JPH04260654A - Method for coating sintering auxiliary on ceramic powder - Google Patents

Method for coating sintering auxiliary on ceramic powder

Info

Publication number
JPH04260654A
JPH04260654A JP3020108A JP2010891A JPH04260654A JP H04260654 A JPH04260654 A JP H04260654A JP 3020108 A JP3020108 A JP 3020108A JP 2010891 A JP2010891 A JP 2010891A JP H04260654 A JPH04260654 A JP H04260654A
Authority
JP
Japan
Prior art keywords
ceramic powder
hydrophilic polymer
sintering aid
coating
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3020108A
Other languages
Japanese (ja)
Inventor
Seiji Mizuno
誠司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3020108A priority Critical patent/JPH04260654A/en
Publication of JPH04260654A publication Critical patent/JPH04260654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce ceramic powder having an excellent sintering property by coating ceramic powder with a polymer film containing the compound of a metallic element constituting a sintering auxiliary. CONSTITUTION:A method for coating ceramic powder with a sintering auxiliary comprising the steps of coating ceramic powder with a hydrophilic polymer containing the metal alkoxide of a metallic element constituting a sintering auxiliary to form a hydrophilic polymer layer, hydrolyzing a metal alkoxide contained in the hydrophilic polymer layer therein, and drying the hydrophilic polymer layer containing the hydrolyzable metal compound to form composite ceramic powder.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、良好な物性の焼結体が
形成できる焼結性の高いセラミックス粉末とするセラミ
ックス粉末への焼結助剤のコーティング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of coating ceramic powder with a sintering aid to produce a ceramic powder with high sinterability that can form a sintered body with good physical properties.

【0002】0002

【従来の技術】従来、セラミックスの成形体を焼結する
場合には、シリカ、アルミナ、イットリアなどの焼結助
剤を配合して焼結性を高めることがおこなわれている。 この焼結助剤をセラミックス粉末へ混合するには、通常
ボールミルなどで湿式混合で分散させている。しかし、
焼結助剤となる金属化合物は粒径が大きく強固に凝集し
ている場合が多く充分に粉砕することが必要である。し
かも、主原料のセラミックス粉末と焼結助剤とは比重、
粒径などが異なる場合が多く、焼結助剤のセラミックス
への均一分散が困難である。またスラリー中あるいは混
粉後の乾燥において焼結助剤に再凝集がおこり、焼結助
剤が偏在してしまうこともある。このような混合粉末を
用いて成形・焼結したものは、焼結過程で偏在した焼結
助剤が溶融して焼結体にポアが発生する。その結果、焼
結体の強度が充分に発現できないという問題がある。
2. Description of the Related Art Conventionally, when sintering a ceramic molded body, sintering aids such as silica, alumina, and yttria have been blended to improve sinterability. In order to mix this sintering aid into the ceramic powder, it is usually dispersed by wet mixing using a ball mill or the like. but,
Metal compounds that serve as sintering aids often have large particle sizes and are tightly aggregated, so it is necessary to thoroughly crush them. Moreover, the specific gravity of the main raw material ceramic powder and sintering aid is
Particle sizes etc. often differ, making it difficult to uniformly disperse the sintering aid into ceramics. In addition, reaggregation of the sintering aid may occur in the slurry or during drying after the mixed powder, resulting in uneven distribution of the sintering aid. When molded and sintered using such a mixed powder, unevenly distributed sintering aids melt during the sintering process, and pores are generated in the sintered body. As a result, there is a problem that the strength of the sintered body cannot be sufficiently developed.

【0003】ところで、セラミックス焼結体の物性を高
めるために焼結前に、焼結助剤を構成する金属元素の金
属アルコキシドをゾル・ゲル法でセラミックス粉末に分
散させ成形・焼結する方法の開示がある(特開昭64−
76976号公報)。また、均一なセラミックス粉末を
形成する目的で所定の複数の金属を含む溶液に寒天を加
えてゲル化して複数の金属を一度に析出させて酸化物超
電導体の原料の混合粉末を合成する方法の開示がある(
特開平1−275411号公報)。
By the way, in order to improve the physical properties of a ceramic sintered body, there is a method in which, before sintering, a metal alkoxide of a metal element constituting a sintering aid is dispersed in ceramic powder using a sol-gel method, and then molded and sintered. There is a disclosure (Unexamined Japanese Patent Publication No. 1986-
76976). In addition, for the purpose of forming a uniform ceramic powder, agar is added to a solution containing multiple predetermined metals to form a gel, and multiple metals are precipitated at once, thereby synthesizing a mixed powder of raw materials for oxide superconductors. There is a disclosure (
(Japanese Patent Application Laid-Open No. 1-275411).

