JPS623065A - Manufacture of magnesia ceramic - Google Patents

Manufacture of magnesia ceramic

Info

Publication number
JPS623065A
JPS623065A JP60142092A JP14209285A JPS623065A JP S623065 A JPS623065 A JP S623065A JP 60142092 A JP60142092 A JP 60142092A JP 14209285 A JP14209285 A JP 14209285A JP S623065 A JPS623065 A JP S623065A
Authority
JP
Japan
Prior art keywords
magnesia
powder
porcelain
compound
magnesia powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60142092A
Other languages
Japanese (ja)
Inventor
安藤 汀
隆史 加藤
青木 由郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Niterra Co Ltd
Original Assignee
Kao Corp
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, NGK Spark Plug Co Ltd filed Critical Kao Corp
Priority to JP60142092A priority Critical patent/JPS623065A/en
Publication of JPS623065A publication Critical patent/JPS623065A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マグネシア磁器の製造方法に関するものであ
り、特に誘電体損失の小さいマグネシア磁器の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing magnesia porcelain, and particularly to a method for manufacturing magnesia porcelain with low dielectric loss.

「従来の技術」 マグネシアは、高温での電気絶縁性、誘電体損失等の高
周波特性、熱伝導率等に優れた性質を持つ材料として知
られている。一方、電子技術の進歩によって、マイクロ
波集積回路基板、マイクロ波透過窓等に特に誘電体損失
の少ない材料が求められている。前述の如く、優れた性
質を持つマグネシアはこのような材料としでは、最適な
ものの一つであるが、焼結性が悪く、又、水相性を有す
るためにマイクロ波集積回路基板等への使用は難しかっ
た。
"Prior Art" Magnesia is known as a material with excellent properties such as electrical insulation at high temperatures, high frequency properties such as dielectric loss, and thermal conductivity. On the other hand, with advances in electronic technology, materials with particularly low dielectric loss are required for microwave integrated circuit boards, microwave transmission windows, and the like. As mentioned above, magnesia has excellent properties and is one of the most suitable materials, but its poor sinterability and water compatibility make it difficult to use for microwave integrated circuit boards, etc. was difficult.

この焼結性と水和性を改=iるために、マグネシアにS
i 02を添加することが捉案されており、例えば特開
昭51−25508号公報、特開昭53−126009
号公報、特開昭53−142419号公報、特公昭56
−3602号公報、特公昭56−24964号公報等に
記載されている。
In order to improve this sintering property and hydration property, S
It has been proposed to add i02, for example, in JP-A-51-25508 and JP-A-53-126009.
No. 142419, Japanese Patent Publication No. 1983-142419, Japanese Patent Application Publication No. 1983
It is described in Japanese Patent Publication No. 3602, Japanese Patent Publication No. 56-24964, etc.

[発明が解決しようとする問題点] しかし、これらの提案は、S! 02を粉末状あるいは
ゾル状でマグネシアに添加するものであるために、マグ
ネシアとS! 02との混合が完全ではない。そのため
粗大結晶粒子の生成、空孔の発生等が起きてしまい、I
C用塁仮に必要とされる表面の平滑性(Raが0.2μ
m以下)、低誘電損失、耐水相性等がマイクロ波集積回
路基板、マイクロ波透過窓等に用いて十分な、マグネシ
ア磁器を得ることができなかった。
[Problems to be solved by the invention] However, these proposals are not suitable for S! Since 02 is added to magnesia in powder or sol form, magnesia and S! Mixing with 02 is not complete. As a result, formation of coarse crystal grains, generation of vacancies, etc. occur, and I
The surface smoothness required for the base for C (Ra is 0.2μ
It has not been possible to obtain magnesia porcelain that has sufficient properties such as low dielectric loss, water resistance, etc. for use in microwave integrated circuit boards, microwave transmission windows, etc.

[問題点を解決するための手段〕 本発明は、上記問題点を解決したマグネシア磁器の製造
法に関するものであり、本発明のマグネシア磁器の製造
方法は、 Si 02に換算して0.05〜2.0徂Φ%の、アル
コキシシラン化合物又はシラザン化合物で処理されたマ
グネシア粉末を焼結することを特徴と1−る。
[Means for Solving the Problems] The present invention relates to a method for manufacturing magnesia porcelain that solves the above-mentioned problems, and the method for manufacturing magnesia porcelain according to the present invention has the following advantages: 0.05 to 0.05 in terms of Si 02 The present invention is characterized in that magnesia powder treated with an alkoxysilane compound or a silazane compound having a concentration of 2.0 x Φ% is sintered.

