JP2007084367A - Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact - Google Patents

Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact Download PDF

Info

Publication number
JP2007084367A
JP2007084367A JP2005273366A JP2005273366A JP2007084367A JP 2007084367 A JP2007084367 A JP 2007084367A JP 2005273366 A JP2005273366 A JP 2005273366A JP 2005273366 A JP2005273366 A JP 2005273366A JP 2007084367 A JP2007084367 A JP 2007084367A
Authority
JP
Japan
Prior art keywords
magnesium oxide
high thermal
ceramic sintered
conductive ceramic
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005273366A
Other languages
Japanese (ja)
Inventor
Takashi Bando
高志 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005273366A priority Critical patent/JP2007084367A/en
Publication of JP2007084367A publication Critical patent/JP2007084367A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost ceramic sintered compact having high thermal conductivity as a electric insulating material and a method of manufacturing the same. <P>SOLUTION: A green sheet made of slurry obtained by mixing aluminum nitride powder, a sintering aid, a plasticizer and a solvent to magnesium oxid powder is prepared. A formed body is made of the green sheet and is sintered under an inert atmosphere, The manufactured high thermal conductive ceramic sintered compact 3 is configured by dispersing magnesium oxide particles 1 in a matrix phase 2 consisting essentially of the aluminum nitride sintered compact 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、高熱伝導性セラミックス焼結体の製造方法、及び、その製造方法によって製造される高熱伝導性セラミックス焼結体に関するものである。   The present invention relates to a method for producing a high thermal conductive ceramic sintered body and a high thermal conductive ceramic sintered body produced by the production method.

電気絶縁性の材料として、酸化アルミニウムを主成分とする材料を焼結したセラミックスが良く知られている。酸化アルミニウムを主成分とするセラミックスは、化学的な安定性にも優れており、半導体パッケージ等の分野、例えば回路基板用に広範に利用されてきた。   As an electrically insulating material, a ceramic obtained by sintering a material mainly composed of aluminum oxide is well known. Ceramics mainly composed of aluminum oxide have excellent chemical stability and have been widely used in the field of semiconductor packages, for example, circuit boards.

しかし、近年、半導体素子の高集積化や大電力化が進み、これに伴って、酸化アルミニウムを主成分とする従来のセラミックスよりも放熱性の良い電気絶縁材料が要求されるようになった。これに応えて各種の高熱伝導性セラミックス基板が提案され、中でも窒化アルミニウム基板の実用化が進んでいる(特許文献1乃至3)。しかし、窒化アルミニウム基板は、材料価格が高いため、充分に普及しているとはいえないのが現状である。   However, in recent years, with the progress of higher integration and higher power of semiconductor elements, an electrical insulating material having better heat dissipation than conventional ceramics mainly composed of aluminum oxide has been demanded. In response to this, various high thermal conductive ceramic substrates have been proposed, and aluminum nitride substrates have been put to practical use (Patent Documents 1 to 3). However, the current situation is that aluminum nitride substrates are not sufficiently popular due to their high material prices.

なお、熱伝導率の高い絶縁性材料としては酸化ベリリウムも知られているが、酸化ベリリウムの粉末は人体に有害であり、製造時や使用時の安全性に問題が残るため、基板の材料として、広く使用されるに至っていない。   In addition, beryllium oxide is also known as an insulating material with high thermal conductivity, but beryllium oxide powder is harmful to the human body and remains a problem in safety during manufacturing and use. , Has not been widely used.

これに対して、酸化マグネシウムは、無毒で、廃棄時の環境負荷が小さく、しかも安価であるという利点を有する。また、酸化マグネシウムの熱伝導率(約60W/m・K)は、窒化アルミニウムや酸化ベリリウムには及ばないものの、酸化アルミニウムの約2倍という高い数値である。さらに酸化マグネシウムは、酸化アルミニウムや窒化アルミニウムよりも遥かに高い耐熱性(融点:2800℃)を有し、また、酸化アルミニウムの10倍以上の絶縁耐圧を有し、絶縁特性に優れているという利点を有する。   On the other hand, magnesium oxide has the advantages that it is non-toxic, has a low environmental impact during disposal, and is inexpensive. Moreover, although the thermal conductivity (about 60 W / m · K) of magnesium oxide is not as high as that of aluminum nitride or beryllium oxide, it is a high numerical value of about twice that of aluminum oxide. Further, magnesium oxide has a much higher heat resistance (melting point: 2800 ° C.) than aluminum oxide and aluminum nitride, and has an insulation voltage more than 10 times that of aluminum oxide, and has an excellent insulating property. Have

しかし一方で、酸化マグネシウムは、耐湿性に劣るため、大気中に放置すると、時間の経過と共に表面の絶縁特性が劣化するという欠点を有する。そのため、酸化マグネシウムを主体とするセラミックスの用途は、特殊用途のルツボ、焼成用セッター等に限定され、回路基板用途のセラミックスとしての実用化には至っていない。
特開平6−321640号公報 特開平7−149572号公報 特開平7−267742号公報
On the other hand, however, magnesium oxide is inferior in moisture resistance, and therefore, when left in the air, it has a drawback that the insulating properties of the surface deteriorate with time. Therefore, the use of ceramics mainly composed of magnesium oxide is limited to crucibles for special use, setters for firing, etc., and has not been put into practical use as ceramics for circuit board use.
JP-A-6-321640 JP-A-7-149572 JP 7-267742 A

上記背景技術に鑑み、本発明は、酸化マグネシウムの上記欠点を克服し、安価で高熱伝導性を有するセラミックス焼結体及びその製造方法を提供することを、解決すべき課題とする。   In view of the above background art, an object of the present invention is to overcome the above-mentioned drawbacks of magnesium oxide, and to provide a ceramic sintered body that is inexpensive and has high thermal conductivity, and a method for producing the same.

上記課題を解決するために、請求項1に係る発明の高熱伝導性セラミックス焼結体の製造方法は、酸化マグネシウム粉末に窒化アルミニウムの粉末、焼結助剤、可塑剤および溶剤を混合したスラリーからグリーンシートを作製し、そのグリーンシートを成形した後、その成形体を不活性雰囲気下で焼結することを特徴とするものである。   In order to solve the above-described problems, a method for producing a highly thermally conductive ceramic sintered body according to claim 1 is based on a slurry in which magnesium oxide powder is mixed with aluminum nitride powder, sintering aid, plasticizer and solvent. A green sheet is produced, the green sheet is molded, and then the molded body is sintered in an inert atmosphere.