【0004】0004

【発明が解決しようとする課題】上記の焼結助剤を構成
する金属元素のアルコキシドをゾル・ゲル法でセラミッ
クス粉末に分散させる方法では、セラミッス粉末の表面
に焼結助剤の金属元素は付着するが、その後の射出成形
処理などの段階での粉末同士の物理的な接触により付着
した焼結助剤がセラミックス表面から脱落しやすい。ま
た金属アルコキシドの粉末は通常微粉末となるので凝集
して偏在となりやすく焼結体の物性もさほど向上しない
[Problems to be Solved by the Invention] In the method of dispersing the alkoxide of the metal element constituting the sintering aid into ceramic powder using the sol-gel method, the metal element of the sintering aid adheres to the surface of the ceramic powder. However, the adhering sintering aid is likely to fall off the ceramic surface due to physical contact between the powders during subsequent steps such as injection molding processing. Further, since the metal alkoxide powder is usually a fine powder, it tends to aggregate and become unevenly distributed, and the physical properties of the sintered body are not significantly improved.

【0005】また、所定の金属が溶解している溶液をゲ
ル化させて溶解物を析出させて均一な組成とするには、
金属成分を溶液とすることが必要で総てのセラミックス
に適用できるものではない。本発明は上記の事情に鑑み
てなされたもので、焼結助剤を構成する金属元素の金属
化合物を含む高分子皮膜でセラミックス粉末の表面を被
覆し焼結性の優れたセラミックス粉末とすることを目的
とする。
[0005] Furthermore, in order to gel a solution in which a predetermined metal is dissolved and precipitate the dissolved material to obtain a uniform composition,
This method requires the metal component to be in solution and cannot be applied to all ceramics. The present invention has been made in view of the above circumstances, and provides a ceramic powder with excellent sinterability by coating the surface of ceramic powder with a polymer film containing a metal compound of a metal element constituting a sintering aid. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明のセラミックス粉
末への焼結助剤コーティング方法は、セラミックス粉末
を焼結助剤を構成する金属元素の金属アルコキシドを含
む親水性高分子で被覆して親水性高分子層を形成する被
覆工程と、該親水性高分子層に含まれる金属アルコキシ
ドを該親水性高分子層中で加水分解する加水分解工程と
、該加水分解された金属化合物を含む親水性高分子層を
乾燥させて複合セラミックス粉末とする乾燥工程と、か
らなる。
[Means for Solving the Problems] The method of coating ceramic powder with a sintering aid of the present invention is to coat the ceramic powder with a hydrophilic polymer containing a metal alkoxide of a metal element constituting the sintering aid to make it hydrophilic. a hydrophilic coating step for forming a hydrophilic polymer layer, a hydrolysis step for hydrolyzing a metal alkoxide contained in the hydrophilic polymer layer in the hydrophilic polymer layer, and a hydrophilic coating step for forming a hydrophilic polymer layer containing the hydrophilic metal compound. It consists of a drying step of drying the polymer layer to form a composite ceramic powder.

