JPH07126061A - Magnesia-based sintered material and production thereof - Google Patents

Magnesia-based sintered material and production thereof

Info

Publication number
JPH07126061A
JPH07126061A JP5225580A JP22558093A JPH07126061A JP H07126061 A JPH07126061 A JP H07126061A JP 5225580 A JP5225580 A JP 5225580A JP 22558093 A JP22558093 A JP 22558093A JP H07126061 A JPH07126061 A JP H07126061A
Authority
JP
Japan
Prior art keywords
average particle
magnesia
powder
thermal expansion
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5225580A
Other languages
Japanese (ja)
Inventor
Kozo Hirozawa
耕造 広沢
Yasuhiko Toda
靖彦 戸田
Osamu Asagami
修 浅上
Hiroyuki Kawamura
浩幸 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Original Assignee
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUNOSHIMA KAGAKU KOGYO KK, Konoshima Chemical Co Ltd filed Critical KOUNOSHIMA KAGAKU KOGYO KK
Priority to JP5225580A priority Critical patent/JPH07126061A/en
Publication of JPH07126061A publication Critical patent/JPH07126061A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To control a coefficient of thermal expansion a magnesia-based sintered material comprising MgO particles and spinel particles by blending MgO powder having a specific purity and average particle diameter with spinel powder, molding, sintering, specifying a relative density and a content of impurities. CONSTITUTION:MgO powder having >=99.9% purity and <=0.5mum average particle diameter is mixed with spinel powder having >=99.9% purity and <=1mum average particle diameter in an solvent such as an alcohol containing a deflocculating agent by a ball mill, etc. The formed slurry is filtered and dried to give mixed power, which is molded. Then the molded article is sintered in an oxidizing atmosphere at 1,400-1,900 deg.C to provide a MgO-based sintered material comprising <=about 90mol%, especially 20-80mol% MgO particles having <=50mum average particle diameter and 13.5X10<-6> deg.C<-1> coefficient of thermal expansion and spinel particle having >=50mum average particle diameter and 9.0X10<-6> deg.C<-1> coefficient of thermal expansion, having >=98% relative density, <=1% content of impurities and specific coefficient of thermal expansion. The similar sintered material is obtained even by using Al2O3 powder instead of the spinel powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池用シール材と
して好適に用いられるマグネシア系焼結体及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesia-based sintered body suitable for use as a sealing material for fuel cells and a method for producing the same.

【0002】[0002]

【従来技術及びその問題点】近年、メタノール、ホルム
アルデヒド、ギ酸などを電気化学的に酸化することによ
る燃料電池の開発が行われている。燃料電池の基本構造
は、一対の金属電極間に電解質を入れた絶縁シール材を
設けた三層構造である。この燃料電池は酸化還元反応に
よる発熱で高温になるため、電極金属とシール材との熱
膨張率の違いによって、絶縁不良や液洩れが起こるとい
う問題があった。一方、セラミックス材料は、耐熱性、
耐食性、絶縁性に優れており、燃料電池のシール材とし
て適しているが、セラミックス材料の熱膨張係数と電極
金属の熱膨張係数を一致させることが困難であった。そ
こで、シール材の熱膨張係数を電極金属のそれと同じに
調整することができる新規なセラミックス材料の開発が
望まれている。
2. Description of the Related Art In recent years, fuel cells have been developed by electrochemically oxidizing methanol, formaldehyde, formic acid and the like. The basic structure of the fuel cell is a three-layer structure in which an insulating seal material containing an electrolyte is provided between a pair of metal electrodes. Since this fuel cell is heated to a high temperature due to the heat generated by the redox reaction, there is a problem that insulation failure and liquid leakage occur due to the difference in the coefficient of thermal expansion between the electrode metal and the sealing material. On the other hand, ceramic materials are
It has excellent corrosion resistance and insulation properties and is suitable as a sealing material for fuel cells, but it was difficult to match the thermal expansion coefficient of the ceramic material with that of the electrode metal. Therefore, it is desired to develop a new ceramic material that can adjust the thermal expansion coefficient of the sealing material to be the same as that of the electrode metal.