請求項2に係る発明の高熱伝導性セラミックス焼結体の製造方法は、請求項1記載の高熱伝導性セラミックス焼結体の製造方法において、前記酸化マグネシウム粉末の平均粒径が、10μm以上、1000μm以下であることを特徴とするものである。   The method for producing a highly thermally conductive ceramic sintered body according to claim 2 is the method for producing a highly thermally conductive ceramic sintered body according to claim 1, wherein the average particle size of the magnesium oxide powder is 10 μm or more and 1000 μm. It is characterized by the following.

請求項3に係る発明の高熱伝導性セラミックス焼結体の製造方法は、請求項1または2記載の高熱伝導性セラミックス焼結体の製造方法において、前記酸化マグネシウム粉末の質量が前記酸化マグネシウム粉末と前記窒化アルミニウム粉末の合計質量に対して10〜90%であることを特徴とするものである。   The method for producing a highly thermally conductive ceramic sintered body according to claim 3 is the method for producing a highly thermally conductive ceramic sintered body according to claim 1 or 2, wherein the mass of the magnesium oxide powder is the same as that of the magnesium oxide powder. It is 10 to 90% with respect to the total mass of the aluminum nitride powder.

請求項4に係る発明の高熱伝導性セラミックス焼結体の製造方法にあっては、請求項1乃至請求項3のいずれかに記載の高熱伝導性セラミックス焼結体の製造方法において、前記酸化マグネシウム粉末が、疎水化処理を施した酸化マグネシウム粉末であることを特徴とするものである。   In the manufacturing method of the highly heat conductive ceramic sintered compact of the invention concerning Claim 4, in the manufacturing method of the high heat conductive ceramic sintered compact in any one of Claim 1 thru | or 3, the said magnesium oxide The powder is characterized by being a magnesium oxide powder subjected to a hydrophobization treatment.

請求項5に係る発明の高熱伝導性セラミックス焼結体は、窒化アルミニウムを主成分とするマトリックス相中に酸化マグネシウム粒子が分散されてなることを特徴とするものである。   The high thermal conductive ceramic sintered body of the invention according to claim 5 is characterized in that magnesium oxide particles are dispersed in a matrix phase mainly composed of aluminum nitride.

請求項1に係る発明の高熱伝導性セラミックス焼結体の製造方法にあっては、酸化マグネシウム粉末に窒化アルミニウム粉末、焼結助剤、可塑剤および溶剤を混合してなるスラリーからグリーンシートを作製し、そのグリーンシートから成形体を作製し、その成形体を不活性雰囲気下で焼結することを特徴とするので、共に高熱伝導性である酸化マグネシウムと窒化アルミニウムの長所の組合せにより、安価で高熱伝導性を有するセラミックス焼結体を製造し得るという効果を奏する。   In the method for producing a high thermal conductive ceramic sintered body according to claim 1, a green sheet is produced from a slurry obtained by mixing magnesium nitride powder, aluminum nitride powder, sintering aid, plasticizer and solvent. Since the green sheet is produced from a green sheet and the molded body is sintered in an inert atmosphere, the combination of the advantages of magnesium oxide and aluminum nitride, both of which have high thermal conductivity, is inexpensive. The ceramic sintered body having high thermal conductivity can be manufactured.

請求項2に係る発明の高熱伝導性セラミックス焼結体の製造方法にあっては、請求項1記載の高熱伝導性セラミックス焼結体の製造方法において、前記酸化マグネシウム粉末の平均粒径が、10μm以上、1000μm以下であることを特徴とするので、高融点且つ高熱伝導性の酸化マグネシウム粒子が溶失することなく、高熱伝導性の窒化アルミニウム焼結体中に分散される一方、窒化アルミニウム焼結体が連続相たるマトリックス相を形成し、熱伝導経路として機能するため、安価で高品質な高熱伝導性セラミックス焼結体を製造し得るという効果を奏する。   In the method for producing a high thermal conductivity ceramic sintered body according to claim 2, in the method for producing a high thermal conductive ceramic sintered body according to claim 1, the average particle size of the magnesium oxide powder is 10 μm. As described above, since it is 1000 μm or less, the high melting point and high thermal conductivity magnesium oxide particles are dispersed in the high thermal conductivity aluminum nitride sintered body without being melted. Since the body forms a matrix phase which is a continuous phase and functions as a heat conduction path, there is an effect that an inexpensive and high quality high thermal conductive ceramic sintered body can be manufactured.

請求項3に係る発明の高熱伝導性セラミックス焼結体の製造方法にあっては、請求項1または2記載の高熱伝導性セラミックス焼結体の製造方法において、前記酸化マグネシウム粉末の質量が前記酸化マグネシウム粉末と前記窒化アルミニウム粉末の合計質量に対して10〜90%であることを特徴とするので、高融点且つ高熱伝導性の酸化マグネシウム粒子の共存下で、マトリックス相を形成する高熱伝導性の窒化アルミニウム焼結体が連続相となり、熱伝導経路として機能するため、安価で高品質な高熱伝導性セラミックス焼結体を製造し得るという効果を奏する。   In the manufacturing method of the highly heat conductive ceramic sintered compact of the invention which concerns on Claim 3, the mass of the said magnesium oxide powder is the said oxidation in the manufacturing method of the high heat conductive ceramic sintered compact of Claim 1 or 2. It is characterized by being 10 to 90% with respect to the total mass of the magnesium powder and the aluminum nitride powder, so that it has a high thermal conductivity that forms a matrix phase in the presence of magnesium oxide particles having a high melting point and high thermal conductivity. Since the aluminum nitride sintered body becomes a continuous phase and functions as a heat conduction path, there is an effect that an inexpensive and high-quality high-thermal-conductivity ceramic sintered body can be manufactured.

請求項4に係る発明の高熱伝導性セラミックス焼結体の製造方法にあっては、請求項1乃至請求項3のいずれかに記載の高熱伝導性セラミックス焼結体の製造方法において、前記酸化マグネシウム粉末が、疎水化処理を施した酸化マグネシウム粉末であることを特徴とするので、スラリーからグリーンシートを作製し、また、そのグリーンシートを成形する際のハンドリングが容易になるという効果を奏する。   In the manufacturing method of the highly heat conductive ceramic sintered compact of the invention concerning Claim 4, in the manufacturing method of the high heat conductive ceramic sintered compact in any one of Claim 1 thru | or 3, the said magnesium oxide Since the powder is characterized by being a hydrophobized magnesium oxide powder, an effect is obtained that a green sheet is produced from the slurry, and handling at the time of forming the green sheet is facilitated.

