で400時間連続発電し、発電
時の出力密度を測定し、その結果を表2に示した。
Thereafter, La 0.9 S was applied on the upper surface of the solid electrolyte plate.
r 0.1 MnO 3 powder is applied to a thickness of 30 μm,
Baking was performed at 0 ° C. for 2 hours to obtain an air electrode. This was sandwiched between the separators described above, oxygen gas was supplied to the air electrode side, and hydrogen gas was supplied to the fuel electrode side to generate power continuously at 1000 ° C. for 400 hours, and the output density at the time of power generation was measured.

【0036】[0036]

【表2】 [Table 2]

【0037】この表2より、比較例である試料No.19
の出力は極めて小さかった。また、試料No.23では途
中でセルが破壊した。これに対して、本発明の試料N
o.20、21、22は安定した発電特性を示すことが
判った。
From Table 2, it can be seen that Sample No. 19 as a comparative example was used.
Output was extremely small. In the case of sample No. 23, the cell was broken halfway. In contrast, the sample N of the present invention
o. 20, 21, and 22 showed stable power generation characteristics.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明によれば、L
aCrO3 系組成物における焼結性を改善し、高電気伝
導度を有するとともに1600℃以下の低温で高緻密体
を作製することができる。しかも、高温の水素雰囲気で
の安定性に優れるものであり、例えば、燃料電池などの
水素と接触するインターコネクタ、セパレータ、ガスデ
ィフューザなどの集電部材として好適に使用することに
より、安価でしかも燃料電池としての長期安定性に対応
できる電極材料を提供できる。
As described in detail above, according to the present invention, L
The sinterability of the aCrO 3 -based composition is improved, and a highly dense body having high electric conductivity and a low temperature of 1600 ° C. or less can be produced. Moreover, it is excellent in stability in a high-temperature hydrogen atmosphere, and is preferably used as a current collecting member such as an interconnector, a separator, and a gas diffuser that comes into contact with hydrogen such as a fuel cell, so that it is inexpensive and has a low fuel consumption. An electrode material that can cope with long-term stability as a battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平板型燃料電池セルの概略図である。FIG. 1 is a schematic view of a flat fuel cell.

【符号の説明】[Explanation of symbols]

1・・・固体電界質 2・・・空気極 3・・・燃料極 4・・・集電部材 DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte 2 ... Air electrode 3 ... Fuel electrode 4 ... Current collecting member

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属元素としてLa、CrおよびMgを含
み、ペロブスカイト型複合酸化物を主結晶相とし、前記
ペロブスカイト型複合酸化物100重量部に対して、C
aと、Y、Yb、Sc、Sm、Nd、DyおよびPrの
うち少なくとも一種を酸化物換算でそれぞれ0.01〜
2.0重量部含有することを特徴とする導電性セラミッ
クス。
1. A metal oxide containing La, Cr and Mg as metal elements, a perovskite-type composite oxide as a main crystal phase, and C per 100 parts by weight of said perovskite-type composite oxide.
a, and at least one of Y, Yb, Sc, Sm, Nd, Dy, and Pr is 0.01 to 0.01% in terms of oxide.
A conductive ceramic, comprising 2.0 parts by weight.
JP9234627A 1997-08-29 1997-08-29 Electroconductive ceramics Pending JPH1179836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9234627A JPH1179836A (en) 1997-08-29 1997-08-29 Electroconductive ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9234627A JPH1179836A (en) 1997-08-29 1997-08-29 Electroconductive ceramics

Publications (1)

Publication Number Publication Date
JPH1179836A true JPH1179836A (en) 1999-03-23

Family

ID=16974008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9234627A Pending JPH1179836A (en) 1997-08-29 1997-08-29 Electroconductive ceramics

Country Status (1)

Country Link
JP (1) JPH1179836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105629A (en) * 2020-08-27 2022-03-01 厦门稀土材料研究所 Preparation method and application of rare earth chromate based porous conductive high-entropy ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105629A (en) * 2020-08-27 2022-03-01 厦门稀土材料研究所 Preparation method and application of rare earth chromate based porous conductive high-entropy ceramic
CN114105629B (en) * 2020-08-27 2023-04-07 厦门稀土材料研究所 Preparation method and application of rare earth chromate based porous conductive high-entropy ceramic

Similar Documents

Publication Publication Date Title
JP2927339B2 (en) High temperature electrochemical battery
Maric et al. Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni‐Samaria‐Doped Ceria Cermet Anode
EP1877168A1 (en) High performance sofc cathode material in the 450°c - 650°c range
WO1992007393A1 (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
US9666891B2 (en) Gas phase modification of solid oxide fuel cells
US20040214070A1 (en) Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
WO2006098272A1 (en) Ion conductor
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3121993B2 (en) Method for producing conductive ceramics
JP4191821B2 (en) Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte
JP3448242B2 (en) Solid electrolyte fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP2012104308A (en) Method of producing dense material of electrolyte for solid oxide fuel cell
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JPH07249414A (en) Solid electrolytic fuel cell
JP3677386B2 (en) Solid oxide fuel cell
JPH1179836A (en) Electroconductive ceramics
JP3389407B2 (en) Conductive ceramics and fuel cells
JP3350137B2 (en) Solid oxide fuel cell material
JP3220320B2 (en) Fuel cell and method for producing conductive ceramics
JP2771090B2 (en) Solid oxide fuel cell
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JP3091100B2 (en) Method for producing conductive ceramics
JP3199546B2 (en) Current collector for solid oxide fuel cell and method for producing conductive ceramics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060320