【0003】[0003]

【発明の目的】本発明の目的は、熱膨張係数を調整する
ことができる新規なマグネシア系焼結体及びその製造方
法を提供するものである。
It is an object of the present invention to provide a novel magnesia-based sintered body whose thermal expansion coefficient can be adjusted and a method for producing the same.

【0004】[0004]

【問題点を解決するための手段】本発明者等は、マグネ
シア(熱膨張係数13.5×10-6-1)とスピネル
(熱膨張係数9.0×10-6-1)の熱膨張係数の違い
に着目し、マグネシアとスピネルを複合した焼結体では
両者の割合に対応して熱膨張係数が変わることを見い出
し、本発明に到達した。即ち、本発明は、平均粒径50
μm以下のマグネシア粒子と平均粒径50μm以下のス
ピネル粒子からなり、相対密度98%以上、不純物含有
量1%以下であることを特徴とするマグネシア系焼結体
に関するものである。
[Means for Solving the Problems] The present inventors have found that magnesia (coefficient of thermal expansion 13.5 × 10 -6 ° C -1 ) and spinel (coefficient of thermal expansion 9.0 × 10 -6 ° C -1 ) are used. Focusing on the difference in the coefficient of thermal expansion, the inventors have found that the coefficient of thermal expansion changes in a sintered body composed of magnesia and spinel, depending on the ratio of the two, and reached the present invention. That is, the present invention has an average particle size of 50.
The present invention relates to a magnesia-based sintered body comprising magnesia particles having a particle size of not more than μm and spinel particles having an average particle size of not more than 50 μm and having a relative density of 98% or more and an impurity content of 1% or less.

【0005】本発明のマグネシア系焼結体を構成するマ
グネシア粒子の平均粒径は50μm以下、好ましくは2
0μm以下であり、スピネル粒子の平均粒径は50μm
以下、好ましくは20μm以下である。マグネシア系焼
結体におけるマグネシアとスピネルの割合は、マグネシ
アが90モル%以下、特に20〜80モル%であること
が好ましい。そして、マグネシアとスピネルの割合を変
えることにより焼結体の熱膨張係数が変わる。したがっ
て、電極金属の熱膨張係数に応じてマグネシアとスピネ
ルの割合を変えることにより、電極金属の熱膨張係数と
マグネシア系焼結体の熱膨張係数を一致させることがで
きる。
The average particle size of the magnesia particles constituting the magnesia-based sintered body of the present invention is 50 μm or less, preferably 2
0 μm or less, and the average particle size of the spinel particles is 50 μm
It is preferably 20 μm or less. The ratio of magnesia and spinel in the magnesia-based sintered body is preferably 90 mol% or less, particularly 20 to 80 mol%. Then, the thermal expansion coefficient of the sintered body changes by changing the ratio of magnesia and spinel. Therefore, by changing the ratio of magnesia and spinel according to the thermal expansion coefficient of the electrode metal, the thermal expansion coefficient of the electrode metal and the thermal expansion coefficient of the magnesia-based sintered body can be matched.

【0006】本発明のマグネシア系焼結体は、純度9
9.9%以上、平均粒径0.5μm以下のマグネシア粉
末と純度99.9%以上、平均粒径1μm以下のスピネ
ル粉末を混合し、成形した後、1400〜1900℃で
焼結することにより製造できる。または、純度99.9
%以上、平均粒径0.5μm以下のマグネシア粉末と純
度99.9%以上、平均粒径0.5μm以下のアルミナ
粉末をMgO/Al23モル比>1となるような割合で
混合し、成形した後、1400〜1900℃で焼結する
ことにより製造できる。この場合には、焼結時にマグネ
シアとアルミナが反応してスピネルが生成し、残部のマ
グネシアとの複合焼結体となる。なお、本発明における
「平均粒径」はBET比表面積から算出した値である。
The magnesia-based sintered body of the present invention has a purity of 9
By mixing 9.9% or more of a magnesia powder having an average particle size of 0.5 μm or less and spinel powder of a purity of 99.9% or more and an average particle size of 1 μm or less, and molding, and sintering at 1400 to 1900 ° C. Can be manufactured. Alternatively, purity 99.9
%, And a magnesia powder having an average particle size of 0.5 μm or less and alumina powder having a purity of 99.9% or more and an average particle size of 0.5 μm or less are mixed in a ratio such that the MgO / Al 2 O 3 molar ratio> 1. After molding, it can be manufactured by sintering at 1400 to 1900 ° C. In this case, during sintering, magnesia and alumina react with each other to form spinel, and a composite sintered body with the rest of magnesia is formed. The “average particle size” in the present invention is a value calculated from the BET specific surface area.