請求項5に係る発明の高熱伝導性セラミックス焼結体にあっては、窒化アルミニウムを主成分とするマトリックス相中に酸化マグネシウム粒子が分散されてなることを特徴とするので、高融点且つ高熱伝導性の酸化マグネシウム粒子が高熱伝導性の窒化アルミニウム焼結体中に分散、内封されることとなり、酸化マグネシウム粒子が、殆ど空気に露出しないので、酸化マグネシウムが耐湿性に劣るという欠点が解消される。また、酸化マグネシウム粒子を高熱伝導性フィラーとして機能させ、他方、連続相たるマトリックス相を形成する窒化アルミニウム焼結体を、熱伝導経路として機能させることができるので、共に高熱伝導性である酸化マグネシウムと窒化アルミニウムとが巧妙に組み合わされた高熱伝導性セラミックス焼結体が得られるという効果を奏する。   In the high thermal conductive ceramic sintered body according to the fifth aspect of the invention, the magnesium oxide particles are dispersed in the matrix phase mainly composed of aluminum nitride. The magnesium oxide particles are dispersed and encapsulated in the highly heat-conductive aluminum nitride sintered body, and the magnesium oxide particles are hardly exposed to the air, eliminating the disadvantage that the magnesium oxide has poor moisture resistance. The In addition, magnesium oxide particles can function as a high thermal conductivity filler, and on the other hand, an aluminum nitride sintered body that forms a matrix phase that is a continuous phase can function as a thermal conduction path. There is an effect that a highly thermally conductive ceramic sintered body in which aluminum nitride is skillfully combined can be obtained.

また、このようにして得られた複合高熱伝導性セラミックス焼結体は、汎用セラミックスである酸化アルミニウムを主体とするものよりも放熱性の良い電気絶縁材料となる一方、窒化アルミニウム単体からなる焼結体よりも安価に製造しうることはもちろんである。   In addition, the composite high thermal conductive ceramic sintered body obtained in this way is an electrically insulating material having better heat dissipation than that of aluminum oxide, which is a general-purpose ceramic. Of course, it can be manufactured at a lower cost than the body.

なお、本願発明の高熱伝導性セラミックス焼結体にあっては、これを構成する主要元素である窒素、酸素、マグネシウム、アルミニウム等が、総て地球の地殻近傍に豊富に存在するため、優れた環境低負荷材料であるといえる。   In addition, in the high thermal conductive ceramic sintered body of the present invention, the main elements constituting this, nitrogen, oxygen, magnesium, aluminum, etc. are all abundant in the vicinity of the earth's crust. It can be said that it is a low environmental load material.

以下、本願発明の実施形態を、実施例を交えて説明する。なお、本願発明の高熱伝導セラミックス焼結体の製造方法、及び、かかる製造方法で製造された高熱伝導セラミックス焼結体は、下記の実施形態或いは実施例にのみ限定されるものではなく、本願発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Hereinafter, embodiments of the present invention will be described with examples. In addition, the manufacturing method of the high thermal conductive ceramic sintered body of the present invention and the high thermal conductive ceramic sintered body manufactured by the manufacturing method are not limited to the following embodiments or examples. Of course, various changes can be made without departing from the scope of the present invention.

すなわち、本願発明に係る高熱伝導セラミックス焼結体の製造方法では、酸化マグネシウム粉末に窒化アルミニウムの粉末、焼結助剤、可塑剤および溶剤を混合したスラリーからグリーンシートを作製し、そのグリーンシートを成形した後、その成形体を不活性雰囲気下で焼結するものである。   That is, in the method for producing a high thermal conductive ceramic sintered body according to the present invention, a green sheet is produced from a slurry in which magnesium oxide powder is mixed with aluminum nitride powder, a sintering aid, a plasticizer, and a solvent. After molding, the molded body is sintered under an inert atmosphere.

具体的には、まず、酸化マグネシウム粉末に窒化アルミニウムの粉末を混合した後、焼結助剤等を添加して粉砕混合し、さらにバインダー、可塑剤及び溶剤を添加し、混合・混練した後、シート状に成形してグリーンシートを得る。(なお、溶剤は、グリーンシートが得られたとき、すでに揮散している。)次に、そのグリーンシートをプレス加工等により所定の形状に形抜きして成形体を作製した後、酸化雰囲気中で約500℃に昇温加熱し、成形体中のバインダー及び可塑剤を除去する。更に、その成形体を、常圧の窒素あるいは窒素を含むアルゴン等の不活性雰囲気中で、温度1500〜1900℃で焼成することにより焼結し、焼結体を得るというものである。   Specifically, first, after mixing aluminum nitride powder with magnesium oxide powder, adding a sintering aid or the like, pulverizing and mixing, further adding a binder, a plasticizer and a solvent, mixing and kneading, A green sheet is obtained by forming into a sheet. (The solvent has already been volatilized when the green sheet is obtained.) Next, the green sheet was cut into a predetermined shape by pressing or the like to produce a molded body, and then in an oxidizing atmosphere. And heated to about 500 ° C. to remove the binder and plasticizer in the molded body. Furthermore, the compact is sintered by firing at a temperature of 1500 to 1900 ° C. in an inert atmosphere such as normal pressure nitrogen or argon containing nitrogen, to obtain a sintered body.

その結果、共に高熱伝導性である酸化マグネシウムと窒化アルミニウムとが組み合わされた安価な高熱伝導性セラミックス焼結体を製造し得ることとなる。   As a result, it is possible to manufacture an inexpensive high thermal conductive ceramic sintered body in which magnesium oxide and aluminum nitride, which are both highly thermal conductive, are combined.

また、本願発明に係る高熱伝導セラミックス焼結体の製造方法では、使用する酸化マグネシウム粉末の平均粒径が、少なくとも、10μm以上、1000μm以下の範囲のものであれば好適に目的を達成し得ることが判った。   Further, in the method for producing a high thermal conductive ceramic sintered body according to the present invention, the object can be suitably achieved if the average particle diameter of the magnesium oxide powder to be used is at least 10 μm or more and 1000 μm or less. I understood.

