JPH06243872A - Fuel electrode for solid electrolyte type fuel cell - Google Patents

Fuel electrode for solid electrolyte type fuel cell

Info

Publication number
JPH06243872A
JPH06243872A JP5052946A JP5294693A JPH06243872A JP H06243872 A JPH06243872 A JP H06243872A JP 5052946 A JP5052946 A JP 5052946A JP 5294693 A JP5294693 A JP 5294693A JP H06243872 A JPH06243872 A JP H06243872A
Authority
JP
Japan
Prior art keywords
fuel electrode
expansion coefficient
fuel
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052946A
Other languages
Japanese (ja)
Inventor
Ryoichi Okuyama
良一 奥山
Eiichi Nomura
栄一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP5052946A priority Critical patent/JPH06243872A/en
Publication of JPH06243872A publication Critical patent/JPH06243872A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide fuel electrodes for a solid electrolyte type fuel cell which can be prevented from being damaged when the laminated body of each electrode with electrolyte is manufactured. CONSTITUTION:Each fuel electrode is mainly composed of a mixture which comprises both jirconium and additives mixed together where stabilizing agent is added to nickel oxide or cobolt oxide in zirconium, and the heat-wire expansion coefficient of the additives is smaller than zirconium. By this constitution, the mixing of the additives smaller in a heat-wire expansion coefficient than zirconium to which stabilizing agent is added, enables the heat-wire expansion coefficient of each fuel electrode compact to be approximated to that of an electrolyte compact, so that a composite compact consisting of the fuel electrode compact, and of the electrolyte compact can thereby be prevented from being damaged at the time of sintering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
用燃料極に関するもので、さらに詳しく言えば、導電率
が高く、電解質との積層体の作製時における破損が防止
できる固体電解質型燃料電池用燃料極に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode for a solid oxide fuel cell, and more specifically, a solid electrolyte fuel having a high conductivity and capable of preventing breakage during the production of a laminate with an electrolyte. The present invention relates to a fuel electrode for a battery.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、作動温度が約
1000℃であるため、高温の排熱を利用することがで
きるといった点やエネルギーの変換効率が高いといった
点で精力的な研究開発が進められている。
2. Description of the Related Art Since solid oxide fuel cells have an operating temperature of about 1000 ° C., they have been vigorously researched and developed because they can use high temperature exhaust heat and have high energy conversion efficiency. It is being advanced.

【0003】このような固体電解質型燃料電池の構造と
しては、円筒単素子形やモノリシック形などが知られて
いるが、電池を構成する空気極、電解質、燃料極の材料
としてはほとんど同じものが用いられている。
As a structure of such a solid oxide fuel cell, a cylindrical single element type or a monolithic type is known, but almost the same materials are used for the air electrode, the electrolyte and the fuel electrode constituting the cell. It is used.

【0004】すなわち、空気極としては酸化カルシウム
または酸化ストロンチウムを添加したLaMnO3 など
の複合酸化物が、電解質としては安定化剤としてのイッ
トリアを添加したジルコニア(以下YSZという)が、
燃料極としては酸化ニッケルと前記YSZとの混合物が
用いられている。
That is, a complex oxide such as LaMnO 3 added with calcium oxide or strontium oxide is used as an air electrode, and zirconia (hereinafter referred to as YSZ) added with yttria as a stabilizer is used as an electrolyte.
A mixture of nickel oxide and YSZ is used as the fuel electrode.

【0005】上記した材料からなる固体電解質型燃料電
池の燃料極に約1000℃の作動温度に昇温した燃料と
しての水素や一酸化炭素を供給すると、酸化ニッケルが
還元されて抵抗の小さいNi−YSZサーメットとなっ
て負極としての作用をし、同温度に昇温した酸素や空気
を空気極に供給すると、空気極が正極の作用をして電池
として作動する。
When hydrogen or carbon monoxide as a fuel heated to an operating temperature of about 1000 ° C. is supplied to the fuel electrode of a solid oxide fuel cell made of the above-mentioned materials, nickel oxide is reduced and Ni− having a small resistance is supplied. The YSZ cermet acts as a negative electrode, and when oxygen or air heated to the same temperature is supplied to the air electrode, the air electrode acts as a positive electrode and operates as a battery.