【0007】この方法は、まず被覆工程で焼結助剤を構
成する金属元素の金属アルコキシドを含む親水性高分子
でセラミックス粉末を被覆する。この場合まず親水性高
分子でセラミックス粉末の表面を被覆し次いでその親水
性高分子に金属アルコキシドを含浸させるか、金属アル
コキシドを含む親水性高分子で直接被覆してもよい。加
水分解工程は、親水性高分子を水と接触させてゲル化し
て加熱して高分子層内で金属アルコキシドを加水分解さ
せて金属化合物にする。セラミックスを被覆している高
分子は親水性であるので充分水を含みゲル皮膜内で加水
分解が進む。親水性高分子がゲル皮膜を形成しているの
で、生成した金属化合物は高分子層にゲルに囲まれた状
態で保持できる。したがって、金属化合物の凝集も防ぐ
ことができる。  乾燥工程では、親水性高分子のゲル
層から水分を除去して、金属化合物を含む高分子層を皮
膜として被覆されたセラミックス粉末が得られる。
In this method, first, in a coating step, ceramic powder is coated with a hydrophilic polymer containing a metal alkoxide of a metal element constituting a sintering aid. In this case, the surface of the ceramic powder may first be coated with a hydrophilic polymer, and then the hydrophilic polymer may be impregnated with a metal alkoxide, or it may be directly coated with a hydrophilic polymer containing a metal alkoxide. In the hydrolysis step, the hydrophilic polymer is brought into contact with water, gelled, and heated to hydrolyze the metal alkoxide within the polymer layer to form a metal compound. Since the polymer coating the ceramic is hydrophilic, it contains sufficient water and hydrolysis progresses within the gel film. Since the hydrophilic polymer forms a gel film, the generated metal compound can be retained in the polymer layer while being surrounded by gel. Therefore, agglomeration of metal compounds can also be prevented. In the drying step, water is removed from the hydrophilic polymer gel layer to obtain ceramic powder coated with a polymer layer containing a metal compound as a film.

【0008】得られたセラミックス粉末は、焼結助剤と
して働く金属化合物が高分子皮膜中に保持されているの
で、成形その他の処理によっても、表面から脱落するこ
とはない。したがって、セラミックス粉末には均一に焼
結助剤が分布している。そしてこの高分子皮膜は脱脂時
あるいは焼結時に除去される。このため焼結助剤が原料
のセラミックス表面に均一に分散しているので焼結性に
優れた成形体となる。
[0008] Since the obtained ceramic powder has a metal compound which acts as a sintering aid retained in the polymer film, it does not fall off from the surface even during molding or other treatments. Therefore, the sintering aid is uniformly distributed in the ceramic powder. This polymer film is then removed during degreasing or sintering. Therefore, the sintering aid is uniformly dispersed on the surface of the raw ceramic material, resulting in a molded body with excellent sinterability.

【0009】また得られる焼結体は、ポアなどの欠陥が
なく強度などの本来の物性を発現することができる。使
用される親水性高分子としては、寒天、こんにゃくなど
の多糖類、ゼラチンなどの蛋白質、DNAなどの天然高
分子や、ポリアクリルアミド、ポリビニルアルコ−ルな
どの合成高分子などが使用できる。
Furthermore, the obtained sintered body is free from defects such as pores and can exhibit original physical properties such as strength. Examples of the hydrophilic polymers that can be used include polysaccharides such as agar and konjac, proteins such as gelatin, natural polymers such as DNA, and synthetic polymers such as polyacrylamide and polyvinyl alcohol.

【0010】焼結助剤を構成する金属元素の金属アルコ
キシドとしては、ケイ酸エチル、アルミニウムメトキシ
ド、アルミニウムエトキシド、アルミニウムイソプロポ
キシド、イットリウムメトキシド、イットリウムエトキ
シド、イットリウムイソプロポキシド、などが挙げられ
る。
Examples of the metal alkoxide of the metal element constituting the sintering aid include ethyl silicate, aluminum methoxide, aluminum ethoxide, aluminum isopropoxide, yttrium methoxide, yttrium ethoxide, and yttrium isopropoxide. Can be mentioned.

【0011】[0011]

【作用】本発明のコーティング方法によれば、セラミッ
クス粉末の表面に焼結助剤を構成する金属アルコキシド
を含む親水性高分子の被覆層を形成し、水で被覆層をゲ
ル化させてこの被覆層中の金属アルコキシドを加水分解
する。この加水分解されて形成された金属化合物は、ゲ
ル状の高分子層中に保持される。したがって、この高分
子層が乾燥されてもそのまま残存するので、セラミック
ス表面に高分子が被覆されて存在するかぎり焼結助剤の
金属化合物も存在して射出成形などで脱落することはな
い。また高分子膜のゲルで囲まれた中に存在するので凝
集することもない。このためセラミックス粉末中に金属
化合物が均一に分散された状態を保持することができ、
焼結工程で焼結助剤の偏在するために発生する不具合は
防止できる。
[Operation] According to the coating method of the present invention, a coating layer of a hydrophilic polymer containing a metal alkoxide constituting a sintering aid is formed on the surface of a ceramic powder, and the coating layer is gelled with water. Hydrolyze the metal alkoxide in the layer. The metal compound formed by this hydrolysis is retained in the gel-like polymer layer. Therefore, even if this polymer layer is dried, it remains as it is, so as long as the ceramic surface is coated with the polymer, the metal compound as a sintering aid will also be present and will not fall off during injection molding or the like. Furthermore, since it exists within the gel of the polymer membrane, it does not aggregate. Therefore, it is possible to maintain a uniformly dispersed state of the metal compound in the ceramic powder,
Problems caused by uneven distribution of the sintering aid during the sintering process can be prevented.