これは、図1に示すように解釈される。(なお図1は、本願発明の高熱伝導性セラミックス焼結体の構造の概略を模式的に示す断面図であって、正確な倍率に基づく図ではない。)すなわち、焼結した高熱伝導性の窒化アルミニウム相5は、連続相たるマトリックス相2を形成し、焼結体の熱伝導経路として機能することとなる。一方、酸化マグネシウム粒子1は上述したように高融点であるので、10μm程度以上の平均粒径であれば、窒化アルミニウムを主体とするマトリックス相2中に完全に溶失することは免れ、焼結後においても窒化アルミニウム焼結体4中に散点状に分散されて、高熱伝導性フィラーとして機能する。しかし、酸化マグネシウム粒子1の平均粒径が1000μm以上の場合には、スラリーからグリーンシートを作製し、そのグリーンシートを成形する際に障害ともなりうる。   This is interpreted as shown in FIG. (Note that FIG. 1 is a cross-sectional view schematically showing an outline of the structure of the high thermal conductivity ceramic sintered body of the present invention, and is not a diagram based on an accurate magnification.) That is, the sintered high thermal conductivity The aluminum nitride phase 5 forms a matrix phase 2 as a continuous phase, and functions as a heat conduction path of the sintered body. On the other hand, since the magnesium oxide particles 1 have a high melting point as described above, if the average particle size is about 10 μm or more, the magnesium oxide particles 1 are not completely dissolved in the matrix phase 2 mainly composed of aluminum nitride, and sintered. Later, it is dispersed in the form of dots in the aluminum nitride sintered body 4 and functions as a highly thermally conductive filler. However, when the average particle diameter of the magnesium oxide particles 1 is 1000 μm or more, it can be an obstacle when a green sheet is produced from the slurry and the green sheet is molded.

この結果、本願発明に係る高熱伝導セラミックス焼結体の製造方法では、使用する酸化マグネシウム粉末の平均粒径が、10μm以上、1000μm以下の範囲のものであれば、高融点且つ高熱伝導性の酸化マグネシウム粒子が溶失することなく、窒化アルミニウム焼結体中に分散される一方、連続相たるマトリックス相を形成する窒化アルミニウム焼結体が熱伝導経路として機能する安価な高熱伝導性セラミックス焼結体を製造し得ることとなる。   As a result, in the method for producing a high thermal conductive ceramic sintered body according to the present invention, if the average particle size of the magnesium oxide powder used is in the range of 10 μm or more and 1000 μm or less, a high melting point and high thermal conductivity oxidation is performed. An inexpensive high thermal conductive ceramic sintered body in which the magnesium nitride is dispersed in the aluminum nitride sintered body without melting, while the aluminum nitride sintered body forming a continuous matrix phase functions as a heat conduction path. Can be manufactured.

また、本願発明に係る高熱伝導セラミックス焼結体の製造方法では、酸化マグネシウム粉末の質量を前記酸化マグネシウム粉末と前記窒化アルミニウム粉末の合計質量に対して10〜90%とすることにより好適に目的を達成し得ることが判った。   Further, in the method for producing a high thermal conductive ceramic sintered body according to the present invention, it is preferable that the mass of the magnesium oxide powder is 10 to 90% with respect to the total mass of the magnesium oxide powder and the aluminum nitride powder. It turns out that it can be achieved.

すなわち、上記図1に示したように、マトリックス相2を形成する窒化アルミニウム焼結体4が、高融点且つ高熱伝導性の酸化マグネシウム粒子1の共存下で、連続相となり、熱伝導経路として機能し得るものと考えられる。   That is, as shown in FIG. 1, the aluminum nitride sintered body 4 forming the matrix phase 2 becomes a continuous phase in the presence of the high melting point and high thermal conductivity magnesium oxide particles 1 and functions as a heat conduction path. It is considered possible.

さらに、本願発明に係る高熱伝導セラミックス焼結体の製造方法では、焼結助剤として、希土類元素酸化物を酸化マグネシウム粉末と窒化アルミニウム粉末の合計質量に対して0.5〜10%添加してもよい。この結果、比較的低温で高熱伝導性セラミックス焼結体を製造し得ることとなる。かかる希土類元素酸化物としては、イットリウム、ネオジム、イッテルビウム、ランタン、セリウム、プラセオジムのうちのいずれかの酸化物、又はこれらの酸化物のうち2種類以上のものの混合物が好適である。また、これら酸化物に代えて、対応する希土類元素の炭化物、炭酸塩、ホウ化物、ハロゲン化物、塩化物、硝酸塩等、焼成時に酸化物となる形態の化合物を用い、これらを焼成により酸化物に変えてもよい。   Furthermore, in the method for producing a high thermal conductive ceramic sintered body according to the present invention, 0.5 to 10% of a rare earth element oxide is added as a sintering aid to the total mass of the magnesium oxide powder and the aluminum nitride powder. Also good. As a result, a highly thermally conductive ceramic sintered body can be produced at a relatively low temperature. As such a rare earth element oxide, any one of yttrium, neodymium, ytterbium, lanthanum, cerium, and praseodymium, or a mixture of two or more of these oxides is preferable. In place of these oxides, corresponding rare earth element carbides, carbonates, borides, halides, chlorides, nitrates, etc. are used in the form of oxides during firing, and these are converted into oxides by firing. You may change it.

さらに、本願発明に係る高熱伝導セラミックス焼結体の製造方法では、焼結助剤として、上記希土類元素酸化物とは別に、または、上記希土類元素酸化物と共に、アルカリ土類元素酸化物である酸化カルシウム、酸化ストロンチウムまたは酸化バリウムのうちの1種類以上を、酸化マグネシウム粉末と窒化アルミニウム粉末の合計質量に対して合計で0.05〜5%添加してもよい。この結果、比較的低温で高熱伝導性セラミックス焼結体を製造し得ることとなる。これら酸化物に代えて、対応するアルカリ土類元素の炭化物、炭酸塩、ホウ化物、ハロゲン化物、塩化物、硝酸塩等、焼成時に酸化物となる形態の化合物を用い、これらを焼成により酸化物に変えてもよい。   Further, in the method for producing a high thermal conductive ceramic sintered body according to the present invention, as a sintering aid, an oxidation which is an alkaline earth element oxide separately from the rare earth element oxide or together with the rare earth element oxide. One or more of calcium, strontium oxide or barium oxide may be added in a total amount of 0.05 to 5% with respect to the total mass of the magnesium oxide powder and the aluminum nitride powder. As a result, a highly thermally conductive ceramic sintered body can be produced at a relatively low temperature. Instead of these oxides, corresponding alkaline earth element carbides, carbonates, borides, halides, chlorides, nitrates, etc. are used in the form of oxides during firing, and these are converted into oxides by firing. You may change it.

