JPH04175264A - Raw material powder of mullite based sintered compact and production of mullite based sintered compact - Google Patents

Raw material powder of mullite based sintered compact and production of mullite based sintered compact

Info

Publication number
JPH04175264A
JPH04175264A JP2325926A JP32592690A JPH04175264A JP H04175264 A JPH04175264 A JP H04175264A JP 2325926 A JP2325926 A JP 2325926A JP 32592690 A JP32592690 A JP 32592690A JP H04175264 A JPH04175264 A JP H04175264A
Authority
JP
Japan
Prior art keywords
mullite
powder
less
raw material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2325926A
Other languages
Japanese (ja)
Inventor
Jii Emu Yuu Isumairu Emu
エム.ジー.エム.ユー.イスマイル
Zenjiro Nakai
中井 善治郎
Keiichi Katayama
恵一 片山
Yukio Yuzawa
湯沢 幸男
Fumio Nemoto
根本 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Publication of JPH04175264A publication Critical patent/JPH04175264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain raw material powder capable of readily producing having sufficiently large strength, reduced in dispersion of strength and being small in lowering of strength at high temperature by specifying mullite crystal diameter, Al2O3/SiO2 ratio, average particle diameter and shape. CONSTITUTION:When a mixture of alumina sol and silica sol is sprayed to provide globular mullite based powder, the resultant powder has <=200mum mullite crystal diameter, weight ratio of Al2O3/SiO2 of 40/60 to 80/20 and <=10mum average particle diameter. A raw material containing the mullite based globular powder is formed and burned to readily provide the objective mullite based sintered compact having sufficiently large strength, reduced in dispersion of strength and being small in lowering of strength at high temperature. When crystal size thereof exceeds 200nm or average particle diameter thereof exceeds 10mum, in the above-mentioned raw material powder, the powder becomes difficult to sinter and it becomes difficult to obtain sintered compact having sufficient strength. Through Al2O3/SiO2 ratio is used in the above-mentioned range, when high-temperature strength is regarded as important, amount of SiO2 is preferably reduced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば高温耐熱構造用セラミックスや集積回
路基板(絶縁セラミックス基板)として利用できるムラ
イト質焼結体の原料粉末及びムライト質焼結体の製造方
法に関するものである。
The present invention relates to a raw material powder for a mullite sintered body that can be used, for example, as ceramics for high-temperature heat-resistant structures or integrated circuit boards (insulating ceramic substrates), and a method for producing the mullite sintered body.

【従来の技術】[Conventional technology]