【0006】このような固体電解質型燃料電池の燃料極
の形成方法としては、特開昭61−225778号公報
に記載されたような、ニッケルをYSZからなる電解質
上に焼結させ、その上をEVD法(電気化学蒸着法)に
よって前記YSZをコーティングする方法、“J.A
m.Ceram.”,69(8)628−33(198
6)に記載されたような、酸化ニッケルとYSZとを混
合したスラリーをテープキャスト法によって燃料極成形
体テープとし、同様に作製した空気極成形体テープとと
もに電解質成形体テープの両面に焼成する方法、「電気
化学」59(4)320−324に記載されたような、
酸化ニッケルとYSZとを混合したスラリーをYSZか
らなる電解質上に塗布して焼結させる方法が知られ、い
ずれも1000℃〜1500℃の空気中で焼成される。
As a method of forming the fuel electrode of such a solid oxide fuel cell, nickel as described in JP-A-61-225778 is sintered on an electrolyte made of YSZ, and then the resultant is formed. A method of coating the YSZ by the EVD method (electrochemical vapor deposition method), "JA.
m. Ceram. , 69 (8) 628-33 (198
A method in which a slurry obtained by mixing nickel oxide and YSZ as described in 6) is used as a fuel electrode molded body tape by a tape casting method, and both surfaces of the electrolyte molded body tape are fired together with the air electrode molded body tape prepared in the same manner. , "Electrochemistry" 59 (4) 320-324,
A method is known in which a slurry in which nickel oxide and YSZ are mixed is applied onto an electrolyte made of YSZ and sintered, and both are fired in air at 1000 ° C to 1500 ° C.

【0007】上記のようにして得た電解質と燃料極との
積層体は、酸化ニッケルの線熱膨張率が15×10-6
-1〜16×10-6-1であるのに対し、YSZの線熱膨
張率が10×10-6-1〜11×10-6-1であるた
め、燃料極中の酸化ニッケルとYSZとの重量比を調整
して燃料極の線熱膨張率を電解質の線熱膨張率に近似さ
せ、焼成時の応力によって積層体が破損しないように設
計されている。
The laminated body of the electrolyte and the fuel electrode obtained as described above has a coefficient of linear thermal expansion of nickel oxide of 15 × 10 −6 K.
−1 to 16 × 10 −6 K −1 , whereas YSZ has a linear thermal expansion coefficient of 10 × 10 −6 K −1 to 11 × 10 −6 K −1 , and therefore oxidation in the fuel electrode It is designed so that the linear thermal expansion coefficient of the fuel electrode is approximated to the linear thermal expansion coefficient of the electrolyte by adjusting the weight ratio of nickel and YSZ so that the laminate is not damaged by the stress during firing.

【0008】すなわち、燃料極中の酸化ニッケルの含有
量を減少させればよいことになる。
That is, it is sufficient to reduce the content of nickel oxide in the fuel electrode.

【0009】一方、このような固体電解質型燃料電池に
用いる燃料極は、その作動温度下で一定値以上の導電率
を維持するように設計されている。
On the other hand, the fuel electrode used in such a solid oxide fuel cell is designed so as to maintain a conductivity of a certain value or more under its operating temperature.

【0010】すなわち、燃料極の導電率を高めるために
は、燃料極中の酸化ニッケルの含有量を増加させればよ
いことになる。
That is, in order to increase the conductivity of the fuel electrode, the content of nickel oxide in the fuel electrode should be increased.

【0011】[0011]

【発明が解決しようとする課題】上記した従来の固体電
解質型燃料電池用燃料極は、その成形体を電解質成形体
上に積層して焼成する時の燃料極の線熱膨張率を電解質
の線熱膨張率に近似させるという課題と、焼成して得ら
れた燃料極の導電率を一定値以上にするという課題とを
相反する手段によって解決する必要があるため、設計が
複雑になるという問題があった。
In the above-mentioned conventional fuel electrode for a solid oxide fuel cell, the linear thermal expansion coefficient of the fuel electrode when the molded body is laminated on the electrolytic molded body and fired is determined by Since it is necessary to solve the problem of approximating the coefficient of thermal expansion and the problem of increasing the conductivity of the fuel electrode obtained by firing to a certain value or more by contradictory means, there is a problem that the design becomes complicated. there were.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、本発明の固体電解質型燃料電池用燃料極は、酸化ニ
ッケルまたは酸化コバルトに安定化剤を添加したジルコ
ニアとこのジルコニアより線熱膨張率が小さい添加物と
を混合してなる混合物を主体として構成されることを特
徴とするものである。
In order to solve the above problems, a fuel electrode for a solid oxide fuel cell according to the present invention comprises a zirconia containing a stabilizer added to nickel oxide or cobalt oxide, and a coefficient of linear thermal expansion from the zirconia. It is characterized in that it is mainly composed of a mixture obtained by mixing an additive having a small value.

