JP2012104308A - Method of producing dense material of electrolyte for solid oxide fuel cell - Google Patents

Method of producing dense material of electrolyte for solid oxide fuel cell Download PDF

Info

Publication number
JP2012104308A
JP2012104308A JP2010250535A JP2010250535A JP2012104308A JP 2012104308 A JP2012104308 A JP 2012104308A JP 2010250535 A JP2010250535 A JP 2010250535A JP 2010250535 A JP2010250535 A JP 2010250535A JP 2012104308 A JP2012104308 A JP 2012104308A
Authority
JP
Japan
Prior art keywords
electrolyte
sintering
fuel cell
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010250535A
Other languages
Japanese (ja)
Other versions
JP5598920B2 (en
Inventor
Ray Bi
レイ ビ
Traversa Enrico
トラベルサ エンリコ
Fabbri Emiliana
ファブリ エミリアーナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010250535A priority Critical patent/JP5598920B2/en
Publication of JP2012104308A publication Critical patent/JP2012104308A/en
Application granted granted Critical
Publication of JP5598920B2 publication Critical patent/JP5598920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that when the electrolyte of a solid oxide fuel cell operating at intermediate or low temperatures of about 600°C is produced by sintering a raw powder material, an additive element for promoting the sintering is added in order to obtain a dense body because the sinterability of an electrolyte material is low, but this kind of additive inhibits proton conductivity.SOLUTION: The element of a sintering aid which remains in the dense body of sintered electrolyte and inhibits electrical conduction is replaced utilizing solid phase diffusion of other element in an electrode substrate in tight contact therewith. For example, the electrolyte is BaZrO, and the sintering aid of that powder is In. The electrode substrate is NiO doped or BaZrYO. In of the electrolyte is replaced by Y of the electrode to become BaZrYOand shows good proton conductivity.

Description

本発明は、固体酸化物燃料電池用電解質材料において、特に600℃前後の中低温で伝導率に優れ、化学的に安定である材料を緻密化する新規な製造方法に関する。   The present invention relates to a novel production method for densifying a material that is excellent in conductivity and chemically stable at medium and low temperatures around 600 ° C. in an electrolyte material for a solid oxide fuel cell.

電気エネルギー需要の継続的増加に対して、新しい発電手段の燃料電池が有望視されてきた。その中でも固体酸化物燃料電池の開発は急であり、一部に実用化に至っている。固体酸化物燃料電池に利用される固体酸化物燃料電池材料は金属酸化物固体(セラミックス)であり、800〜1000℃で作動させている。これらは高温環境が容易な定置型発電機に利用されているが、自動車等の可動型発電機への利用はまだ実現していない。作動温度が600℃程度、あるいはそれ以下の中低温になれば、広範囲に利用できる発電機がでる。その経済的、地球環境的、さらに政治的インパクトは大きく、巨大なマーケットが開かれることが期待される。   New power generation fuel cells have been viewed as promising for a continuous increase in electrical energy demand. Among them, the development of solid oxide fuel cells has been rapid, and some have been put into practical use. The solid oxide fuel cell material used for the solid oxide fuel cell is a metal oxide solid (ceramics), which is operated at 800 to 1000 ° C. These are used for stationary generators that are easy to use in high-temperature environments, but have not yet been used for movable generators such as automobiles. If the operating temperature is about 600 ° C. or lower or lower, a generator that can be used in a wide range can be obtained. Its economic, global environmental and political impact is great, and a huge market is expected to be opened.

酸化物固体酸化物燃料電池用電解質では、電子伝導よりプロトン伝導体がイオン電導率に優れているために、有用な材料である。プロトン伝導体の伝導率は、材料そのものイオン電導率と焼結密度および添加元素に大きく左右される。工業材料として使用するためには、伝導率を阻害する添加元素を含まず、緻密化した材料が好ましい。   An electrolyte for an oxide solid oxide fuel cell is a useful material because a proton conductor is superior to electron conduction in ionic conductivity. The conductivity of the proton conductor greatly depends on the ionic conductivity of the material itself, the sintered density, and the additive elements. In order to use as an industrial material, a densified material that does not contain an additive element that hinders conductivity is preferable.