ムライト(3A]、03 ・2SjO2)質焼結体は、
高温における強度低下が小さ(、高温構造用セラミック
ス材料として、又、アルミナセラミックスに比べ誘電率
が低く、熱膨張率係数もシリコン半導体素子やガリウム
ーヒ素半導体素子に近い為、集積回路用絶縁性基板材料
としても注目を浴びている。 ところで、ムライト質焼結体の製造方法は、出発原料の
種類により次の三つに大別できる。 ■ カオリンなどの粘土FL物を出発原料とする方法 ■ アルミナ(A 12 C1+ )粉末とシリカ(S
i02)粉末を出発原料とする方法 ■ 電融法により合成したムライトを粉砕し、この粉末
を出発原料とする方法
The mullite (3A), 03 ・2SjO2) sintered body is
Small strength loss at high temperatures (as a ceramic material for high-temperature structures, and has a lower dielectric constant than alumina ceramics and a coefficient of thermal expansion close to that of silicon semiconductor elements and gallium-arsenide semiconductor elements, so it is suitable as an insulating substrate material for integrated circuits. By the way, methods for producing mullite sintered bodies can be roughly divided into the following three types depending on the type of starting material: ■ A method using a clay FL material such as kaolin as a starting material ■ A method using alumina ( A 12 C1+ ) powder and silica (S
i02) Method using powder as starting material■ Method using pulverized mullite synthesized by electrofusion method and using this powder as starting material

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記■のカオリンなどの粘土鉱物を出発
原料とする製造方法により得られるムライト質焼結体は
、不純物が多く、高温における強度低下が大きく、高温
構造用セラミックス材料としては利用できない。 又、α線の放射量が多い為、半導体素子の集積回路用絶
縁性基板材料として用いた場合には、半導体素子に誤動
作を起こさせる恐れがある。 ■のA l z Ox粉末とSiO□粉末を出発原料と
する製造方法では、原料粉末を均一に混合するのが難し
く、焼結体組織が不均一になりやすく、又、焼結しにく
いため充分な強度をもったムライト質焼結体が得られに
くい。さらには、微粉末のAl2O.粉末及びSiO□
粉末を出発原料とする場合、成形性が悪く、焼成収縮も
バラツキ、製造されたムライト焼結体の形状及び寸法の
安定生が悪いなどの欠点もある。 ■の電融法により合成したムライトを粉砕した粉末を出
発原料とする製造方法では、高純度ではあるが、焼結し
にくい。 この為、微量のアルカリ金属、アルカリ土類金属等を添
加して焼結時に融液を生ぜしめ、焼結を促進させる方法
が試みられている。しかしながら、この方法で製造され
たムライト質セラミックスは、焼結体内部に20μmを
越える大きな気孔が形成されやすく、強度のバラツキが
大きく、又、高温での強度低下も著しいという欠点があ
る。 本発明の目的は、強度が充分に大きく、しかもバラツキ
は少なく、高温での強度低下の小さいムライト質焼結体
を容易に製造する技術を提供することである。
However, the mullite sintered body obtained by the above manufacturing method using clay minerals such as kaolin as a starting material contains many impurities and has a large decrease in strength at high temperatures, so it cannot be used as a ceramic material for high-temperature structures. Furthermore, since the amount of alpha rays emitted is large, when used as an insulating substrate material for an integrated circuit of a semiconductor device, there is a risk that the semiconductor device may malfunction. In the manufacturing method using A lz Ox powder and SiO It is difficult to obtain a mullite sintered body with sufficient strength. Furthermore, fine powder Al2O. Powder and SiO□