アルコキシシラン化合物としては、例えば第1表の化合
物をめげることができる。尚、分子式中のMeはメチル
基、Etはエチル基、Viはビニル基、Phはフェニル
基を表わす。
As the alkoxysilane compound, for example, the compounds shown in Table 1 can be used. In the molecular formula, Me represents a methyl group, Et represents an ethyl group, Vi represents a vinyl group, and Ph represents a phenyl group.

シラザン化合物としては、例えば第2表の化合物をあげ
ることができる。
Examples of the silazane compound include the compounds shown in Table 2.

第2表 アルコキシシラン化合物又はシラ(アン化合物によるマ
グネシア粉末の処理は、例えば、a) アルコキシシラ
ン化合物又はシラザン化合物の所定量を揮発性の溶媒に
溶解し、該溶液をマグネシア粉末にスプレーした後、加
熱乾燥する方法。
Table 2 The treatment of magnesia powder with an alkoxysilane compound or silazane compound can be carried out by, for example, a) dissolving a predetermined amount of the alkoxysilane compound or silazane compound in a volatile solvent, and spraying the solution on the magnesia powder; Method of heating and drying.

b)  a)法で用いた溶液とマグネシア粉末とを例え
ばV型ブレンダーのような混合機で混合した後、加熱乾
燥する方法。
b) A method in which the solution used in method a) and magnesia powder are mixed in a mixer such as a V-type blender, and then heated and dried.

C)  a)法で用いた溶液中にマグネシア粉末を加え
、スラリー状態で加熱し、その後溶媒を口過、乾燥する
方法。
C) A method in which magnesia powder is added to the solution used in method a), heated in a slurry state, and then the solvent is filtered off and dried.

等がある。etc.

アルコキシシラン化合物又はシラザン化合物の処理にお
(プる使用量は、マグネシア粉末に対しSiO2に換算
して0.05〜2.0重量%であることが必要であるが
、使用層がこの範囲より少ないと処理の効果が十分衣わ
れず、又、逆にこの範囲より多いと、表面の平滑性が損
われてしまい、優れた性質を持つマグネシア磁器を得る
ことができない。
In the treatment of an alkoxysilane compound or a silazane compound, the amount used must be 0.05 to 2.0% by weight calculated as SiO2 based on the magnesia powder, but if the layer used is less than this range. If the amount is too small, the treatment effect will not be sufficiently improved, and if it is more than this range, the surface smoothness will be impaired, making it impossible to obtain magnesia porcelain with excellent properties.

上記のように、アルコキシシラン化合物又はシラザン化
合物によって処理されたマグネシア粉末は、通常のセラ
ミックスと同様の方法、例えば、金型プレス、ドクター
ブレード法、ラバープレス等で成形後、1400〜17
00’Cで焼結されて製品となる。
As mentioned above, magnesia powder treated with an alkoxysilane compound or a silazane compound is molded by a method similar to that of ordinary ceramics, such as a mold press, a doctor blade method, a rubber press, etc.
The product is sintered at 00'C.

[作用] マグネシア粉末をアルコキシシラン化合物又はシラザン
化合物で処理することにより、個々のマグネシア粉末粒
子表面に上記化合物が均一に結合する。そのため、該マ
グネシア粉末の焼結時に、マグネシア粉末粒子表面は、
分子レベルで上記化合物が分解して生成したSi 02
により均質に覆われるので、焼結反応が均一に進行し、
粒径の良く揃った非常に緻密な焼結体を得ることができ
る。
[Function] By treating magnesia powder with an alkoxysilane compound or a silazane compound, the above compound is uniformly bonded to the surface of each magnesia powder particle. Therefore, when the magnesia powder is sintered, the surface of the magnesia powder particles is
Si02 produced by the decomposition of the above compound at the molecular level
The sintering reaction progresses uniformly because it is covered homogeneously by
A very dense sintered body with well-uniformed grain sizes can be obtained.

又、このように、粒径が揃った緻密な焼結ができるため
に、得られたマグネシア磁器は、マグネシアの持つ優れ
た電気特性、熱伝導率等を損うことがなく、耐水相性も
向上し、ざらに表面が平滑なものとなる。
In addition, because dense sintering with uniform particle sizes is possible in this way, the resulting magnesia porcelain does not lose the excellent electrical properties and thermal conductivity of magnesia, and has improved water resistance. However, the surface becomes rough and smooth.