酸化物の固体酸化物燃料電池用電解質材料としては、酸化ジルコニウム(ジルコニア、ZrO)があり、高温で酸素イオン伝導体である。これに酸化バリウム(BaO)や酸化イットリウム(Y)を固溶させると材料、たとえばBaZrO(BZと記す)、なかでもイットアドープBaZrO(BaZr1−x3−δ、BZYと記す)は優れたプロトン伝導体になり、イオン伝導体よりすぐれている。 As an oxide material for an oxide solid oxide fuel cell, there is zirconium oxide (zirconia, ZrO 2 ), which is an oxygen ion conductor at a high temperature. If barium oxide (BaO) or yttrium oxide (Y 2 O 3 ) is dissolved in this, a material such as BaZrO 3 (referred to as BZ), especially it-doped BaZrO 3 (BaZr x Y 1-x O 3-δ , BZY) ) Is an excellent proton conductor and is superior to the ionic conductor.

BZYは粉末を焼結して製造するが、焼結性が悪いので緻密体が得られず、十分な電気伝導率を発揮できない。一方、酸化インジウム(In)や酸化亜鉛(ZnO)、酸化ニッケル(NiO)は焼結助剤として作用し、これらを添加すると焼結を促進し、緻密体が得られる。しかしながら、これらの焼結助剤はプロトン伝導性を阻害し、伝導率を低下させ、その結果、好ましい燃料電池用電解質が得られない。 BZY is produced by sintering powder, but since the sinterability is poor, a dense body cannot be obtained and sufficient electrical conductivity cannot be exhibited. On the other hand, indium oxide (In 2 O 3 ), zinc oxide (ZnO), and nickel oxide (NiO) act as a sintering aid, and when these are added, sintering is promoted and a dense body is obtained. However, these sintering aids inhibit proton conductivity and lower the conductivity, and as a result, a preferable fuel cell electrolyte cannot be obtained.

本発明の課題は、中低温で作動する固体酸化物燃料電池用電解質材料として利用できる材料、たとえばBZYに関して、原料粉末を緻密化させる添加物の利用により緻密体を製造する技術と、それによって電気伝導率が低下しないようにする技術を開発することである。   An object of the present invention is to provide a technique for producing a dense body by using an additive for densifying a raw material powder with respect to a material that can be used as an electrolyte material for a solid oxide fuel cell that operates at medium and low temperatures, for example, BZY, and an electric It is to develop a technology that prevents the conductivity from decreasing.

固体酸化物燃料電池用電解質材料を粉末から焼結するにあたって、焼結性を良くするために焼結助剤として添加物を加え緻密化する。焼結助剤は材料中に残留し、伝導性を阻害する。そこで、焼結後に伝導率を下げなくかつ焼結助剤より高温の揮発性が悪い安定な元素に置換する。このようにして、高いプロトン電気伝率を持つ固体酸化物燃料電池用電解質材料が得られ、本発明に至った。
本発明の一側面によれば、少なくとも固体酸化物燃料電池の電極と電解質からなる部品を粉末からの多結晶体材料を焼結して作成する方法において、前記電解質に含まれている伝導率を阻害する元素を高温で固相拡散することにより他の元素で置換して伝導率を改善する、固体酸化物燃料電池部品製造法が与えられる。
ここで、前記電極及び前記電解質が、前記粉末を原料として、焼結促進剤を添加して、焼結して製造してよい。
また、前記電極と前記電解質が接合しており、高温で仮焼し、固相拡散と元素置換するようにしてよい。
前記電解質がイットリア(Y)を固溶したBaZrOで組成式がBaZr1−x3−δであり(ただし、0.1<x<0.99、0.01<δ<0.5)、前記焼結促進剤がIn、Ga、Liから成る群から選ばれた少なくとも1種の元素を含み、前記少なくとも1種の元素を置換する元素がY等の希土類元素であるようにしてよい。
When the electrolyte material for a solid oxide fuel cell is sintered from powder, an additive is added as a sintering aid to improve the sinterability and densify. The sintering aid remains in the material and impedes conductivity. Therefore, it is replaced with a stable element that does not lower the conductivity after sintering and has a lower volatility at a higher temperature than the sintering aid. Thus, an electrolyte material for a solid oxide fuel cell having a high proton electric conductivity was obtained, and the present invention was achieved.
According to one aspect of the present invention, in a method for producing a component comprising at least a solid oxide fuel cell electrode and an electrolyte by sintering a polycrystalline material from powder, the conductivity contained in the electrolyte is determined. A solid oxide fuel cell component manufacturing method is provided in which the interfering element is solid phase diffused at high temperature to replace it with other elements to improve conductivity.
Here, the electrode and the electrolyte may be manufactured by using the powder as a raw material, adding a sintering accelerator, and sintering.
In addition, the electrode and the electrolyte may be joined and calcined at a high temperature to perform solid phase diffusion and element substitution.
The electrolyte is BaZrO 3 in which yttria (Y 2 O 3 ) is dissolved, and the composition formula is BaZr x Y 1-x O 3-δ (where 0.1 <x <0.99, 0.01 <δ <0.5) The sintering promoter contains at least one element selected from the group consisting of In, Ga, and Li, and the element that replaces the at least one element is a rare earth element such as Y. You may do it.