When powder is used as a starting material, there are disadvantages such as poor moldability, variable firing shrinkage, and poor stability in shape and dimension of the produced mullite sintered body. In the manufacturing method (2), which uses as a starting material a powder obtained by pulverizing mullite synthesized by the electrofusion method, although the purity is high, it is difficult to sinter. For this reason, attempts have been made to add trace amounts of alkali metals, alkaline earth metals, etc. to produce a melt during sintering to accelerate sintering. However, the mullite ceramics produced by this method have the disadvantage that large pores exceeding 20 μm are likely to be formed inside the sintered body, the strength varies widely, and the strength decreases significantly at high temperatures. An object of the present invention is to provide a technique for easily manufacturing a mullite sintered body having sufficiently high strength, less variation, and less loss of strength at high temperatures.

【課題を解決する為の手段】[Means to solve the problem]

本発明者は、高純度のアルミナゾルとシリカゾルを均質
に混合後、500°C−1600°Cの温度にて噴霧し
ながら焼成して種々の組成をもったムライト賞球状粉末
を合成し、このムライト質球状粉末単独を原料粉末とし
た場合、又、このムライト賞球状粉末にアルミナ粉末、
シリカ粉末及びムライト賞非球状粉末を添加したものを
原料粉末とした場合において、得られるムライト質焼結
体の強度が充分大きく、かつ、バラツキが少なく、しか
も高温での強度低下が小さいムライト質焼結体を簡単に
製造できる方法を鋭意研究した。 この結果、アルミナゾルとシリカゾルの混合物を噴霧す
ると球状粉末となるが、噴霧時の焼成温度が低いと、非
晶質の集合体で、比表面積も大きい為、成形性が悪く、
このようなものを出発原料としてムライト質焼結体を製
造した場合には、前配本発明の目的とするようなムライ
ト質焼結体は得られにくいことが判って来た。 すなわち、上記のような粉末を出発原料とした場合、成
形密度が低く、焼成収縮が大きく、安定しない為、焼成
中に割れが発生したり、焼結後の形状、寸法に大きなバ
ラツキが出たのである。 又、アルミナゾルとシリカゾルの混合物の噴霧時の焼成
温度を上げていくと、球状粉末は比表面積が象、激に小
さくなり、非晶質からムライトの結晶が生成されてくる
。さらに、噴霧時の焼成温度を上げていくと、ムライト
結晶の結晶子の大きさが微細なものから大きなものへと
変化していくことも判って来た。 これらの知見を基にして更なる研究が鋭意押し進められ
て行った結果、上記本発明の目的は、ムライト質粉末で
あり、このムライト質粉末のムライト結晶子径が200
nm以下であって、Al2O、/SiO□の重量比が4
0/60〜80/20で、平均粒径が10μm以下の球
状のものであることを特徴とするムライト質焼結体の原
料粉末によって達成されることが判明した。 又、ムライト結晶子径が200nm以下であって、A1
□O,/Si○2の重量比が40/60〜80/20で
、平均粒径が10μm以下の球状のムライト質粉末と、
ムライト結晶子径が200nm以下であって、A l 
t ox /S i 02の重量比が40/60〜80
/20で、平均粒径が10μm以下の非球状のムライト
質粉末とを含み、前記球状のムライト質粉末100重量
部に対して前記非球状のムライト質粉末が80重量部以
下であることを特徴とするムライト質焼結体の原料粉末
によって達成されることが判明した。 又、Al2O3及びSiO2以外の不純物が0゜5重量
%以下で、A 1203 /S i Ozの重量比が4
0/60〜80/20の範囲内の値であって、結晶子の
大きさが200nm以下のムライト結晶相を含む平均粒
径10μm以下のムライト質球状粉末を原料組成とし、
このムライト質球状粉末を含む原料を成形、焼成するこ
とを特徴とするムライト質焼結体の製造方法によって達
成されることが判明した。 又、A I 20ff及びSiO□以外の不純物が0゜
5重量%以下で、結晶子の大きさが200nm以下のム
ライト結晶相を含む平均粒径10μm以下のムライト質
球状粉末100重量部と、平均粒径が5μm以下のムラ
イト質非球状粉末、平均粒径が5μm以下のA I 2
03粉末及び平均粒径が5μm以下の5iOz粉末の群
の中から選ばれる少なくとも一種以上の粉末が合計80
重量部以下とを含み、これらの原料組成におけるAl2
O3/Si○2の重量比が40/60〜80/20の範
囲内の値となるよう調整されてなるものを原料組成とし
、このムライト質球状粉末を含む原料を成形、焼成する
ことを特徴とするムライト質焼結体の製造方法によって
達成されることが判明した。 上記ムライト質焼結体の製造方法において、出発原料と