【0007】本発明のマグネシア系焼結体の製造に用い
るマグネシア粉末としては、BET比表面積が5〜17
0m2/g(平均粒径0.01〜0.2μm)、純度9
9.9%以上の高純度超微粉単結晶酸化マグネシウムが
好ましい。このような高純度超微粉単結晶酸化マグネシ
ウムは、特公平2−289号公報に開示された方法、即
ちマグネシウム蒸気と酸素含有ガスを乱流拡散状態で酸
化させる方法により合成することができる。BET比表
面積が170m2/gを超えた酸化マグネシウムを製造す
ることも可能であり、本発明にも有用であるが、製造コ
ストがきわめて高くなること、通常の粉末の取扱いが困
難になることなどから現状では実用性が低い。また、比
表面積が5m2/g未満となると、粉末の焼結活性が低下
し、密度の高い焼結体が得られないので好ましくない。
The magnesia powder used for producing the magnesia-based sintered body of the present invention has a BET specific surface area of 5 to 17
0 m 2 / g (average particle size 0.01 to 0.2 μm), purity 9
High-purity ultrafine single crystal magnesium oxide of 9.9% or more is preferable. Such high-purity ultrafine single crystal magnesium oxide can be synthesized by the method disclosed in Japanese Examined Patent Publication No. 2-289, that is, a method of oxidizing magnesium vapor and an oxygen-containing gas in a turbulent diffusion state. It is possible to produce magnesium oxide having a BET specific surface area of more than 170 m 2 / g, and it is also useful in the present invention, but the production cost is extremely high, and it is difficult to handle ordinary powders. Therefore, the practicality is low at present. On the other hand, if the specific surface area is less than 5 m 2 / g, the sintering activity of the powder is lowered, and a sintered body having a high density cannot be obtained, which is not preferable.

【0008】また、スピネル粉末としては、平均粒径1
μm以下、純度99.9%以上のものが好ましく、アル
ミナ粉末としては、平均粒径0.5μm以下、純度9
9.9%以上のものが好ましい。マグネシア粉末に対す
るスピネル粉末の混合割合は、両者の合計量に対してマ
グネシアが90モル%以下、特に20〜80モル%であ
ることが好ましい。また、マグネシア粉末に対するアル
ミナ粉末の混合割合は、MgO/Al23モル比>1と
なるようにな割合で混合する。特に、得られる複合焼結
体における割合が、マグネシア90モル%以下、特に2
0〜80モル%となるような割合で混合することが好ま
しい。
The spinel powder has an average particle size of 1
Alumina powder having an average particle size of 0.5 μm or less and a purity of 9% or less is preferable.
It is preferably 9.9% or more. The mixing ratio of the spinel powder to the magnesia powder is preferably 90 mol% or less, particularly 20 to 80 mol% of magnesia with respect to the total amount of both. The mixing ratio of the alumina powder to the magnesia powder is such that the MgO / Al 2 O 3 molar ratio> 1. In particular, the ratio in the obtained composite sintered body is 90 mol% or less of magnesia, especially 2
It is preferable to mix them in such a ratio that the amount becomes 0 to 80 mol%.