本発明の固体酸化物燃料電池用電解質材料は、中低温で電気伝導が高く、固体酸化物燃料電池の電解質材料に適するものである。これによって、CO、CHやメタノールなど多様な燃料から、中低温で簡便に電気がえられ、現在世界的に関心のある化石燃料の代替え発電や地球温暖化阻止に貢献する。燃料電池の成功は産業的にも大きな利益になる。 The electrolyte material for a solid oxide fuel cell of the present invention has high electrical conductivity at medium and low temperatures, and is suitable as an electrolyte material for a solid oxide fuel cell. As a result, electricity can be easily obtained from various fuels such as CO 2 , CH 4, and methanol at medium and low temperatures, and it contributes to alternative power generation and global warming prevention of fossil fuels currently of global interest. The success of fuel cells is a big industrial advantage.

本発明の方法を概念的に説明する図。The figure which illustrates the method of this invention notionally. 図の上部は本発明の一実施例で作製した電解質のX線回折パターンで、下部はBZの標準パターン(JCPDS Card No.06−0399)を示す図。両者は一致して、電解質がBZYであることを示す。右上のSEM像写真は表面の形状で、緻密な電解質が出来ていることを示す。The upper part of the figure is an X-ray diffraction pattern of the electrolyte prepared in one example of the present invention, and the lower part is a diagram showing a BZ standard pattern (JCPDS Card No. 06-0399). Both agree and indicate that the electrolyte is BZY. The SEM image photograph in the upper right shows that the surface shape is a dense electrolyte. (a)は本発明の一実施例で作製した電解質(上部)と電極(下部)の断面のSEM写真。(b)はEDXによる(a)の元素分析結果。Ba、Zr、YとOは全体に分布し、材料の構成元素である。焼結助剤のInは検出されない。Niは電極に分布する。(A) is the SEM photograph of the cross section of the electrolyte (upper part) and the electrode (lower part) produced in one Example of this invention. (B) is an elemental analysis result of (a) by EDX. Ba, Zr, Y and O are distributed throughout and are constituent elements of the material. In the sintering aid is not detected. Ni is distributed in the electrodes. I−Vカーブ測定法による本発明の一実施例で作製した電解質のプロトン伝導性の評価を示す図。ここで、直線状の線がI−Vカーブを、また白抜きのマーカーで表される放物線状の線が電力密度を表している。本発明による電解質が示すピーク電力密度は600℃で169mWcm−2であった。この値は、現在知られている電解質材料の値、26−110mWcm−2、よりはるかに大きい値である。The figure which shows the proton conductivity evaluation of the electrolyte produced in one Example of this invention by the IV curve measuring method. Here, the straight line represents the IV curve, and the parabolic line represented by the white marker represents the power density. The peak power density exhibited by the electrolyte according to the present invention was 169 mWcm −2 at 600 ° C. This value is much larger than the currently known electrolyte material value, 26-110 mWcm −2 . 比較例で作製した焼結助剤Inを添加しない電解質の焼結材料の表面(a)と破壊面(b)を示すSEM像であり、比較例の電解質は緻密化していないことを示す。It is a SEM image which shows the surface (a) and fracture surface (b) of the sintered material of the electrolyte which does not add sintering auxiliary agent In produced in the comparative example, and shows that the electrolyte of the comparative example is not densified.