なるムライト賞球状粉末のアルミナ及びシリカ以外の成
分、すなわち不純物は0.5重量%まで許される。尚、
高温強度を重視する用途では、不純物は0.3重量%以
下、より望ましくは0.1重量%以下であることが好ま
しい。すなわち、不純物が多いと高温における強度低下
が大きくなり、特に0.5重量%を越えて多くなりすぎ
ると、高温における強度低下が著しく、内部に20μm
を越える気孔が出来やすく、強度のバラツキも大きくな
る。 出発原料のアルミナ対シリカの重量比は40対60〜8
0対20の範囲内のものであるが、高温における強度を
重視する場合には、シリカの割合を減少させた方が好ま
しく、すなわち65対35〜80対20、より望ましく
は70対30〜80対20であることが好ましい。 出発原料のムライト質球状粉末のムライト結晶子の大き
さは200nm以下、好ましくは1100n以下で、ム
ライト結晶子の結晶相が含まれていることが必要である
が、ガラス相又はその他の結晶相を含んでいても良い。 すなわち、ムライト質球状粉末粒子中のムライト結晶子
の大きさが200nmを越えると、焼結しにくくなり、
充分な強度を持った焼結体が製造できにくくなる。 又、出発原料のムライト質球状粉末の平均粒径が10μ
mを越えて大きくなり過ぎた場合には、焼結しにくく、
充分な強度をもった焼結体が製造されにくいことから、
平均粒径が10μm以下であることが大事であり、51
m以下のものが好ましい。特に、0.3〜5μmのもの
が好ましい。 出発原料としてAl2O3及びSiO2以外の成分が0
.5重量%以下で、結晶子の大きさが200nm以下の
ムライト結晶相を含む平均粒径10μm以下のムライト
質球状粉末の他に、ムライト質非球状粉末、Al2O3
粉末及び5iC)z粉末の群の中から選ばれる少なくと
も一種以上の粉末が用いられる場合には、これらの原料
組成におけるA1201対SiO2の重量組成比が40
対60〜80対20の範囲内の値となるよう調整されな
ければならない。 尚、アルミナ対シリカの重量比は65対35〜80対2
0、より望ましくは70対30〜80対20であること
が好ましい。 ムライト質非球状粉末、へ1□03粉末及びSlO□粉
末は、平均粒径が5μm以下のものであることが好まし
く、より好ましくは0.3〜3μmのものである。すな
わち、平均粒径が大きくなると焼結しにくく、一方、平
均粒径が小さくなりすぎると成形性が悪(なり、焼結体
の形状及び寸法の安定性が悪くなることから、平均粒径
が5μm以下、好ましくは0. 3〜3μmのものであ
る。 又、アルミナ粉末、シリカ粉末及びムライト非球状粉末
の添加割合がムライ)1球状粉末100重量部に対し8
0重量部を越えて多くなりすぎると、成形性、焼結性が
悪くなり、良好なムライト質焼結体が製造しにくくなる
ことから、ムライト質球状粉末100重量部に対して平
均粒径が5am以下のムライト質非球状粉末、平均粒径
が5μm以下のA l 20s粉末及び平均粒径が5μ
m以下のSin、粉末の群の中から選ばれる少なくとも
一種以上の粉末が合計80重量部以下であることが好ま
しい。 尚、上記のようなムライト賞粉末は、ヘーマイトゾルと
シリカゾルとを所定の割合で混合し、ゲル化し、仮焼す
ることで得られる。 ヘーマイトゾルとしては、γ−A I z Oz ヤヘ
ーマイ) (A100H)の水分散液を加熱しながら硝
酸、塩酸などの無機酸や酢酸、ギ酸などの有機酸を加え
、解膠することによって得られたものがある。 シリカゾルとしては、シリカ微粒子、例えば湿式法で製
造されるホワイトカーボンや乾式法のヒユームドシリカ
を水中に分散させたコロイド水溶液がある。 出発原料として用いられるアルミナ粉末、シリカ粉末及
びムライト質非球状粉末は高純度のものが好ましく、出
発原料として用いる混合物の不純物(最終)の量は0.
5%以下、好ましくは0゜3%以下である。 又、ムライト質非球状粉末は電融法によって合成したム
ライトの粉砕品であるとか、ムライト質球状粉末を粉砕
したものでも良い。
The present inventor synthesized mullite prize spherical powders with various compositions by homogeneously mixing high-purity alumina sol and silica sol, and then firing the mixture at a temperature of 500°C to 1600°C while spraying. When using quality spherical powder alone as raw material powder, alumina powder,
When silica powder and mullite award-winning non-spherical powder are added as raw material powder, the strength of the obtained mullite sintered body is sufficiently high, there is little variation, and the strength decreases little at high temperatures. We worked hard to find a way to easily produce the aggregates. As a result, when a mixture of alumina sol and silica sol is sprayed, it becomes a spherical powder, but if the firing temperature during spraying is low, it becomes an amorphous aggregate with a large specific surface area, resulting in poor formability.