一方、本願発明に係る高熱伝導セラミックス焼結体の製造方法では、酸化マグネシウム粉末として、疎水化処理を施した酸化マグネシウム粉末を使用し得る。
かかる疎水化処理を施した酸化マグネシウム粉末については、合成樹脂やピッチなどのカプセル化助剤を使用して耐火物粒子(アルミナ、酸化クロム、二酸化チタン、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、炭素、酸化鉄、及び各種のスピネル型の鉱物等)でカプセル化するもの(特開平5−43279号公報)、シランカップリング剤等で表面処理するもの(特開昭57−55921号公報、特開平5−63116号公報)、金属酸化物皮膜等を形成するもの(特開平3−8714号公報、特開平8−104574号公報)、スピネル等の複合酸化膜皮膜を形成するもの(特開2003−34522号公報、特開2003−34523号公報、特開2004−27177号公報、特開2004−52084号公報)等が知られており、市販品も入手可能である。その結果、かかる疎水化処理を施した酸化マグネシウム粉末を使用することにより、耐湿性に劣るという酸化マグネシウム固有の欠点を相当程度矯正できるため、スラリーからグリーンシートを作製し、また、そのグリーンシートを成形する際のハンドリングが容易になる。
On the other hand, in the method for producing a high thermal conductive ceramic sintered body according to the present invention, a magnesium oxide powder subjected to a hydrophobic treatment can be used as the magnesium oxide powder.
For magnesium oxide powder that has been subjected to such hydrophobic treatment, refractory particles (alumina, chromium oxide, titanium dioxide, zirconium oxide, silicon carbide, silicon nitride, carbon, Those encapsulated with iron oxide and various spinel-type minerals (Japanese Patent Laid-Open No. 5-43279), and surface-treated with a silane coupling agent (Japanese Patent Laid-Open No. 57-55921, Japanese Patent Laid-Open No. 5) -63116), a metal oxide film or the like (JP-A-3-8714, JP-A-8-104574), or a composite oxide film such as spinel (JP-A-2003-34522). No., JP-A-2003-34523, JP-A-2004-27177, JP-A-2004-52084) are known, Commercially available products are also available. As a result, by using magnesium oxide powder that has been subjected to such a hydrophobization treatment, the disadvantage inherent to magnesium oxide, which is inferior in moisture resistance, can be corrected to a considerable extent, so that a green sheet is produced from the slurry, Handling during molding becomes easy.

以下、本願発明を実施例によって具体的に説明する。
<実験1〔実施例1〜5〕>
原料は、酸化マグネシウム粉末として粒径32〜150μmの酸化マグネシウム(タテホ化学工業〔株〕製KMA−X)と、比表面積が4m/gである窒化アルミニウムを使用した。実施例1〜5において、酸化マグネシウム含有率を、それぞれ90%、70%、50%、30%、10%とした。ここで、酸化マグネシウム含有率(%)は、〔酸化マグネシウム粉末質量(g)×100/(酸化マグネシウム粉末と窒化アルミニウム粉末の合計質量(g))〕として算出されるものである。
Hereinafter, the present invention will be described specifically by way of examples.
<Experiment 1 [Examples 1 to 5]>
The raw materials used were magnesium oxide having a particle size of 32 to 150 μm (Kuma-X manufactured by Tateho Chemical Co., Ltd.) and aluminum nitride having a specific surface area of 4 m 2 / g as magnesium oxide powder. In Examples 1 to 5, the magnesium oxide content was 90%, 70%, 50%, 30%, and 10%, respectively. Here, the magnesium oxide content (%) is calculated as [magnesium oxide powder mass (g) × 100 / (total mass of magnesium oxide powder and aluminum nitride powder (g))].

焼結助剤として酸化イットリウム粉末(Y2 3 )を、酸化マグネシウムと窒化アルミニウムとの合計質量に対して5%添加して粉砕混合し、さらにバインダーとしてポリビニルブチラール(PVB)を上記合計質量に対して10%、可塑剤としてフタル酸ジオクチル(DOP)を上記合計質量に対して2%、溶剤としてメチルエチルケトン(MEK)を加え、ボールミルで約24時間混合、混練してスラリーを作製した。そのスラリーから、ドクターブレード法によりグリーンシートを得た。 Add 5% of yttrium oxide powder (Y 2 O 3 ) as a sintering aid to the total mass of magnesium oxide and aluminum nitride, pulverize and mix, and further add polyvinyl butyral (PVB) as a binder to the above total mass. On the other hand, 10%, dioctyl phthalate (DOP) as a plasticizer was added to 2% of the above total mass, methyl ethyl ketone (MEK) was added as a solvent, and the mixture was mixed and kneaded in a ball mill for about 24 hours to prepare a slurry. A green sheet was obtained from the slurry by a doctor blade method.

次に、そのグリーンシートをプレス加工により所定の形状に形抜きして成形体を作製した後、大気中で約500℃で2時間焼成して成形体中のバインダー及び可塑剤を除去した。更に、その成形体を、常圧の窒素雰囲気中で、温度1850℃で6時間焼結して、板厚0.7mm、幅25mm、長さ50mmのセラミックス基板試料を製造した。得られたセラミックス基板試料について熱伝導率の測定を行ったところ、結果は、実施例1では39W/m・K、実施例2では66W/m・K、実施例3では74W/m・K、実施例4では84W/m・K、実施例5では86W/m・Kであった。   Next, the green sheet was cut into a predetermined shape by press working to produce a molded body, and then fired in the atmosphere at about 500 ° C. for 2 hours to remove the binder and plasticizer in the molded body. Furthermore, the compact was sintered in a nitrogen atmosphere at normal pressure at a temperature of 1850 ° C. for 6 hours to produce a ceramic substrate sample having a plate thickness of 0.7 mm, a width of 25 mm, and a length of 50 mm. When the thermal conductivity of the obtained ceramic substrate sample was measured, the results were 39 W / m · K in Example 1, 66 W / m · K in Example 2, 74 W / m · K in Example 3, In Example 4, it was 84 W / m · K, and in Example 5, it was 86 W / m · K.