中低温で作動する固体酸化物燃料電池用電解質材料BZYはその粉末を焼結して多結晶体材料に合成され、これをBZY等の電極基盤に接合して固体酸化物燃料電池にする。BZやBZYの粉末は焼結性が悪く、粉末を仮焼しても緻密体が得られない。そこで、焼結助剤として酸化インジウム(In)をドープし、インジウムドープBaZrO(BZIと記す)の粉末を原料とする。Inは一方ではBZのプロトン伝導率を低下させる。そこで、InよりBZと親和性がよく高温で安定なYで置換する。すなわち、Yを含有する電極基盤に接触させて加熱すると、YはBZIに進入し、InがYに置換される。このようにして、優れたプロトン伝導を持つBZY固体酸化物燃料電池用電解質材料が得られる。
本発明を適用する材料の最終的な形態は、固体酸化物の電極(陰極)に、本発明の電解質材料が接合され電池を形成する。電解質材料はBZにYを固溶した材料が最適であるが、他の希土類酸化物でもよい。電解質はBZIの粉末を焼結して作る。InはBZの焼結助剤として働き、BZIの緻密な膜が出来る。Inの代わりにGaあるいはLiでも有効である。電極は組成がNiOを混合したBZY等が選ばれる。あるいは他の電気伝導性固体でもよい。電極はNiOを含むBZYの粉末を焼結し、板状基盤にする。出発原料の粉末は、均一混合のために有機プレカーサー方法を用いることが好ましい。NiOは焼結助剤である。このようにして、図1の左端に示すように、電極基盤に電解質の膜ができる。
The solid oxide fuel cell electrolyte material BZY operating at medium and low temperatures is synthesized into a polycrystalline material by sintering the powder, and this is joined to an electrode substrate such as BZY to form a solid oxide fuel cell. BZ and BZY powders have poor sinterability, and a dense body cannot be obtained even if the powder is calcined. Therefore, indium oxide (In 2 O 3 ) is doped as a sintering aid, and indium-doped BaZrO 3 (referred to as BZI) powder is used as a raw material. In 2 O 3 on the other hand decreases the proton conductivity of BZ. Therefore, it is substituted with Y 2 O 3 which has better affinity with BZ than In 2 O 3 and is stable at high temperature. That is, when heated in contact with the electrode substrate containing Y 2 O 3 , Y enters BZI and In is replaced by Y. In this way, an electrolyte material for BZY solid oxide fuel cells having excellent proton conduction can be obtained.
In the final form of the material to which the present invention is applied, the electrolyte material of the present invention is joined to a solid oxide electrode (cathode) to form a battery. The electrolyte material is optimally a material in which Y 2 O 3 is dissolved in BZ, but other rare earth oxides may be used. The electrolyte is made by sintering BZI powder. In acts as a sintering aid for BZ, and a dense BZI film can be formed. Ga or Li is also effective instead of In. For the electrode, BZY mixed with NiO or the like is selected. Alternatively, other electrically conductive solids may be used. The electrode sinters BZY powder containing NiO to form a plate-like substrate. It is preferable to use an organic precursor method for uniform mixing of the starting material powder. NiO is a sintering aid. In this way, as shown at the left end of FIG. 1, an electrolyte membrane is formed on the electrode substrate.

電極基盤と電解質膜の二層構造物を更に仮焼する。このとき、図1の中央に示すように、電極の母材からYが電解質へ拡散し、Inと置換する。この置換が起こるのは、InよりYがBZとの親和性が良く、高温で安定であるからである。十分な仮焼を経ると、図1の右端に示すように、電解質はBZY(Y−BaZrO)となり、優れたプロトン伝導体となる。 The two-layer structure of the electrode substrate and the electrolyte membrane is further calcined. At this time, as shown in the center of FIG. 1, Y diffuses from the base material of the electrode into the electrolyte and replaces with In. This substitution occurs because Y has better affinity with BZ than In and is stable at high temperatures. After sufficient calcining, as shown at the right end of FIG. 1, the electrolyte becomes BZY (Y-BaZrO 3 ), and an excellent proton conductor.