It has been found that when a mullite sintered body is produced using such a material as a starting material, it is difficult to obtain a mullite sintered body as the object of the present invention. In other words, when the above-mentioned powder is used as a starting material, the compacting density is low, the firing shrinkage is large, and it is unstable, resulting in cracks during firing and large variations in shape and dimensions after sintering. It is. Furthermore, as the firing temperature during spraying of the mixture of alumina sol and silica sol is increased, the specific surface area of the spherical powder becomes extremely small, and mullite crystals are formed from amorphous. Furthermore, it has been found that as the firing temperature during spraying is increased, the crystallite size of mullite crystals changes from fine to large. Based on these findings, further research has been carried out, and as a result, the object of the present invention is to provide a mullite powder, which has a mullite crystallite diameter of 200.
nm or less, and the weight ratio of Al2O, /SiO□ is 4
It has been found that this can be achieved by using a raw material powder of a mullite-based sintered body characterized by having a spherical particle size of 0/60 to 80/20 and an average particle size of 10 μm or less. Further, the mullite crystallite diameter is 200 nm or less, and A1
Spherical mullite powder with a weight ratio of □O, /Si○2 of 40/60 to 80/20 and an average particle size of 10 μm or less,
The mullite crystallite diameter is 200 nm or less, and Al
The weight ratio of tox/S i 02 is 40/60 to 80
/20 and a non-spherical mullite powder with an average particle size of 10 μm or less, and the non-spherical mullite powder is 80 parts by weight or less per 100 parts by weight of the spherical mullite powder. It has been found that this can be achieved by using a raw material powder of mullite sintered body. In addition, impurities other than Al2O3 and SiO2 are 0.5% by weight or less, and the weight ratio of A 1203 /S i Oz is 4.
The raw material composition is a mullite spherical powder having an average particle size of 10 μm or less and containing a mullite crystal phase with a crystallite size of 200 nm or less and having a value within the range of 0/60 to 80/20,
It has been found that this can be achieved by a method for producing a mullite sintered body, which is characterized by molding and firing a raw material containing this mullite spherical powder. In addition, 100 parts by weight of mullite spherical powder with an average particle size of 10 μm or less containing a mullite crystal phase with a crystallite size of 200 nm or less and containing impurities other than A I 20ff and SiO□ of 0.5% by weight or less; Mullite non-spherical powder with a particle size of 5 μm or less, A I 2 with an average particle size of 5 μm or less
A total of 80 powders of at least one kind selected from the group of 03 powder and 5iOz powder with an average particle size of 5 μm or less
Al2 in these raw material compositions, including parts by weight or less
The raw material composition is adjusted so that the weight ratio of O3/Si○2 is within the range of 40/60 to 80/20, and the raw material containing this mullite spherical powder is molded and fired. It has been found that this can be achieved by a method for producing a mullite sintered body. In the above method for producing a mullite-based sintered body, components other than alumina and silica, that is, impurities, in the mullite spherical powder serving as the starting material are allowed up to 0.5% by weight. still,
In applications where high temperature strength is important, the content of impurities is preferably 0.3% by weight or less, more preferably 0.1% by weight or less. In other words, when there are many impurities, the strength decreases significantly at high temperatures.In particular, when the amount exceeds 0.5% by weight, the strength decreases significantly at high temperatures.
It is easy to form pores that exceed 100%, and the strength variation becomes large. The weight ratio of starting materials alumina to silica is 40:60 to 8.
Although the ratio is within the range of 0:20, if strength at high temperatures is important, it is preferable to reduce the ratio of silica, that is, 65:35 to 80:20, more preferably 70:30 to 80. Preferably, the ratio is 20 to 20. The size of mullite crystallites in the mullite spherical powder as the starting material must be 200 nm or less, preferably 1100 nm or less, and it is necessary that it contains a crystalline phase of mullite crystallites, but it is necessary that it contains a glass phase or other crystalline phase. It may be included. That is, when the size of the mullite crystallites in the mullite spherical powder particles exceeds 200 nm, it becomes difficult to sinter,
It becomes difficult to manufacture a sintered body with sufficient strength. In addition, the average particle size of the mullite spherical powder as the starting material is 10μ.