【0013】[0013]

【作 用】従って、本発明は、酸化ニッケルまたは酸化
コバルトに安定化剤を添加したジルコニアとこのジルコ
ニアより線熱膨張率が小さい添加物とを混合しているの
で、前記酸化ニッケルまたは酸化コバルトの含有量を減
少させることなく、電解質成形体上に燃料極成形体を積
層して焼成する際の燃料極の線熱膨張率を電解質の線熱
膨張率に近似させることができる。
[Operation] Therefore, according to the present invention, since zirconia in which a stabilizer is added to nickel oxide or cobalt oxide and an additive having a smaller linear thermal expansion coefficient than this zirconia are mixed, It is possible to approximate the linear thermal expansion coefficient of the fuel electrode to the linear thermal expansion coefficient of the electrolyte when the fuel electrode molded body is laminated and fired on the electrolyte molded body without reducing the content.

【0014】[0014]

【実施例】実施例の説明に先立ち、比表面積が0.23
2 /gの酸化ニッケル60体積%、安定化剤としての
イットリアを3モル%添加した比表面積が14.3m2
/gのYSZ10体積%、添加物としてのアルミナ30
体積%を混合してなる混合物を分散剤、消泡剤、バイン
ダーとともに所定量の水に混合して得たスラリーを、石
膏型に流し込んで直径が4mm、長さが15mmの燃料極成
形体とした後、1450℃の温度下で3時間焼成して得
た燃料極A、前記酸化ニッケル50体積%、前記YSZ
12体積%、前記アルミナ38体積%を混合してなる混
合物を同様のスラリーにし、石膏型に流し込んで同様の
燃料極成形体とし、同様に焼成して得た燃料極B、前記
燃料極Aにおけるアルミナを含有させずにすべてYSZ
とした燃料極C、前記燃料極Bにおけるアルミナを含有
させずにすべてYSZとした燃料極Dについて導電率を
測定し、その結果を表1に示す。
EXAMPLES Prior to the description of the examples, the specific surface area was 0.23.
60% by volume of nickel oxide of m 2 / g and 3 mol% of yttria as a stabilizer were added to give a specific surface area of 14.3 m 2.
/ G YSZ 10% by volume, alumina 30 as additive
A slurry obtained by mixing a mixture prepared by mixing volume% with a predetermined amount of water together with a dispersant, a defoaming agent, and a binder is poured into a plaster mold to form a fuel electrode compact with a diameter of 4 mm and a length of 15 mm. Then, the fuel electrode A obtained by firing at a temperature of 1450 ° C. for 3 hours, the nickel oxide 50% by volume, the YSZ
A mixture of 12% by volume and 38% by volume of the above-mentioned alumina was made into the same slurry and poured into a gypsum mold to obtain the same fuel electrode compact, and similarly fired to obtain the fuel electrode B and the fuel electrode A. All without YSZ
The electric conductivity of the fuel electrode C and the fuel electrode D of YSZ which did not contain alumina in the fuel electrode B were measured and the results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から、燃料極Aと燃料極Cとはほぼ同
程度の導電率であり、燃料極Bと燃料極Dとはほぼ同程
度の導電率であることがわかる。
From Table 1, it can be seen that the fuel electrode A and the fuel electrode C have almost the same electric conductivity, and the fuel electrode B and the fuel electrode D have almost the same electric conductivity.