以上によって製造した固体酸化物燃料電池部品は、電解質膜がBZYの緻密体で、電解質膜は伝導に有害なInをほとんど含まず、電解質膜が優れたプロトン伝導性をもつ。このようにして得られたイットアドープBaZrO、すなわちBaZr1−x3−δにおいて、x及びδは夫々以下の範囲の値を取るようにすることで、良好な特性の電解質膜を得ることができる。
0.1<x<0.99
0.01<δ<0.5
なお、本電解質膜中の残留In濃度を10原子%以下まで低減すれば、プロトン伝導性がかなり改善される。
上述のような方法を用いることにより、厚さが100μm〜1μmで平均粒径が10μm〜0.1μmの、これまでになかった薄く且つ緻密な電解質膜を作製することができる。
The solid oxide fuel cell component manufactured as described above has a dense BZY electrolyte membrane, the electrolyte membrane contains almost no In harmful to conduction, and the electrolyte membrane has excellent proton conductivity. In the thus obtained it-doped BaZrO 3 , that is, BaZr x Y 1-x O 3-δ , x and δ take values in the following ranges, respectively, thereby obtaining an electrolyte membrane with good characteristics. be able to.
0.1 <x <0.99
0.01 <δ <0.5
If the residual In concentration in the electrolyte membrane is reduced to 10 atomic% or less, the proton conductivity is considerably improved.
By using the method as described above, an unprecedented thin and dense electrolyte membrane having a thickness of 100 μm to 1 μm and an average particle diameter of 10 μm to 0.1 μm can be produced.

次に、本発明を実施例により、固体酸化物燃料電池用材料の製造と評価結果を具体的に説明する。   Next, the production and evaluation results of the solid oxide fuel cell material will be specifically described by way of examples of the present invention.

化学組成がBZYおよびBZIの粉末を有機プレカーサー法で合成した。電解質用BZI粉末ではBZ粉末に、InをInで30原子%添加した。電極用BZY粉末は、YにYを20原子%加えたBZ粉末であるが、さらにNiOも混合した。上記2種の粉末をグリーンシートとして重ね、1450℃で仮焼した。
その結果、NiO添加BZY板状基盤の上に、緻密なBZI膜が形成された。続けて同温度で10時間仮焼した。
Powders having chemical compositions of BZY and BZI were synthesized by the organic precursor method. In the BZI powder for electrolyte, In 2 O 3 was added to BZ powder at 30 atomic% as In. The electrode BZY powder is a BZ powder obtained by adding 20 atomic% of Y to Y 2 O 3 , and NiO was also mixed. The two kinds of powders were stacked as green sheets and calcined at 1450 ° C.
As a result, a dense BZI film was formed on the NiO-added BZY plate substrate. Subsequently, it was calcined at the same temperature for 10 hours.

この工程の中で、電極のBZYはNiO助剤で緻密に焼結した。NiOは材料内に残留した。電解質のBZI膜はInのために緻密化した。仮焼をそのまま継続することにより、接触しているBZY電極基盤からYが電解質膜に拡散してInと置換し、またInは蒸発した。その結果、緻密なBZY電解質が出来た。焼結と置換の2つの工程は上述のように一連の仮焼工程中で連続的に行われるようにしてもよいし、あるいは焼結と置換をはっきり切り離された別個の肯定としてもよい。なお、電極基盤中にあるNiOは電解質に移動してInを置換することはない。 During this process, the BZY of the electrode was densely sintered with a NiO assistant. NiO remained in the material. The electrolyte BZI film was densified due to In 2 O 3 . By continuing the calcination as it was, Y diffused from the contacting BZY electrode substrate into the electrolyte membrane and replaced with In, and In evaporated. As a result, a dense BZY electrolyte was produced. The two steps of sintering and replacement may be performed continuously in a series of calcination steps as described above, or may be a separate affirmative separation of sintering and replacement. Note that NiO in the electrode substrate does not move to the electrolyte and replace In.