【0009】マグネシア粉末とスピネル粉末またはアル
ミナ粉末との混合方法に付いては特に制限はなく、それ
自体公知の方法、例えば両者を乾式混合する方法、両者
をエタノールなどの有機溶媒中で湿式混合する方法を採
用することができる。得られた混合粉末から成形体を調
製する方法についても特に制限はなく、ラバープレス成
形、鋳込み成形、射出成形、押出成形などを適宜採用す
ることができる。次に、成形体を酸化性雰囲気下、例え
ば空気中で1400〜1900℃で焼結することによ
り、本発明のマグネシア系焼結体が得られる。
The method of mixing the magnesia powder and the spinel powder or the alumina powder is not particularly limited, and a method known per se, for example, a method of dry-mixing them, or a method of wet-mixing them in an organic solvent such as ethanol. The method can be adopted. The method for preparing a molded body from the obtained mixed powder is not particularly limited, and rubber press molding, cast molding, injection molding, extrusion molding and the like can be appropriately adopted. Next, the molded body is sintered in an oxidizing atmosphere, for example, in air at 1400 to 1900 ° C to obtain the magnesia-based sintered body of the present invention.

【0010】[0010]

【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。以下において、密度はアルキメデス法によ
って測定し、理論密度に対する百分率で示した。また、
熱膨張係数は、3×3×20mmのサンプルを室温から
1000℃まで昇温速度5℃/分、圧縮荷重10gで測
定した。 実施例1〜2及び比較例1〜2 純度99.9%以上、平均粒径0.2μmのマグネシア
粉末(宇部興産(株)製:2000A)と純度99.9
%以上、平均粒径0.8μmのスピネル粉末(住友化学
(株)製)を表1に示す割合で配合した粉末に、解膠剤
及び濡れ剤を添加したアルコールを加え、ZrO2ボー
ルを媒体としてボールミルで30時間解膠した。このス
ラリーをろ過した後、鋳込み成形用の石膏型に流し込み
成形体を作製した。この成形体を5日間大気中で養生乾
燥後、ケラマックス大型電気炉で大気中、昇温速度0.
7℃/分で1650℃まで昇温し8時間保持した。得ら
れた成形体及び焼結体の相対密度を測定した結果を表1
に示す。また、熱膨張係数を測定した結果を図1に示
す。また、実施例1及び比較例1で得られた焼結体を3
×4mmのテストピースに加工し、JIS R1601
に従い、3点曲げ試験を行い曲げ強度を測定したとこ
ろ、実施例1は43.1kg/mm2、比較例1は3
2.0kg/mm2であった。
EXAMPLES The present invention will be described more concretely with reference to the following examples. In the following, the density was measured by the Archimedes method and expressed as a percentage of the theoretical density. Also,
The thermal expansion coefficient was measured for a sample of 3 × 3 × 20 mm from room temperature to 1000 ° C. at a heating rate of 5 ° C./min and a compression load of 10 g. Examples 1-2 and Comparative Examples 1-2 Purity 99.9% or more, magnesia powder having an average particle diameter of 0.2 μm (Ube Industries, Ltd .: 2000A) and purity 99.9.
%, Spinel powder having an average particle diameter of 0.8 μm (manufactured by Sumitomo Chemical Co., Ltd.) was added at a ratio shown in Table 1, alcohol containing a peptizer and a wetting agent was added, and a ZrO 2 ball was used as a medium. As a result, it was deflocculated with a ball mill for 30 hours. After filtering this slurry, it was cast into a plaster mold for casting and a casting was produced. The molded body was cured and dried in the atmosphere for 5 days, and then heated in the atmosphere in a large Keramax electric furnace at a heating rate of 0.
The temperature was raised to 1650 ° C. at 7 ° C./minute and kept for 8 hours. The results of measuring the relative densities of the obtained molded body and sintered body are shown in Table 1.
Shown in. Moreover, the result of having measured the thermal expansion coefficient is shown in FIG. In addition, the sintered body obtained in Example 1 and Comparative Example 1
Processed into a test piece of × 4mm, JIS R1601
According to the above, a three-point bending test was performed to measure the bending strength. In Example 1, 43.1 kg / mm 2
It was 2.0 kg / mm 2 .