なお、焼結助剤として添加する酸化イットリウムの添加量を変化させて実験した結果、添加量は、0.5〜10質量%の範囲に定めるのが良いとわかった。すなわち、酸化イットリウムの添加量が0.5質量%未満であると、焼結が進行し難くなり焼結体の製造が困難となる。他方、添加量を10質量%以上にすると、焼結体の収縮率、強度等にばらつきが生じるようになる。   In addition, as a result of experimenting by changing the amount of yttrium oxide added as a sintering aid, it was found that the amount added should be in the range of 0.5 to 10% by mass. That is, if the amount of yttrium oxide added is less than 0.5% by mass, sintering does not proceed easily, and it becomes difficult to produce a sintered body. On the other hand, when the addition amount is 10% by mass or more, variation occurs in the shrinkage rate, strength, and the like of the sintered body.

なお、さらに種々実験を行った結果、焼結助剤は、酸化イットリウム以外のネオジム、イッテルビウム、ランタン、セリウム、プラセオジム等の希土類元素の酸化物でもよいことが判明した。また、前記酸化イットリウムのかわりに、或いは、これらと共に、アルカリ土類元素の酸化物である酸化カルシウム、酸化ストロンチウム、酸化バリウムのうち、一種類または複数種類を添加しても同様の焼結助剤としての効果が得られることも判明した。上記希土類元素の酸化物を併用しない場合、これらアルカリ土類元素の酸化物の総和が0.05質量%以下では焼結が不十分となり、5質量%以上では、焼結体の収縮率、強度等にばらつきが生じるようになる。
<実験2〔実施例6〕>
酸化マグネシウム粉末として、疎水化処理を施した酸化マグネシウム(タテホ化学工業〔株〕製CF2−100−A)を使用し、酸化マグネシウムと窒化アルミニウムとの合計質量に対する酸化マグネシウム含有率を70%に固定した以外は、総て上記実験1と同様の条件でセラミックス基板試料を作製した。得られたセラミックス基板試料について実験1と同様にして熱伝導率の測定を行ったところ、62W/m・Kであった。
<実験3〔比較例1〕>
セラミックス原料粉末として、従来から用いられている酸化アルミニウム粉末(純度99.9%、平均粒径3.0μm)を100%使用した以外は、総て上記実験1、実験2と同様の条件でセラミックス基板試料を作製した。得られたセラミックス基板試料について実験1,2と同様にして熱伝導率の測定を行ったところ、23W/m・Kであった。
As a result of further various experiments, it has been found that the sintering aid may be an oxide of a rare earth element such as neodymium, ytterbium, lanthanum, cerium, praseodymium other than yttrium oxide. Further, in place of or in addition to the yttrium oxide, the same sintering aid may be used even if one or more of calcium oxide, strontium oxide and barium oxide which are oxides of alkaline earth elements are added. It has also been found that the effect can be obtained. When the rare earth element oxide is not used in combination, sintering is insufficient when the sum of the alkaline earth element oxides is 0.05% by mass or less, and when it is 5% by mass or more, the shrinkage ratio and strength of the sintered body are reduced. And so on.
<Experiment 2 [Example 6]>
As magnesium oxide powder, hydrophobized magnesium oxide (CF2-100-A manufactured by Tateho Chemical Co., Ltd.) is used, and the magnesium oxide content is fixed to 70% with respect to the total mass of magnesium oxide and aluminum nitride. A ceramic substrate sample was produced under the same conditions as in Experiment 1 except for the above. When the thermal conductivity of the obtained ceramic substrate sample was measured in the same manner as in Experiment 1, it was 62 W / m · K.
<Experiment 3 [Comparative Example 1]>
Ceramics were prepared under the same conditions as in Experiments 1 and 2 except that 100% of the conventionally used aluminum oxide powder (purity 99.9%, average particle size 3.0 μm) was used as the ceramic raw material powder. A substrate sample was prepared. When the thermal conductivity of the obtained ceramic substrate sample was measured in the same manner as in Experiments 1 and 2, it was 23 W / m · K.

実施例1〜5の結果から判るように、本願発明の高熱伝導性セラミックス焼結体において、酸化マグネシウム含有率が減少して窒化アルミニウム含有率が増加するほど、焼結体全体としての熱伝導率は増大しているが、酸化マグネシウム含有率が90%である実施例1でも、酸化アルミニウム単体の場合である比較例1(熱伝導率23W/m・K)よりも相当程度高い熱伝導率(39W/m・K)が得られることが判った。   As can be seen from the results of Examples 1 to 5, in the high thermal conductive ceramic sintered body of the present invention, as the magnesium oxide content decreases and the aluminum nitride content increases, the thermal conductivity of the entire sintered body increases. In Example 1 where the magnesium oxide content is 90%, the thermal conductivity (which is considerably higher than that of Comparative Example 1 (thermal conductivity 23 W / m · K) in the case of aluminum oxide alone ( 39 W / m · K) was obtained.

また、疎水化処理を施した酸化マグネシウムを使用した実施例6についても、疎水化処理を施していない酸化マグネシウムを使用した実施例2の熱伝導率(66W/m・K)と遜色のない熱伝導率(62W/m・K)が得られることが判った。   Further, in Example 6 using magnesium oxide subjected to hydrophobic treatment, heat conductivity comparable to that of Example 2 using magnesium oxide not subjected to hydrophobic treatment (66 W / m · K) is comparable. It was found that conductivity (62 W / m · K) was obtained.

以上のように、本願発明によれば、共に高熱伝導性である酸化マグネシウムと窒化アルミニウムとが巧妙に組み合わされた安価で高性能な高熱伝導性セラミックス焼結体が得られた。   As described above, according to the present invention, an inexpensive, high-performance, highly thermally conductive ceramic sintered body in which magnesium oxide and aluminum nitride, which are both highly thermally conductive, are skillfully combined was obtained.

本願発明の高熱伝導性セラミックス焼結体の構造の概略を模式的に示す断面図である。It is sectional drawing which shows the outline of the structure of the high thermal conductive ceramic sintered compact of this invention typically.