[発明の効果] 本発明は、アルコキシシラン化合物又はシラザン化合物
で処理したマグネシア粉末を使用してマグネシア磁器を
製造刃ることにより、耐水相性に優れ、電気特性(待に
誘電損失)に優れ、又、表面の平滑なマイクロ波集積回
路基板やマイクロ波透過窓等の材料を)qることができ
る。
[Effects of the Invention] The present invention produces magnesia porcelain using magnesia powder treated with an alkoxysilane compound or a silazane compound. , materials with smooth surfaces such as microwave integrated circuit boards and microwave transparent windows) can be used.

[実施例] 本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described.

本実施例は、先ず、5Ωのセパラブルフラスコにトルエ
ン2720CI及び第3表に示す処理剤を第3表の5i
(hffiに換算した最取った。(メヂルトリメトキシ
シランの場合S! 02として0゜5重量%は11.7
g、ヘキサメチルジシラザンの場合Sioとして0.1
重fm%ハ1 、4 CI )これらを攪拌混合した後
、マグネシア粉末1020gを加え、攪拌しながら2時
間還流を行なった。放冷後上澄液を除去し、得られたス
ラリーを60℃の真空乾燥機中に1昼夜放置して乾燥し
、アルコキシシラン化合物又はシラザン化合物による処
理(以下シラン処理と略す)をされたマグネシア粉末を
得た。
In this example, first, toluene 2720CI and the processing agent shown in Table 3 were added to a 5Ω separable flask.
(The maximum calculated as hffi. (In the case of methyltrimethoxysilane, 0.5% by weight as S! 02 is 11.7
g, in the case of hexamethyldisilazane, Sio is 0.1
After stirring and mixing these, 1020 g of magnesia powder was added and refluxed for 2 hours while stirring. After cooling, the supernatant liquid was removed, and the resulting slurry was left in a vacuum dryer at 60° C. for one day and night to dry. Magnesia was treated with an alkoxysilane compound or a silazane compound (hereinafter abbreviated as silane treatment). A powder was obtained.

次いで上記シラン処理されたマグネシア粉末300g、
第3ブチルアルコール200mQ及びポリビニルブチラ
ール(積水化学社、商品名工スレツクBMS)15gを
2Qのポリエチレン容器に径15mmのプラスチック製
球石と共に入れ、84R,P、Mで72時間混合した。
Next, 300 g of the silane-treated magnesia powder,
200 mQ of tertiary butyl alcohol and 15 g of polyvinyl butyral (Sekisui Chemical Co., Ltd., trade name Kosuretsuk BMS) were placed in a 2Q polyethylene container together with a plastic ball stone with a diameter of 15 mm, and mixed at 84R, P, and M for 72 hours.

このようにして得られたスラリーを250メツシユの篩
を通した後、5時間真空凍結乾燥し、32メツシユの篩
を通し原料粉末とした。
The slurry thus obtained was passed through a 250-mesh sieve, then vacuum freeze-dried for 5 hours, and passed through a 32-mesh sieve to obtain a raw material powder.

上記原料粉末を圧力1500kg/Cm2で測定に応じ
た形状に成形し、大気中、1480〜1680℃で電気
炉により焼成して耐水相性、誘電損失、誘電率、比重測
定用の試料を得た。
The raw material powder was molded into a shape according to the measurement at a pressure of 1500 kg/cm2, and fired in an electric furnace at 1480 to 1680°C in the atmosphere to obtain samples for measuring water resistance, dielectric loss, dielectric constant, and specific gravity.

又、上記スラリーの一部はアセテートフィルム上にドク
ターブレード法によりシート状に成形され、大気中、1
480〜1680’Cで電気炉により焼成して表面の平
滑性、熱伝導度測定用の試料を得ノこ。
Also, a part of the slurry was formed into a sheet on an acetate film by the doctor blade method, and exposed to air for 1 hour.
Sinter it in an electric furnace at 480-1680'C to obtain samples for measuring surface smoothness and thermal conductivity.

耐水相性は、4X8X30mmの試料をオートクレーブ
装置内で10気圧、180°C11時間蒸気相へ放置し
、測定前後の単位表面積当りの重但変化を測定した。
Water resistance was determined by leaving a 4 x 8 x 30 mm sample in the vapor phase at 10 atmospheres and 180° C. for 11 hours in an autoclave, and measuring the change in surface area per unit surface area before and after measurement.