【0017】また、上記した燃料極A,B,C,Dにつ
いて、200℃〜900℃の空気中における線熱膨張率
を測定し、その結果を表2に示す。
Further, the coefficient of linear thermal expansion in air at 200 ° C. to 900 ° C. was measured for the above fuel electrodes A, B, C and D, and the results are shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】表2から、燃料極Aは燃料極Cに対して、
燃料極Bは燃料極Dに対してそれぞれ線熱膨張率を0.
5×10-6-1程度小さくできることがわかる。また、
この線熱膨張率の差は、燃料極A,Cにおける添加物と
してのアルミナの量を増加させると大きくなり、アルミ
ナの量を減少させると小さくなることもわかる。
From Table 2, the fuel electrode A is
The fuel electrode B has a linear thermal expansion coefficient of 0.
It can be seen that it can be reduced by about 5 × 10 -6 K -1 . Also,
It can also be seen that the difference in the coefficient of linear thermal expansion increases when the amount of alumina as an additive in the fuel electrodes A and C increases, and decreases when the amount of alumina decreases.

【0020】次に、安定化剤としてのイットリアを8モ
ル%添加した比表面積が18.8m2 /gのYSZを分
散剤、消泡剤、バインダーとともに所定量の水に混合し
て得たスラリーと、上記した燃料極A,B,C,Dを作
製したスラリーとを連続して石膏型に流し込んで内径が
12mm、長さが40mmの電解質−燃料極複合成形体を5
本ずつ作製し、1450℃の温度下で3時間焼成して得
た複合体A,B,C,Dの破損状況を調査し、その結果
を表3に示す。
Next, a slurry obtained by mixing YSZ having a specific surface area of 18.8 m 2 / g containing 8 mol% of yttria as a stabilizer together with a dispersant, a defoaming agent and a binder in a predetermined amount of water. And the slurry prepared from the above fuel electrodes A, B, C and D are continuously poured into a gypsum mold to form an electrolyte-fuel electrode composite molded body having an inner diameter of 12 mm and a length of 40 mm.
The damage state of composites A, B, C, and D obtained by producing each of them and firing at a temperature of 1450 ° C. for 3 hours was investigated, and the results are shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】表3から、複合体Aは複合体Cに対して、
複合体Bは複合体Dに対して破損数が少なくなることが
わかる。このことは、複合体A,Bは添加物としてのア
ルミナを添加したことにより、燃料極の線熱膨張率を電
解質の線熱膨張率に近似させることができたことを意味
する。
From Table 3, complex A is
It can be seen that the composite B has a smaller number of damages than the composite D. This means that the linear thermal expansion coefficient of the fuel electrode could be approximated to the linear thermal expansion coefficient of the electrolyte by adding alumina as an additive to the composites A and B.

【0023】上記実施例では、添加物としてのアルミナ
は30体積%、38体積%としたが、酸化ニッケルの含
有量とYSZの含有量に応じて3〜50体積%の範囲で
調整することができる。
Although alumina as an additive is 30% by volume and 38% by volume in the above-mentioned examples, it can be adjusted within a range of 3 to 50% by volume depending on the content of nickel oxide and the content of YSZ. it can.

【0024】また、前記添加物としては、アルミナ以外
にムライト、スピネル、炭化珪素、炭化チタン、炭化硼
素、珪酸ジルコニウム、アルミン酸カルシウムまたはジ
ルコン酸カルシウムを用いることができる。
Besides the alumina, mullite, spinel, silicon carbide, titanium carbide, boron carbide, zirconium silicate, calcium aluminate or calcium zirconate can be used as the additive.

【0025】また、前記燃料極は酸化ニッケルに代えて
酸化コバルトを用いることもできるが、いずれも導電率
の点から少なくとも50体積%程度含有させる必要があ
る。
Further, cobalt oxide may be used in the fuel electrode instead of nickel oxide, but it is necessary to contain at least about 50% by volume from the viewpoint of conductivity.