符号の説明Explanation of symbols

1 酸化マグネシウム粒子
2 マトリックス相
3 高熱伝導性セラミックス焼結体
4 窒化アルミニウム焼結体
5 窒化アルミニウム相
DESCRIPTION OF SYMBOLS 1 Magnesium oxide particle 2 Matrix phase 3 High thermal conductivity ceramic sintered body 4 Aluminum nitride sintered body 5 Aluminum nitride phase

Claims (5)

酸化マグネシウム粉末に窒化アルミニウム粉末、焼結助剤、可塑剤および溶剤を混合してなるスラリーからグリーンシートを作製し、そのグリーンシートから成形体を作製し、その成形体を不活性雰囲気下で焼結することを特徴とする高熱伝導性セラミックス焼結体の製造方法。   A green sheet is prepared from a slurry obtained by mixing magnesium oxide powder with aluminum nitride powder, a sintering aid, a plasticizer, and a solvent. A green body is formed from the green sheet, and the green body is sintered in an inert atmosphere. A method for producing a sintered ceramic with high thermal conductivity, characterized in that it is bonded. 前記酸化マグネシウム粉末の平均粒径が、10μm以上、1000μm以下であることを特徴とする請求項1記載の高熱伝導性セラミックス焼結体の製造方法。   2. The method for producing a high thermal conductive ceramic sintered body according to claim 1, wherein an average particle diameter of the magnesium oxide powder is 10 μm or more and 1000 μm or less. 前記酸化マグネシウム粉末の質量が前記酸化マグネシウム粉末と前記窒化アルミニウム粉末の合計質量に対して10〜90%であることを特徴とする請求項1または2記載の高熱伝導性セラミックス焼結体の製造方法。   3. The method for producing a highly thermally conductive ceramic sintered body according to claim 1, wherein a mass of the magnesium oxide powder is 10 to 90% with respect to a total mass of the magnesium oxide powder and the aluminum nitride powder. . 前記酸化マグネシウム粉末が、疎水化処理を施した酸化マグネシウム粉末であることを特徴とする請求項1乃至請求項3のいずれかに記載の高熱伝導性セラミックス焼結体の製造方法。   The method for producing a high thermal conductive ceramic sintered body according to any one of claims 1 to 3, wherein the magnesium oxide powder is a magnesium oxide powder subjected to a hydrophobic treatment. 窒化アルミニウムを主成分とするマトリックス相中に酸化マグネシウム粒子が分散されてなることを特徴とする高熱伝導性セラミックス焼結体。   A high thermal conductive ceramic sintered body comprising magnesium oxide particles dispersed in a matrix phase mainly composed of aluminum nitride.
JP2005273366A 2005-09-21 2005-09-21 Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact Pending JP2007084367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273366A JP2007084367A (en) 2005-09-21 2005-09-21 Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273366A JP2007084367A (en) 2005-09-21 2005-09-21 Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact

Publications (1)

Publication Number Publication Date
JP2007084367A true JP2007084367A (en) 2007-04-05

Family

ID=37971748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273366A Pending JP2007084367A (en) 2005-09-21 2005-09-21 Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact

Country Status (1)

Country Link
JP (1) JP2007084367A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2179974A2 (en) 2008-10-23 2010-04-28 Ngk Insulators, Ltd. Aluminium-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
WO2012056916A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Heating device
WO2012056918A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Electrostatic chuck
WO2013054806A1 (en) * 2011-10-11 2013-04-18 日本碍子株式会社 Ceramic member, member for use in semiconductor production device, and method for producing ceramic member
CN104744046A (en) * 2013-12-27 2015-07-01 日本碍子株式会社 Bonding material composition, aluminum nitride bonded body, and method for producing the same
CN111848133A (en) * 2020-06-09 2020-10-30 西昌学院 Preparation method of high-thermal-shock-resistance magnesium oxide ceramic
CN113727543A (en) * 2021-09-02 2021-11-30 合肥圣达电子科技实业有限公司 Ceramic metal packaging shell for electronic component and preparation of ceramic material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183173A (en) * 1985-02-06 1986-08-15 株式会社東芝 High heat transmission aluminum nitride sintered body
JPS623065A (en) * 1985-06-26 1987-01-09 日本特殊陶業株式会社 Manufacture of magnesia ceramic
JPS6228917A (en) * 1985-07-29 1987-02-06 Hitachi Ltd Slider for thin film magnetic head and its production
JPH0375263A (en) * 1989-08-18 1991-03-29 Ube Ind Ltd Production of sintered material of magnesia
JPH06321640A (en) * 1993-05-14 1994-11-22 Matsushita Electric Works Ltd Manufacture of aluminum nitride sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183173A (en) * 1985-02-06 1986-08-15 株式会社東芝 High heat transmission aluminum nitride sintered body
JPS623065A (en) * 1985-06-26 1987-01-09 日本特殊陶業株式会社 Manufacture of magnesia ceramic
JPS6228917A (en) * 1985-07-29 1987-02-06 Hitachi Ltd Slider for thin film magnetic head and its production
JPH0375263A (en) * 1989-08-18 1991-03-29 Ube Ind Ltd Production of sintered material of magnesia
JPH06321640A (en) * 1993-05-14 1994-11-22 Matsushita Electric Works Ltd Manufacture of aluminum nitride sintered body