誘電損失(tanσ)、誘電率は、直径15rr1m長
さ8mmの試料を誘電体丙柱共撮器法(横河ヒューレッ
トバツカード社土デル8408B型にて8GHzで測定
)によって求めた。
The dielectric loss (tanσ) and the dielectric constant were determined using a dielectric double-column camera method (measured at 8 GHz using a Yokogawa Hewlett Card Model 8408B) using a sample with a diameter of 15 mm and a length of 8 mm.

表面の平滑性は、測定長さ4mmカットオフ値Q、 8
mmの条件下でJ l5BO601に基づいて中心線平
均あらさくRa>として測定した。
The surface smoothness is determined by the measurement length 4 mm cutoff value Q, 8
It was measured as center line average roughness Ra> based on J15BO601 under the condition of mm.

熱伝導度はレーザーフラッシュ法によった。Thermal conductivity was determined by the laser flash method.

比較例として、シラン処理を行なわないマグネシア粉末
を使用した場合、粉末シリカ、シリカゾルをマグネシア
粉末に加えた場合についても同様に測定した。
As comparative examples, measurements were made in the same way when magnesia powder without silane treatment was used and when powdered silica and silica sol were added to magnesia powder.

以上の実験より、耐水相性(0,04mg/cm2−H
以下)、表面の平滑性(Rag、20μm以下)、誘電
損失(2,6x”10−4以下)に総合的に優れたマグ
ネシア磁器を得るには、3i02に換算して0.05〜
2.0重量%のアルコキシシラン化合物又はシラザン化
合物で処理されたマグネシア粉末を用いることが必要で
あることがわかった。尚、第3表で明らかなように本実
施例の処理によってマグネシア磁器のすぐれた熱伝導度
、誘電率が損われることはない。
From the above experiments, water resistant compatibility (0.04mg/cm2-H
(below), surface smoothness (Rag, 20 μm or less), and dielectric loss (2,6x"10-4 or less), in order to obtain magnesia porcelain that is comprehensively excellent, 0.05 to 3i02
It has been found necessary to use magnesia powder treated with 2.0% by weight of an alkoxysilane or silazane compound. As is clear from Table 3, the treatment of this example does not impair the excellent thermal conductivity and dielectric constant of magnesia porcelain.

又、第1図は、Si 02に換算して0.5型組%のメ
チルトリメトキシシランによって処理されたマグネシア
粉末を用いてマグネシア磁器の表面の組織を示す電子顕
微鏡写真、第2図は0.5平担%の粉末シワ力を混合し
たマグネシア粉末を用いたマグネシア磁器の表面の組織
を示す電子顕微鏡写真。第3図は0.5重量%のシリカ
ゾルを混合したマグネシア粉末を用いたマグネシア磁器
の表面の組織を示す電子顕微鏡写真である。
Furthermore, Fig. 1 is an electron micrograph showing the surface structure of magnesia porcelain using magnesia powder treated with 0.5% methyltrimethoxysilane in terms of SiO2, and Fig. 2 is an electron micrograph showing the structure of the surface of magnesia porcelain. Electron micrograph showing the surface structure of magnesia porcelain using magnesia powder mixed with .5% powder wrinkle strength. FIG. 3 is an electron micrograph showing the surface structure of magnesia porcelain using magnesia powder mixed with 0.5% by weight of silica sol.

これらの写真かられかるように本実施例によるマグネシ
ア磁器の組織は粒径が揃っており、非常に緻密である。
As can be seen from these photographs, the structure of the magnesia porcelain according to this example has a uniform grain size and is very dense.

尚、試料N0.3〜8.11.12及び14〜19も同
様に緻密な組織であった。
Note that Samples No. 3 to 8.11.12 and No. 14 to 19 had similarly dense structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によるマグネシア磁器表面の組
織を示す電子顕微鏡写真、第2図及び第3図は比較例に
よるマグネシア磁器表面の組織を示す電子顕微鏡写真で
ある。
FIG. 1 is an electron micrograph showing the structure of the surface of magnesia porcelain according to an example of the present invention, and FIGS. 2 and 3 are electron micrographs showing the structure of the surface of magnesia porcelain according to a comparative example.