【0012】0012

【実施例】以下、実施例により具体的に説明する。 (実施例1) (被覆工程) 寒天を80℃の温水に添加し3重量%の寒天を含む水溶
液とした。この水溶液に窒化ケイ素粉末を添加して20
重量%の濃度になるように混合した。一旦温度を50℃
まで下げ(寒天のゲル化する手前の温度)イットリウム
メトキシド〔Y(OCH3 )3 〕およびアルミニウ
ムメトキシド〔Al(OCH3 )3 〕を各5重量%
添加し攪拌混合により寒天中に均一分散させた。
[Examples] Hereinafter, the present invention will be explained in detail using examples. (Example 1) (Coating step) Agar was added to 80°C warm water to form an aqueous solution containing 3% by weight agar. Add silicon nitride powder to this aqueous solution and
They were mixed to a concentration of % by weight. Once the temperature is 50℃
(temperature before the agar gels) yttrium methoxide [Y(OCH3)3] and aluminum methoxide [Al(OCH3)3] are added at 5% by weight each.
It was added and uniformly dispersed in the agar by stirring and mixing.

【0013】次にスプレードライヤーにより上記の混合
水溶液を噴霧乾燥して窒化ケイ素の表面に金属アルコキ
シドを含有する寒天被膜をもつ粉末を形成した。 (加水分解工程) この粉末に60℃の温水を徐々に加え、寒天に水を吸収
させてゲル化させてこの温度に保持して、寒天中に含ま
れる金属アルコキシドを加水分解させた。 (乾燥工程) 次に減圧下で30℃に加熱して加水分解物を乾燥して焼
結助剤用金属化合物がコーテイングされた複合セラミッ
クス粉末を得た。
Next, the above mixed aqueous solution was spray-dried using a spray dryer to form a powder having an agar film containing a metal alkoxide on the surface of silicon nitride. (Hydrolysis step) Warm water at 60° C. was gradually added to this powder to cause the agar to absorb water and form a gel, and this temperature was maintained to hydrolyze the metal alkoxides contained in the agar. (Drying Step) Next, the hydrolyzate was dried by heating at 30° C. under reduced pressure to obtain a composite ceramic powder coated with a metal compound for a sintering aid.

【0014】この複合セラミックス粉末の断面模式図(
a)およびその工程の流れ説明図(b)を図1に示す。 この粉末はセラミックスの表面に金属化合物を含む高分
子ゲルで被覆されている。この粉末を用いて金型プレス
成形により曲げ試験用テストピースを成形した。この成
形体を大気中で500℃まで10℃/Hrの昇温速度で
加熱して、成形体中の有機成分を除去した。つぎに窒素
中1800℃で焼結して焼結体とした。
[0014] A schematic cross-sectional diagram of this composite ceramic powder (
A) and a flow explanatory diagram (b) of the process are shown in FIG. This powder has a ceramic surface coated with a polymer gel containing a metal compound. Using this powder, a test piece for a bending test was molded by die press molding. This molded body was heated to 500° C. in the air at a heating rate of 10° C./Hr to remove organic components in the molded body. Next, it was sintered at 1800° C. in nitrogen to form a sintered body.