合成した電解質BZYを評価した。すなわち、結晶構造はX線回折パターを測定した。その結果を図2に示す。図2の結果から、合成された電解質の結晶構造はBZと一致していることがわかった。なお、BZYはBZと同じ結晶構造を持つ。また、同図に表面のSEM像も示した。これらから、合成した電解質が緻密体であることが判る。接合した電極基盤と電解質膜の断面をSEM/EDS(走査型電子顕微鏡/エネルギー分散型X線分析)で分析した。その結果を図3に示す。電解質膜はBa、Zr、YとOからなることと、添加したInがなく、Yと置換したことが判り、電解質はBZYと同定された。Niは電極基盤中に存在し、電解質に拡散していないことも判った。電解質のプロトン伝導性をI−Vカーブ測定法によって測定し、その結果を図4に示す。温度が600℃の場合のピーク電力密度は169mWcm−2に達し、現在知られている電解質材料の値、26−110mWcm−2、よりはるかに大きい値であった。500から700℃の中低温で、優れた電力密度を持ちプロトン伝導性の高い材料が出来ることが判った。 The synthesized electrolyte BZY was evaluated. That is, the X-ray diffraction pattern was measured for the crystal structure. The result is shown in FIG. From the result of FIG. 2, it was found that the crystal structure of the synthesized electrolyte was consistent with BZ. BZY has the same crystal structure as BZ. In addition, an SEM image of the surface is also shown in FIG. From these, it can be seen that the synthesized electrolyte is a dense body. The cross section of the joined electrode substrate and electrolyte membrane was analyzed by SEM / EDS (scanning electron microscope / energy dispersive X-ray analysis). The result is shown in FIG. The electrolyte membrane was made of Ba, Zr, Y and O, and it was found that there was no added In and it was replaced with Y, and the electrolyte was identified as BZY. It was also found that Ni was present in the electrode substrate and did not diffuse into the electrolyte. The proton conductivity of the electrolyte was measured by the IV curve measurement method, and the result is shown in FIG. Peak power density when the temperature is 600 ° C. is reached 169mWcm -2, the value of the electrolyte material currently known, 26-110mWcm -2, was more much larger value. It was found that a material having an excellent power density and high proton conductivity can be obtained at a medium to low temperature of 500 to 700 ° C.

比較例Comparative example

実施例と同じ方法で電極用と電解質用の原料粉末を作った。ただし、電解質にはInを含有していない。これらの粉末を実施例に示した工程によって、電極基盤と電解質膜を作った。図5に示すSEM像から、比較例で作成した電解質は焼結添加剤のInを含まないため、緻密化していないことがわかった。そのため、この電解質のプロトン伝導性は極めて悪かった。   Raw material powders for electrodes and electrolytes were prepared in the same manner as in the examples. However, the electrolyte does not contain In. Electrode substrates and electrolyte membranes were made from these powders by the process shown in the examples. From the SEM image shown in FIG. 5, it was found that the electrolyte prepared in the comparative example was not densified because it did not contain In as a sintering additive. Therefore, the proton conductivity of this electrolyte was extremely poor.

このように、本発明によれば、焼結助剤を適切に選ぶことによって、緻密な電極基盤と電解質2層材料が合成できた。さらに、有害な添加物の焼結助剤を他元素置換して、優れたプロトン伝導性を発現することが出来る。   Thus, according to the present invention, a dense electrode substrate and an electrolyte two-layer material could be synthesized by appropriately selecting a sintering aid. Furthermore, it is possible to express excellent proton conductivity by substituting the sintering aid for harmful additives with other elements.

本発明によって出来る固体酸化物燃料電池材料は高いプロトン伝導を持つ。固体酸化物燃料電池はアルコールやバイオ燃料を電力に変換するもので、本発明により中低温で作動する材料が得られた。これを工業的に利用すれば、COガス削減、地球温暖化に貢献し、化石燃料利用依存から脱却することが出来る。 The solid oxide fuel cell material produced by the present invention has high proton conductivity. The solid oxide fuel cell converts alcohol or biofuel into electric power, and a material that operates at medium and low temperatures was obtained by the present invention. If this is used industrially, it contributes to CO 2 gas reduction and global warming, and it is possible to escape from dependence on fossil fuel use.