【0026】[0026]

【発明の効果】上記した如く、本発明の固体電解質型燃
料電池用燃料極は、導電率を低下させることなく、燃料
極成形体と電解質成形体との複合成形体の焼成時の破損
を、防止することができる。
As described above, the fuel electrode for a solid oxide fuel cell of the present invention can prevent damage during firing of a composite molded body of a fuel electrode molded body and an electrolyte molded body without lowering the conductivity. Can be prevented.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化ニッケルまたは酸化コバルトに安定
化剤を添加したジルコニアとこのジルコニアより線熱膨
張率が小さい添加物とを混合してなる混合物を主体とし
て構成されることを特徴とする固体電解質型燃料電池用
燃料極。
1. A solid electrolyte mainly composed of a mixture of zirconia containing a stabilizer added to nickel oxide or cobalt oxide, and an additive having a linear thermal expansion coefficient smaller than that of zirconia. Type fuel cell fuel electrode.
【請求項2】 安定化剤を添加したジルコニアより線熱
膨張率が小さい添加物は、アルミナ、ムライト、スピネ
ル、炭化珪素、炭化チタン、炭化硼素、珪酸ジルコニウ
ム、アルミン酸カルシウムまたはジルコン酸カルシウム
であることを特徴とする請求項第1項記載の固体電解質
型燃料電池用燃料極。
2. The additive having a smaller linear thermal expansion coefficient than zirconia to which a stabilizer is added is alumina, mullite, spinel, silicon carbide, titanium carbide, boron carbide, zirconium silicate, calcium aluminate or calcium zirconate. The fuel electrode for a solid oxide fuel cell according to claim 1, wherein
【請求項3】 安定化剤を添加したジルコニアより線熱
膨張率が小さい添加物の添加量は、3〜50体積%であ
ることを特徴とする請求項第1項記載の固体電解質型燃
料電池用燃料極。
3. The solid oxide fuel cell according to claim 1, wherein the amount of the additive having a linear thermal expansion coefficient smaller than that of zirconia to which the stabilizer is added is 3 to 50% by volume. Fuel electrode.
JP5052946A 1993-02-17 1993-02-17 Fuel electrode for solid electrolyte type fuel cell Pending JPH06243872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052946A JPH06243872A (en) 1993-02-17 1993-02-17 Fuel electrode for solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052946A JPH06243872A (en) 1993-02-17 1993-02-17 Fuel electrode for solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH06243872A true JPH06243872A (en) 1994-09-02

Family

ID=12929046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052946A Pending JPH06243872A (en) 1993-02-17 1993-02-17 Fuel electrode for solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH06243872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179916A (en) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology Ceramic electrode
JP2011198758A (en) * 2010-02-26 2011-10-06 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode material for solid oxide fuel cell, fuel electrode, solid oxide fuel cell, and manufacturing method of fuel electrode material
WO2012157748A1 (en) * 2011-05-18 2012-11-22 Toto株式会社 Solid oxide type fuel battery cell and method for fabricating solid oxide type fuel battery cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179916A (en) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology Ceramic electrode
JP2011198758A (en) * 2010-02-26 2011-10-06 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode material for solid oxide fuel cell, fuel electrode, solid oxide fuel cell, and manufacturing method of fuel electrode material
WO2012157748A1 (en) * 2011-05-18 2012-11-22 Toto株式会社 Solid oxide type fuel battery cell and method for fabricating solid oxide type fuel battery cell
JP5858249B2 (en) * 2011-05-18 2016-02-10 Toto株式会社 Solid oxide fuel cell and method for producing solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US4749632A (en) Sintering aid for lanthanum chromite refractories
JP5405591B2 (en) Co-doped YSZ electrolyte for solid oxide fuel cell stack
EP0584551A1 (en) Solid oxide fuel cell and fuel electrode therefor
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
JP3260988B2 (en) Method for producing solid electrolyte
US5672437A (en) Solid electrolyte for a fuel cell
JP3631923B2 (en) Substrate tube for fuel cell and its material
KR100660218B1 (en) Fabrication method for anode of solid oxide fuel cell
JP2003208902A (en) Solid electrolyte-type fuel cell
JP3233807B2 (en) Substrate material for solid oxide fuel cells
JPH06243872A (en) Fuel electrode for solid electrolyte type fuel cell
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP2002053374A (en) Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
JP3392995B2 (en) Method for manufacturing solid oxide fuel cell
JP3254456B2 (en) Method for manufacturing solid oxide fuel cell
EP1071150B1 (en) Base tube for fuel cell and material for base tube
JPH09147876A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
JP2004067489A (en) Zirconia sintered compact
JPH076774A (en) Scandium stabilized zirconia group solid electrolyte fuel cell
JP2936331B2 (en) Support tube for solid electrolyte fuel cell