【0015】この焼結体をJIS−R1601に準じて
4点曲げ強度試験を実施した。その結果1000MPa
の強度を示し、従来法の焼結助剤を混合して焼結した場
合の強度が700MPaであるのに比べて約30%強度
が向上した。また焼結体の組織を光学顕微鏡で観察した
結果10μm以上のポアはなく良好であった。 (実施例2) 実施例1で得られた複合セラミックス粉末を水に分散さ
せたスリップを用いて鋳込み成形をおこない、成形体を
焼結した。得られた焼結体は実施例1と同様に良好な物
性を示した。 (実施例3) (被覆工程) 窒化ケイ素粉末を80℃の3重量%の寒天を含む水溶液
と添加して20重量%の濃度になるように混合しスプレ
ードライヤーで乾燥して親水性高分子で被覆されたセラ
ミックス粉末とした。
[0015] This sintered body was subjected to a four-point bending strength test according to JIS-R1601. As a result, 1000MPa
The strength was improved by about 30% compared to the strength of 700 MPa when sintered with a sintering aid mixed in the conventional method. Further, the structure of the sintered body was observed using an optical microscope, and it was found to be in good condition with no pores larger than 10 μm. (Example 2) Cast molding was performed using a slip in which the composite ceramic powder obtained in Example 1 was dispersed in water, and a molded body was sintered. The obtained sintered body exhibited good physical properties as in Example 1. (Example 3) (Coating process) Silicon nitride powder was added to an aqueous solution containing 3% by weight agar at 80°C, mixed to a concentration of 20% by weight, and dried with a spray dryer to coat with a hydrophilic polymer. It was made into a coated ceramic powder.

【0016】上記のセラミックス粉末を水中に添加して
親水性高分子をゲル化させた。このゲル化物にイットリ
ウムメトキシド〔Y(OCH3 )3 〕およびアルミ
ニウムメトキシド〔Al(OCH3 )3〕を各9重量
%添加した水溶液を加えて攪拌混合により金属アルコキ
シドをゲル中に付着ないし浸透させた。 (加水分解工程) 上記の金属アルコキシドと水を含む高分子ゲルで被覆さ
れたセラミックスを60℃に加熱して金属アルコキシド
をゲル中で加水分解した。 (乾燥工程) 加水分解工程で得られたゲルにより覆われたセラミック
スを減圧下で30℃に加熱してゲル層の水分を除去して
乾燥させて焼結助剤用金属化合物がコーテイングされた
複合セラミックス粉末とした。
The above ceramic powder was added to water to gel the hydrophilic polymer. An aqueous solution containing 9% by weight each of yttrium methoxide [Y(OCH3)3] and aluminum methoxide [Al(OCH3)3] was added to this gelled product, and the metal alkoxide was attached or permeated into the gel by stirring and mixing. . (Hydrolysis step) The ceramic coated with the polymer gel containing the metal alkoxide and water was heated to 60° C. to hydrolyze the metal alkoxide in the gel. (Drying process) Ceramics covered with the gel obtained in the hydrolysis process are heated to 30°C under reduced pressure to remove water in the gel layer and dried to form a composite coated with a metal compound for sintering aid. It was made into ceramic powder.

【0017】この複合セラミックス粉末の断面模式図(
a)およびその工程の流れ説明図(b)を図2に示す。 この場合はセラミックス粉末の表面にゲル層とゲル層の
表面に金属化合物を含むゲル層が形成されている。 この粉末を実施例1と同様に成形して焼結した。得られ
た焼結体は実施例1と同様に良好な物性を示した。
[0017] A schematic cross-sectional view of this composite ceramic powder (
A) and a flow explanatory diagram (b) of the process are shown in FIG. In this case, a gel layer is formed on the surface of the ceramic powder, and a gel layer containing a metal compound is formed on the surface of the gel layer. This powder was molded and sintered in the same manner as in Example 1. The obtained sintered body exhibited good physical properties as in Example 1.

【0018】[0018]

【発明の効果】このコーティング方法によれば、セラミ
ックス粉末に焼結助剤が均一にコーティングできること
により少量の添加でも焼結性が良く、高温強度の向上に
効果がある。また、焼結助剤が高分子層のゲル中に均一
に保有されるので、乾燥により焼結助剤が凝集するのを
防止することができる。
According to this coating method, the sintering aid can be uniformly coated on the ceramic powder, so that even if a small amount is added, the sintering property is good and the high-temperature strength is improved. Furthermore, since the sintering aid is uniformly retained in the gel of the polymer layer, it is possible to prevent the sintering aid from agglomerating due to drying.

【0019】さらに、セラミックス粉末が高分子皮膜で
コーティングされているため、立体障害によりセラミッ
クス粉末同士の凝集も防止できる。また粉末の流動性も
良く成形性も向上する。
Furthermore, since the ceramic powder is coated with a polymer film, agglomeration of the ceramic powders can be prevented due to steric hindrance. In addition, the powder has good fluidity and moldability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  実施例1で得られた複合セラミックス粉末
の断面模式図(a)とその製造方法の流れ説明図(b)
である。
[Figure 1] Schematic cross-sectional diagram of the composite ceramic powder obtained in Example 1 (a) and flow explanatory diagram of its manufacturing method (b)
It is.