【0011】実施例3〜5 スピネル粉末に代えて、純度99.9%以上、平均粒径
0.4μmのα−アルミナ粉末(住友化学(株)製:A
KP−30)を用いたほかは、実施例1と同様にして焼
結体を作製した。得られた成形体及び焼結体の相対密度
を測定した結果を表1に示す。また、熱膨張係数を測定
した結果を図1に示す。また、実施例3で得られた焼結
体の曲げ強度を測定したところ41.8kg/mm2
あった。
Examples 3 to 5 Instead of spinel powder, α-alumina powder having a purity of 99.9% or more and an average particle size of 0.4 μm (Sumitomo Chemical Co., Ltd .: A
A sintered body was produced in the same manner as in Example 1 except that KP-30) was used. The results of measuring the relative densities of the obtained molded body and sintered body are shown in Table 1. Moreover, the result of having measured the thermal expansion coefficient is shown in FIG. The bending strength of the sintered body obtained in Example 3 was measured and found to be 41.8 kg / mm 2 .

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明によれば、熱膨張係数を調整する
ことができ、燃料電池用シール材として好適に用いられ
るマグネシア系焼結体が得られる。
According to the present invention, it is possible to obtain a magnesia-based sintered body which can adjust the thermal expansion coefficient and is suitably used as a sealing material for fuel cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本願発明の実施例で得られたマグネ
シア系焼結体の組成と熱膨張係数との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the composition and the coefficient of thermal expansion of a magnesia-based sintered body obtained in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河村 浩幸 山口県宇部市大字小串1978番地の5 宇部 興産株式会社無機材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Kawamura 5 1978, Kozugushi, Ube City, Yamaguchi Prefecture Ube Kosan Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径50μm以下のマグネシア粒子
と平均粒径50μm以下のスピネル粒子からなり、相対
密度98%以上、不純物含有量1%以下であることを特
徴とするマグネシア系焼結体。
1. A magnesia-based sintered body comprising magnesia particles having an average particle size of 50 μm or less and spinel particles having an average particle size of 50 μm or less, and having a relative density of 98% or more and an impurity content of 1% or less.
【請求項2】 純度99.9%以上、平均粒径0.5μ
m以下のマグネシア粉末と純度99.9%以上、平均粒
径1μm以下のスピネル粉末を混合し、成形した後、1
400〜1900℃で焼結することを特徴とするマグネ
シア系焼結体の製造方法。
2. A purity of 99.9% or more and an average particle size of 0.5 μm.
m and magnesia powder having a purity of 99.9% or more and an average particle size of 1 μm or less are mixed and molded, and then 1
A method for producing a magnesia-based sintered body, which comprises sintering at 400 to 1900 ° C.
【請求項3】 純度99.9%以上、平均粒径0.5μ
m以下のマグネシア粉末と純度99.9%以上、平均粒
径0.5μm以下のアルミナ粉末をMgO/Al23
ル比>1となるような割合で混合し、成形した後、14
00〜1900℃で焼結することを特徴とするマグネシ
ア系焼結体の製造方法。
3. A purity of 99.9% or more and an average particle size of 0.5 μm.
After mixing with magnesia powder of m or less and alumina powder having a purity of 99.9% or more and an average particle size of 0.5 μm or less such that the MgO / Al 2 O 3 molar ratio> 1, 14
A method for producing a magnesia-based sintered body, which comprises sintering at 00 to 1900 ° C.
JP5225580A 1993-09-10 1993-09-10 Magnesia-based sintered material and production thereof Pending JPH07126061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225580A JPH07126061A (en) 1993-09-10 1993-09-10 Magnesia-based sintered material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5225580A JPH07126061A (en) 1993-09-10 1993-09-10 Magnesia-based sintered material and production thereof

Publications (1)

Publication Number Publication Date
JPH07126061A true JPH07126061A (en) 1995-05-16

Family

ID=16831542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225580A Pending JPH07126061A (en) 1993-09-10 1993-09-10 Magnesia-based sintered material and production thereof

Country Status (1)