C. Peng, J. Melnik, J. X. Li, J. L. Luo, A. R. Sanger, K. T. Chuang, J. Power Sources, 2009, 190, 447C. Peng, J. Melnik, J. X. Li, J. L. Luo, A. R. Sanger, K. T. Chuang, J. Power Sources, 2009, 190, 447 Y. M. Guo, Y. Lin, R. Ran, Z. P. Shao, J. Power Sources, 2009, 193, 400Y. M. Guo, Y. Lin, R. Ran, Z. P. Shao, J. Power Sources, 2009, 193, 400 W. P. Sun, L. T. Yan, Z. Shi, Z. W. Zhu, W. Liu, J. Power Sources, 2010, 195, 4727W. P. Sun, L. T. Yan, Z. Shi, Z. W. Zhu, W. Liu, J. Power Sources, 2010, 195, 4727 D. Pergolesi, E. Fabbri, E. Traversa, Electrochem. Commun., 2010, 12, 977D. Pergolesi, E. Fabbri, E. Traversa, Electrochem. Commun., 2010, 12, 977

Claims (4)

少なくとも固体酸化物燃料電池の電極と電解質からなる部品を粉末からの多結晶体材料を焼結して作成する方法において、
前記電解質に含まれている伝導率を阻害する元素を高温で固相拡散することにより他の元素で置換して伝導率を改善する、固体酸化物燃料電池部品製造法。
In a method for producing a component comprising at least a solid oxide fuel cell electrode and an electrolyte by sintering a polycrystalline material from powder,
A method for producing a solid oxide fuel cell component, wherein an element that inhibits conductivity contained in the electrolyte is replaced with another element by solid phase diffusion at high temperature to improve conductivity.
前記電極及び前記電解質が、前記粉末を原料として、焼結促進剤を添加して、焼結して製造する、請求項1の製造方法。 The manufacturing method according to claim 1, wherein the electrode and the electrolyte are manufactured by adding a sintering accelerator and sintering the powder as a raw material. 前記電極と前記電解質が接合しており、高温で仮焼し、固相拡散と元素置換する、請求項1の製造方法。 The manufacturing method according to claim 1, wherein the electrode and the electrolyte are joined, calcined at a high temperature, solid phase diffusion and element substitution. 前記電解質がイットリア(Y)を固溶したBaZrOで組成式がBaZr1−x3−δであり(ただし、0.1<x<0.99、0.01<δ<0.5)、前記焼結促進剤がIn、Ga、Liから成る群から選ばれた少なくとも1種の元素を含み、前記少なくとも1種の元素を置換する元素がY等の希土類元素である、請求項1の製造方法。
The electrolyte is BaZrO 3 in which yttria (Y 2 O 3 ) is dissolved, and the composition formula is BaZr x Y 1-x O 3-δ (where 0.1 <x <0.99, 0.01 <δ <0.5) The sintering promoter contains at least one element selected from the group consisting of In, Ga, and Li, and the element that replaces the at least one element is a rare earth element such as Y. The manufacturing method of Claim 1.
JP2010250535A 2010-11-09 2010-11-09 Method for producing electrolyte dense material for solid oxide fuel cell Active JP5598920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250535A JP5598920B2 (en) 2010-11-09 2010-11-09 Method for producing electrolyte dense material for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250535A JP5598920B2 (en) 2010-11-09 2010-11-09 Method for producing electrolyte dense material for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2012104308A true JP2012104308A (en) 2012-05-31
JP5598920B2 JP5598920B2 (en) 2014-10-01