If the size exceeds m, it will be difficult to sinter,
Because it is difficult to produce a sintered body with sufficient strength,
It is important that the average particle size is 10 μm or less, and 51
m or less is preferable. In particular, those having a diameter of 0.3 to 5 μm are preferable. 0 components other than Al2O3 and SiO2 as starting materials
.. In addition to mullite spherical powder with an average particle size of 10 μm or less containing a mullite crystal phase with a crystallite size of 200 nm or less at 5% by weight or less, mullite non-spherical powder, Al2O3
When at least one kind of powder selected from the group of powder and 5iC)z powder is used, the weight composition ratio of A1201 to SiO2 in these raw material compositions is 40
It must be adjusted to a value within the range of 60:20 to 80:20. The weight ratio of alumina to silica is 65:35 to 80:2.
0, more preferably 70:30 to 80:20. The mullite non-spherical powder, He1□03 powder and SlO□ powder preferably have an average particle size of 5 μm or less, more preferably 0.3 to 3 μm. In other words, if the average particle size becomes too large, it becomes difficult to sinter, while if the average particle size becomes too small, the formability becomes poor (and the stability of the shape and dimensions of the sintered body deteriorates. 5 μm or less, preferably 0.3 to 3 μm. Also, the addition ratio of alumina powder, silica powder, and mullite non-spherical powder is 8 parts by weight per 100 parts by weight of 1 spherical powder.
If the amount exceeds 0 parts by weight, the formability and sinterability will deteriorate, making it difficult to produce a good mullite sintered body. Mullite non-spherical powder of 5 am or less, Al 20s powder with an average particle size of 5 μm or less, and average particle size of 5 μm
It is preferable that the total amount of at least one kind of powder selected from the group of Sin and powders of m or less is 80 parts by weight or less. The mullite award powder as described above can be obtained by mixing hemite sol and silica sol in a predetermined ratio, gelling, and calcining. Hemite sol is obtained by peptizing an aqueous dispersion of γ-A Iz Oz (A100H) by adding an inorganic acid such as nitric acid or hydrochloric acid or an organic acid such as acetic acid or formic acid while heating it. There is. Examples of silica sol include colloidal aqueous solutions in which fine silica particles, such as white carbon produced by a wet method or fumed silica produced by a dry method, are dispersed in water. The alumina powder, silica powder, and mullite non-spherical powder used as starting materials are preferably of high purity, and the amount of impurities (final) in the mixture used as starting materials is 0.
It is 5% or less, preferably 0.3% or less. Further, the mullite non-spherical powder may be a pulverized product of mullite synthesized by an electrofusion method, or a pulverized mullite spherical powder.

【実施例】【Example】

表−1に示す粉末を出発原料として、ボールミルにて解
膠後、成形用バインダとしてポリビニルアルコール0.
8重量部とポリエチレングリコール2重量部を加えて2
0時間混合後、スプレードライ法により乾燥造粒し、プ
レス成形により成形後、1600℃〜1680°Cにて
3時間焼成してムライト質焼結体を作製した。 得られたムライト質焼結体について室温と1200℃に
て抗折強度を測定した。又、破断サンプルを用いて走査
型電子顕微鏡(SEM)により内部気孔の観察を行った
。 尚、用いたアルミナ粉末とシリカ粉末の純度は99.9
%であり、ムライト質非球状粉末はアルミナ対シリカの
重量比が70対30で、不純物は0.1以下であった。
Using the powder shown in Table 1 as a starting material, after peptizing it in a ball mill, 0% polyvinyl alcohol was used as a molding binder.
Add 8 parts by weight and 2 parts by weight of polyethylene glycol to make 2
After mixing for 0 hours, the mixture was dried and granulated by spray drying, molded by press molding, and then fired at 1600°C to 1680°C for 3 hours to produce a mullite sintered body. The bending strength of the obtained mullite sintered body was measured at room temperature and 1200°C. Furthermore, internal pores were observed using a scanning electron microscope (SEM) using the fractured sample. The purity of the alumina powder and silica powder used was 99.9.
%, and the mullite non-spherical powder had a weight ratio of alumina to silica of 70:30, and impurities were 0.1 or less.