Country Link
JP (1) JPH07126061A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072569A1 (en) * 1998-01-29 2001-01-31 Schott Glas Process for manufacturing ceramic materials having adjustable coefficient of thermal expansion and their use
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
JP2010524816A (en) * 2007-04-18 2010-07-22 セラムテック アクチエンゲゼルシャフト Ceramic material having composition adjusted to thermal expansion coefficient defined by metal material
WO2011034136A1 (en) * 2009-09-18 2011-03-24 住友電気工業株式会社 Substrate, manufacturing method of substrate, saw device, and device
JP2011066818A (en) * 2009-09-18 2011-03-31 Sumitomo Electric Ind Ltd Substrate, saw device and device
CN102167599A (en) * 2009-12-01 2011-08-31 日本碍子株式会社 Furnace material and producing method thereof
US8614535B2 (en) 2010-09-07 2013-12-24 Sumitomo Electric Industries, Ltd. Substrate, manufacturing method of substrate and saw device
JPWO2016002480A1 (en) * 2014-06-30 2017-04-27 日本碍子株式会社 MgO-based ceramic film, member for semiconductor manufacturing apparatus, and method for manufacturing MgO-based ceramic film
US10072195B2 (en) 2014-03-14 2018-09-11 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072569A1 (en) * 1998-01-29 2001-01-31 Schott Glas Process for manufacturing ceramic materials having adjustable coefficient of thermal expansion and their use
US6274525B1 (en) 1998-01-29 2001-08-14 Schott Glas Process for making a high temperature-resistant ceramic material with an adjustable thermal expansion coefficient and method of use of same
JP2010524816A (en) * 2007-04-18 2010-07-22 セラムテック アクチエンゲゼルシャフト Ceramic material having composition adjusted to thermal expansion coefficient defined by metal material
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
WO2011034136A1 (en) * 2009-09-18 2011-03-24 住友電気工業株式会社 Substrate, manufacturing method of substrate, saw device, and device
JP2011066818A (en) * 2009-09-18 2011-03-31 Sumitomo Electric Ind Ltd Substrate, saw device and device
CN102167599A (en) * 2009-12-01 2011-08-31 日本碍子株式会社 Furnace material and producing method thereof
US8614535B2 (en) 2010-09-07 2013-12-24 Sumitomo Electric Industries, Ltd. Substrate, manufacturing method of substrate and saw device
US10072195B2 (en) 2014-03-14 2018-09-11 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor
JPWO2016002480A1 (en) * 2014-06-30 2017-04-27 日本碍子株式会社 MgO-based ceramic film, member for semiconductor manufacturing apparatus, and method for manufacturing MgO-based ceramic film
US11152195B2 (en) 2014-06-30 2021-10-19 Ngk Insulators, Ltd. MgO-based ceramic film, member for semiconductor manufacturing apparatus, and method for forming MgO-based ceramic film

Similar Documents

Publication Publication Date Title
US4931214A (en) Oxidic bodies with ionic and electronic conductivity
JPS6324951B2 (en)
JPH0244785B2 (en)
JPH07277814A (en) Alumina-based ceramic sintered compact
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JP2617204B2 (en) Method for producing solid electrolyte
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP4334894B2 (en) Method for producing solid electrolyte
JP2007084367A (en) Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact
JPH08119732A (en) Production of solid electrolyte
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP2006248858A (en) Yttria-stabilized zirconia sintered compact and its manufacturing method
JPH0258232B2 (en)
JP2001072465A (en) Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JP3370460B2 (en) Method for producing conductive ceramics
JP3311872B2 (en) Conductive ceramics
JP3091100B2 (en) Method for producing conductive ceramics
JPH05844A (en) Heat resistant conductive sintered body
JP4560328B2 (en) Lanthanum chromite heating element having heating part and terminal part and method for manufacturing the same
JP2003034575A (en) Solid electrolyte element
JPH04338180A (en) Production of porous zirconia substrate
JP2004359534A (en) Zirconia sintered compact
JPH0664969A (en) Solid electrolyte of zirconia