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2179974A2 (en) 2008-10-23 2010-04-28 Ngk Insulators, Ltd. Aluminium-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
JP2010248054A (en) * 2008-10-23 2010-11-04 Ngk Insulators Ltd Aluminum nitride-based composite material, method for manufacturing the same and member for semiconductor manufacturing apparatus
EP2179974A3 (en) * 2008-10-23 2012-05-23 NGK Insulators, Ltd. Aluminium-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
US8226865B2 (en) 2008-10-23 2012-07-24 Ngk Insulators, Ltd. Aluminum-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
US8231985B2 (en) 2008-10-23 2012-07-31 Ngk Insulators, Ltd. Aluminum-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
KR101340147B1 (en) * 2008-10-23 2013-12-10 엔지케이 인슐레이터 엘티디 Aluminum-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
TWI468365B (en) * 2008-10-23 2015-01-11 Ngk Insulators Ltd An aluminum nitride-based composite material, a method for manufacturing the same, and a component for a semiconductor manufacturing apparatus
JPWO2012056918A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Electrostatic chuck
JPWO2012056876A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing apparatus, sputtering target member, and method for manufacturing ceramic material
WO2012056876A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing apparatus, sputtering target member and method for producing ceramic material
WO2012056914A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Heating device
WO2012056875A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
WO2012056807A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, laminated body, member for semiconductor manufacturing device, and sputtering target member
WO2012056808A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing device, sputtering target member, and manufacturing method for ceramic material
WO2012056915A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Electrostatic chuck
CN102639464A (en) * 2010-10-25 2012-08-15 日本碍子株式会社 Ceramic material, laminated body, member for semiconductor manufacturing device, and sputtering target member
CN102639463A (en) * 2010-10-25 2012-08-15 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing apparatus, sputtering target member and method for producing ceramic material
CN103168014A (en) * 2010-10-25 2013-06-19 日本碍子株式会社 Heating device
CN103201236A (en) * 2010-10-25 2013-07-10 日本碍子株式会社 Heating device
CN103201235A (en) * 2010-10-25 2013-07-10 日本碍子株式会社 Electrostatic chuck
US8541328B2 (en) 2010-10-25 2013-09-24 Ngk Insulators, Ltd. Ceramic material, member for semiconductor manufacturing equipment, sputtering target member and method for producing ceramic material
KR20130123375A (en) * 2010-10-25 2013-11-12 엔지케이 인슐레이터 엘티디 Heating device
KR20130126622A (en) * 2010-10-25 2013-11-20 엔지케이 인슐레이터 엘티디 Electrostatic chuck
US8597776B2 (en) 2010-10-25 2013-12-03 Ngk Insulators, Ltd. Ceramic material, laminate, member for use in semiconductor manufacturing equipment, and sputtering target member
JPWO2012056917A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Heating device
JPWO2012056916A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Heating device
US9245775B2 (en) 2010-10-25 2016-01-26 Ngk Insulators, Ltd. Heating device
JPWO2012056914A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Heating device
WO2012056918A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Electrostatic chuck
JPWO2012056915A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Electrostatic chuck
JPWO2012056875A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
KR101682749B1 (en) 2010-10-25 2016-12-05 엔지케이 인슐레이터 엘티디 Electrostatic chuck
WO2012056917A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Heating device
KR101661385B1 (en) 2010-10-25 2016-09-29 엔지케이 인슐레이터 엘티디 Heating device
CN102639463B (en) * 2010-10-25 2014-11-12 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing apparatus, sputtering target member and method for producing ceramic material
WO2012056916A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Heating device
JP5680664B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Heating device
JP5680644B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing apparatus, sputtering target member, and method for manufacturing ceramic material
JP5680645B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
JP5680663B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Heating device
JP5680665B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Heating device
JP5683602B2 (en) * 2010-10-25 2015-03-11 日本碍子株式会社 Electrostatic chuck
JP5683601B2 (en) * 2010-10-25 2015-03-11 日本碍子株式会社 Electrostatic chuck
US9437463B2 (en) 2010-10-25 2016-09-06 Ngk Insulators, Ltd. Heating device
US9287144B2 (en) 2010-10-25 2016-03-15 Ngk Insulators, Ltd. Heating device
US9184081B2 (en) 2010-10-25 2015-11-10 Ngk Insulators, Ltd. Electrostatic chuck
US9202718B2 (en) 2010-10-25 2015-12-01 Ngk Insulators, Ltd. Electrostatic chuck
CN103857643A (en) * 2011-10-11 2014-06-11 日本碍子株式会社 Ceramic member, member for use in semiconductor production device, and method for producing ceramic member
JPWO2013054806A1 (en) * 2011-10-11 2015-03-30 日本碍子株式会社 Ceramic member, member for semiconductor manufacturing apparatus, and method for manufacturing ceramic member
KR20140077910A (en) * 2011-10-11 2014-06-24 엔지케이 인슐레이터 엘티디 Ceramic member, member for use in semiconductor production device, and method for producing ceramic member
WO2013054806A1 (en) * 2011-10-11 2013-04-18 日本碍子株式会社 Ceramic member, member for use in semiconductor production device, and method for producing ceramic member
US9892950B2 (en) 2011-10-11 2018-02-13 Ngk Insulators, Ltd. Ceramic member, member for semiconductor manufacturing apparatus, and method for manufacturing ceramic member
KR102020957B1 (en) * 2011-10-11 2019-09-11 엔지케이 인슐레이터 엘티디 Ceramic member, member for use in semiconductor production device, and method for producing ceramic member
CN104744046A (en) * 2013-12-27 2015-07-01 日本碍子株式会社 Bonding material composition, aluminum nitride bonded body, and method for producing the same
TWI655990B (en) * 2013-12-27 2019-04-11 日本碍子股份有限公司 Bonding material composition, aluminum nitride bonded body, and method for producing the same
CN111848133A (en) * 2020-06-09 2020-10-30 西昌学院 Preparation method of high-thermal-shock-resistance magnesium oxide ceramic
CN113727543A (en) * 2021-09-02 2021-11-30 合肥圣达电子科技实业有限公司 Ceramic metal packaging shell for electronic component and preparation of ceramic material
CN113727543B (en) * 2021-09-02 2023-02-10 合肥圣达电子科技实业有限公司 Ceramic metal packaging shell for electronic component and preparation method of ceramic material

Similar Documents

Publication Publication Date Title
JP2007084367A (en) Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact
JP5228916B2 (en) Semiconductor porcelain composition and method for producing the same
KR20090007283A (en) Semiconductor ceramic composition
TW201043593A (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
JP5228917B2 (en) Semiconductor porcelain composition and method for producing the same
WO2009081933A1 (en) Semiconductor ceramic composition
WO2008053813A1 (en) Semiconductor ceramic composition and process for producing the same
JP4230175B2 (en) Alumina sintered body and manufacturing method thereof
JP2011068535A (en) Bnt-bt system piezoelectric ceramic and method for manufacturing the same
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP2009177017A (en) Multilayer ptc thermistor, and method of manufacturing the same
JP6720053B2 (en) Method for manufacturing silicon nitride sintered body
CN104418591B (en) The easy fired method of alumina porous ceramic
JP2011111348A (en) Ferrite electrode and method for producing the same
US3523915A (en) Electrically conductive ceramic material and method of preparation
JP2882877B2 (en) Zirconia porcelain and method for producing the same
JP3340643B2 (en) Composite PTC material
JP4984958B2 (en) Multilayer thermistor and manufacturing method
JP5468984B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics and manufacturing method thereof
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP4560328B2 (en) Lanthanum chromite heating element having heating part and terminal part and method for manufacturing the same
WO2011120196A1 (en) Dielectric ceramic composition, production method thereof and electronic element
JP2007173608A (en) Aluminum nitride sintered body and ceramic circuit board employing it
JP2004284830A (en) Forsterite ceramic sintered compact
JP3052643B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308