Family

ID=46394477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250535A Active JP5598920B2 (en) 2010-11-09 2010-11-09 Method for producing electrolyte dense material for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5598920B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012049A (en) * 2013-06-27 2015-01-19 独立行政法人物質・材料研究機構 Variable electric conduction element utilizing all solid electric double layer, and electronic device using the same
WO2015008674A1 (en) * 2013-07-18 2015-01-22 住友電気工業株式会社 Composite material for fuel cell, manufacturing method of composite material for fuel cell, and fuel cell
JP2015060643A (en) * 2013-09-17 2015-03-30 住友電気工業株式会社 Fuel battery
WO2018230247A1 (en) 2017-06-15 2018-12-20 住友電気工業株式会社 Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for producing solid electrolyte member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120817A (en) * 1997-10-15 1999-04-30 Matsushita Electric Ind Co Ltd Mixted ion conductor
JP2007066885A (en) * 2005-08-05 2007-03-15 Nissan Motor Co Ltd Proton conductive fuel cell and its manufacturing method and hydrogen sensor and its manufacturing method
JP2009054520A (en) * 2007-08-29 2009-03-12 Toyota Motor Corp Electrode-electrolyte membrane assembly, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120817A (en) * 1997-10-15 1999-04-30 Matsushita Electric Ind Co Ltd Mixted ion conductor
JP2007066885A (en) * 2005-08-05 2007-03-15 Nissan Motor Co Ltd Proton conductive fuel cell and its manufacturing method and hydrogen sensor and its manufacturing method
JP2009054520A (en) * 2007-08-29 2009-03-12 Toyota Motor Corp Electrode-electrolyte membrane assembly, and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012049A (en) * 2013-06-27 2015-01-19 独立行政法人物質・材料研究機構 Variable electric conduction element utilizing all solid electric double layer, and electronic device using the same
WO2015008674A1 (en) * 2013-07-18 2015-01-22 住友電気工業株式会社 Composite material for fuel cell, manufacturing method of composite material for fuel cell, and fuel cell
JP2015022869A (en) * 2013-07-18 2015-02-02 住友電気工業株式会社 Composite material for fuel cell, method of producing composite material for fuel cell, and fuel cell
CN105393393A (en) * 2013-07-18 2016-03-09 住友电气工业株式会社 Composite material for fuel cell, manufacturing method of composite material for fuel cell, and fuel cell
EP3024073A4 (en) * 2013-07-18 2016-07-13 Sumitomo Electric Industries Composite material for fuel cell, manufacturing method of composite material for fuel cell, and fuel cell
JP2015060643A (en) * 2013-09-17 2015-03-30 住友電気工業株式会社 Fuel battery
WO2018230247A1 (en) 2017-06-15 2018-12-20 住友電気工業株式会社 Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for producing solid electrolyte member
KR20200019623A (en) 2017-06-15 2020-02-24 스미토모덴키고교가부시키가이샤 Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump and method for producing solid electrolyte member

Also Published As

Publication number Publication date
JP5598920B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
Fabbri et al. Towards the next generation of solid oxide fuel cells operating below 600 C with chemically stable proton‐conducting electrolytes
Nasani et al. Fabrication and electrochemical performance of a stable, anode supported thin BaCe0. 4Zr0. 4Y0. 2O3-δ electrolyte protonic ceramic fuel cell
Bi et al. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides
Sun et al. Lowering grain boundary resistance of BaZr 0.8 Y 0.2 O 3− δ with LiNO 3 sintering-aid improves proton conductivity for fuel cell operation
US9853295B2 (en) Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell
Liu et al. Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering
CN1672283A (en) Ceramic anodes and method of producing the same
KR20100063667A (en) Solid oxide cell and solid oxide cell stack
Liu et al. Composite ceramic cathode La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ/Sc0. 2Zr0. 8O2− δ towards efficient carbon dioxide electrolysis in zirconia-based high temperature electrolyser
Yang et al. Gluing Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ with Co3O4 as a cathode for proton-conducting solid oxide fuel cells
Xu et al. Oxide composite of La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells
US9666891B2 (en) Gas phase modification of solid oxide fuel cells
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
US20150099061A1 (en) Formation of solid oxide fuel cells
US9660273B2 (en) Liquid phase modification of solid oxide fuel cells
WO2019190729A1 (en) Electrochemical cells comprising three-dimensional (3d) electrodes
JP5598920B2 (en) Method for producing electrolyte dense material for solid oxide fuel cell
Min et al. Characteristics of Ba (Zr0. 1Ce0. 7Y0. 2) O3-δ nano-powders synthesized by different wet-chemical methods for solid oxide fuel cells
Devi et al. Solid oxide fuel cell materials: a review
Song et al. Nanoparticulate ceria–zirconia anode materials for intermediate temperature solid oxide fuel cells using hydrocarbon fuels
Fan* Solid‐State Electrolytes for SOFC
Kwon et al. Fabrication of electrolyte-supported solid oxide fuel cells using a tape casting process
JP5596594B2 (en) FUEL ELECTRODE MATERIAL FOR SOLID OXIDE FUEL CELL, FUEL ELECTRODE, SOLID OXIDE FUEL CELL AND METHOD FOR PRODUCING FUEL ELECTRODE
JPH0567472A (en) Fuel electrode for solid eletrolyte fuel cell
KR102137988B1 (en) symmetrical solid oxide fuel cell having perovskite structure, method of manufacturing the same and symmetrical solid oxide electrolyzer cell having the perovskite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5598920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250