Claims (1)

【特許請求の範囲】[Claims]  SiO_2に換算して0.05〜2.0重量%の、ア
ルコキシシラン化合物又はシラザン化合物で処理された
マグネシア粉末を焼結することを特徴とするマグネシア
磁器の製造方法。
A method for producing magnesia porcelain, comprising sintering magnesia powder treated with an alkoxysilane compound or a silazane compound in an amount of 0.05 to 2.0% by weight in terms of SiO_2.
JP60142092A 1985-06-26 1985-06-26 Manufacture of magnesia ceramic Pending JPS623065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142092A JPS623065A (en) 1985-06-26 1985-06-26 Manufacture of magnesia ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142092A JPS623065A (en) 1985-06-26 1985-06-26 Manufacture of magnesia ceramic

Publications (1)

Publication Number Publication Date
JPS623065A true JPS623065A (en) 1987-01-09

Family

ID=15307238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142092A Pending JPS623065A (en) 1985-06-26 1985-06-26 Manufacture of magnesia ceramic

Country Status (1)

Country Link
JP (1) JPS623065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269346A (en) * 1988-08-31 1990-03-08 Noritake Co Ltd Oxide ceramic composite material strengthened by dispersed particle and its production
JPH0269347A (en) * 1988-08-31 1990-03-08 Noritake Co Ltd Nonoxide ceramic composite material strengthened by dispersed particle and its production
JP2007084367A (en) * 2005-09-21 2007-04-05 Matsushita Electric Works Ltd Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact
JP2007528342A (en) * 2004-03-11 2007-10-11 コーニング インコーポレイテッド Ceramic composition comprising a silsesquioxane polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756375A (en) * 1980-09-24 1982-04-03 Citizen Watch Co Ltd Ceramic green sheet formation
JPS58217480A (en) * 1982-06-10 1983-12-17 日本特殊陶業株式会社 Magnesia ceramic and manufacture
JPS61155253A (en) * 1984-12-27 1986-07-14 旭硝子株式会社 Mgo sintered body for insulation base material and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756375A (en) * 1980-09-24 1982-04-03 Citizen Watch Co Ltd Ceramic green sheet formation
JPS58217480A (en) * 1982-06-10 1983-12-17 日本特殊陶業株式会社 Magnesia ceramic and manufacture
JPS61155253A (en) * 1984-12-27 1986-07-14 旭硝子株式会社 Mgo sintered body for insulation base material and manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269346A (en) * 1988-08-31 1990-03-08 Noritake Co Ltd Oxide ceramic composite material strengthened by dispersed particle and its production
JPH0269347A (en) * 1988-08-31 1990-03-08 Noritake Co Ltd Nonoxide ceramic composite material strengthened by dispersed particle and its production
JP2007528342A (en) * 2004-03-11 2007-10-11 コーニング インコーポレイテッド Ceramic composition comprising a silsesquioxane polymer
US7585569B2 (en) 2004-03-11 2009-09-08 Corning Incorporated Ceramic composition with silsesquioxane polymer
JP2007084367A (en) * 2005-09-21 2007-04-05 Matsushita Electric Works Ltd Method of manufacturing high thermal conductive ceramic sintered compact and high thermal conductive ceramic sintered compact

Similar Documents

Publication Publication Date Title
JPH0388762A (en) Production of mullite-cordierite combined ceramics
JP2786191B2 (en) Method for producing magnesium oxide powder
JPS623065A (en) Manufacture of magnesia ceramic
JPS62288156A (en) Manufacture of magnesia sintered body
JPH02111658A (en) Ceramic insulating material and production thereof
EP0476954B1 (en) Method for preparing green sheets
JPH05170525A (en) Heat-resistant fiber composition
JPH04154638A (en) Production of thin-film silica glass
JPS6246950A (en) Manufacture of alumina and/or silica base ceramic
JPH02221162A (en) Production of aluminum nitride-based sintered body
JPS6121959A (en) Manufacture of composite sintered body
JPH04317402A (en) Aluminum nitride power and its production
JPS60192605A (en) Manufacture of ceramic sludge
JPH02196065A (en) Production of aluminum nitride sintered body
JPH04175264A (en) Raw material powder of mullite based sintered compact and production of mullite based sintered compact
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS63102106A (en) Mullite sintered body
JPS6054966A (en) Manufacture of ceramic sintered body
JPH04260654A (en) Method for coating sintering auxiliary on ceramic powder
JPS6319470B2 (en)
JPH04945B2 (en)
JPS6141859B2 (en)
JPS6252179A (en) Aluminum nitride composition
JPH01197355A (en) Inorganic sintered body and production thereof
JPH03112847A (en) Production of sintered ceramic