【図2】  実施例2で得られた複合セラミックス粉末
の断面模式図(a)とその製造方法の流れ説明図(b)
である。
[Figure 2] Schematic cross-sectional diagram of the composite ceramic powder obtained in Example 2 (a) and flow explanatory diagram of its manufacturing method (b)
It is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  セラミックス粉末を焼結助剤を構成す
る金属元素の金属アルコキシドを含む親水性高分子で被
覆して親水性高分子層を形成する被覆工程と、該親水性
高分子層に含まれる金属アルコキシドを該親水性高分子
層中で加水分解する加水分解工程と、該加水分解された
金属化合物を含む親水性高分子層を乾燥させて複合セラ
ミックス粉末とする乾燥工程と、からなるセラミックス
粉末への焼結助剤のコーティング方法。
1. A coating step of coating a ceramic powder with a hydrophilic polymer containing a metal alkoxide of a metal element constituting a sintering aid to form a hydrophilic polymer layer; a hydrolysis step of hydrolyzing a metal alkoxide contained in the hydrophilic polymer layer; and a drying step of drying the hydrophilic polymer layer containing the hydrolyzed metal compound to obtain a composite ceramic powder. Method of coating powder with sintering aid.
JP3020108A 1991-02-13 1991-02-13 Method for coating sintering auxiliary on ceramic powder Pending JPH04260654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3020108A JPH04260654A (en) 1991-02-13 1991-02-13 Method for coating sintering auxiliary on ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020108A JPH04260654A (en) 1991-02-13 1991-02-13 Method for coating sintering auxiliary on ceramic powder

Publications (1)

Publication Number Publication Date
JPH04260654A true JPH04260654A (en) 1992-09-16

Family

ID=12017927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020108A Pending JPH04260654A (en) 1991-02-13 1991-02-13 Method for coating sintering auxiliary on ceramic powder

Country Status (1)

Country Link
JP (1) JPH04260654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149573A (en) * 1997-07-31 1999-02-23 Taiyo Yuden Co Ltd Production of ceramic composite material
JP2008247725A (en) * 2007-03-30 2008-10-16 Kanazawa Univ Method for manufacturing ceramic/organic matter compound structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149573A (en) * 1997-07-31 1999-02-23 Taiyo Yuden Co Ltd Production of ceramic composite material
JP2008247725A (en) * 2007-03-30 2008-10-16 Kanazawa Univ Method for manufacturing ceramic/organic matter compound structure

Similar Documents

Publication Publication Date Title
CN110357642A (en) Photocuring 3D printing slurry, preparation method and silicon nitride ceramics
JPS6150907B2 (en)
KR100419346B1 (en) Method for preparing porous yttria stabilized zirconia
JPH04260654A (en) Method for coating sintering auxiliary on ceramic powder
JPH0232231B2 (en)
KR100381097B1 (en) Method for preparing of silica sleeve for hearth roll
JPH01126276A (en) Production of ceramic sintered body
JPS623065A (en) Manufacture of magnesia ceramic
KR100232059B1 (en) Molding method of silicon carbide-carbon black system for reaction-sintered sic
JP3100549B2 (en) Porous ceramics
JPS6121959A (en) Manufacture of composite sintered body
KR100483512B1 (en) Porous ceramic filter and method of producing the same
JPH07278311A (en) Inorganic/organic fused material and its production
JPS61281069A (en) Manufacture of ceramic sintered body
JPH05170539A (en) Sic-based slurry for cast-molding
JP2001181060A (en) Method for producing particle dispersion type ceramic
JPS61186266A (en) Manufacture of beta-sialon sintered body
JP2002309181A (en) Coating material and coating method
JPS63310969A (en) Production of zirconia coated material
JPS6265979A (en) Production of aluminum nitride sintered plate
JPS61251571A (en) Manufacture of ceramic formed body
CN107445617A (en) A kind of high-compactness PZT targets and preparation method thereof
JPH0551539B2 (en)
JPH0297466A (en) Production of sintered silicon nitride body
JPH02175666A (en) Production of calcined aluminum nitride compact