Claims (6)

【特許請求の範囲】[Claims] (1)ムライト質粉末であり、このムライト質粉末のム
ライト結晶子径が200nm以下であって、A1_2O
_3/SiO_2の重量比が40/60〜80/20で
、平均粒径が10μm以下の球状のものであることを特
徴とするムライト質焼結体の原料粉末。
(1) Mullite powder, the mullite crystallite diameter of this mullite powder is 200 nm or less, and A1_2O
A raw material powder for a mullite-based sintered body, characterized in that it has a spherical shape with a weight ratio of _3/SiO_2 of 40/60 to 80/20 and an average particle size of 10 μm or less.
(2)ムライト結晶子径が200nm以下であって、A
l_2O_3/SiO_2の重量比が40/60〜80
/20で、平均粒径が10μm以下の球状のムライト質
粉末と、ムライト結晶子径が200nm以下であって、
Al_2O_3/SiO_2の重量比が40/60〜8
0/20で、平均粒径が10μm以下の非球状のムライ
ト質粉末とを含み、前記球状のムライト質粉末100重
量部に対して前記非球状のムライト質粉末が80重量部
以下であることを特徴とするムライト質焼結体の原料粉
末。
(2) Mullite crystallite diameter is 200 nm or less, and A
The weight ratio of l_2O_3/SiO_2 is 40/60 to 80
/20, a spherical mullite powder with an average particle size of 10 μm or less, and a mullite crystallite size of 200 nm or less,
Weight ratio of Al_2O_3/SiO_2 is 40/60 to 8
0/20 and a non-spherical mullite powder with an average particle size of 10 μm or less, and the amount of the non-spherical mullite powder is 80 parts by weight or less per 100 parts by weight of the spherical mullite powder. Raw material powder for characteristic mullite sintered bodies.
(3)Al_2O_3粉末及び/又はSiO_2粉末が
さらに含まれてなる特許請求の範囲第1項又は第2項記
載のムライト質焼結体の原料粉末。
(3) The raw material powder for a mullite sintered body according to claim 1 or 2, further comprising Al_2O_3 powder and/or SiO_2 powder.
(4)Al_2O_3及びSiO_2以外の不純物が0
.5重量%以下である特許請求の範囲第1項〜第3項記
載のムライト質焼結体の原料粉末。
(4) Impurities other than Al_2O_3 and SiO_2 are 0
.. A raw material powder for a mullite sintered body according to claims 1 to 3, wherein the content is 5% by weight or less.
(5)Al_2O_3及びSiO_2以外の不純物が0
.5重量%以下で、Al_2O_3/SiO_2の重量
比が40/60〜80/20の範囲内の値であって、結
晶子の大きさが200nm以下のムライト結晶相を含む
平均粒径10μm以下のムライト質球状粉末を原料組成
とし、このムライト質球状粉末を含む原料を成形、焼成
することを特徴とするムライト質焼結体の製造方法。
(5) Impurities other than Al_2O_3 and SiO_2 are 0
.. Mullite with an average grain size of 10 μm or less containing a mullite crystal phase with a weight ratio of Al_2O_3/SiO_2 of 40/60 to 80/20 at 5% by weight or less and a crystallite size of 200 nm or less 1. A method for producing a mullite sintered body, characterized in that the raw material composition is a mullite spherical powder, and the raw material containing the mullite spherical powder is molded and fired.
(6)Al_2O_3及びSiO_2以外の不純物が0
.5重量%以下で、結晶子の大きさが200nm以下の
ムライト結晶相を含む平均粒径10μm以下のムライト
質球状粉末100重量部と、平均粒径が5μm以下のム
ライト質非球状粉末、平均粒径が5μm以下のAl_2
O_3粉末及び平均粒径が5μm以下のSiO_2粉末
の群の中から選ばれる少なくとも一種以上の粉末が合計
80重量部以下とを含み、これらの原料組成におけるA
l_2O_3/SiO_2の重量比が40/60〜80
/20の範囲内の値となるよう調整されてなるものを原
料組成とし、このムライト質球状粉末を含む原料を成形
、焼成することを特徴とするムライト質焼結体の製造方
法。
(6) Impurities other than Al_2O_3 and SiO_2 are 0
.. 100 parts by weight of a mullite spherical powder with an average particle size of 10 μm or less containing a mullite crystal phase with a crystallite size of 200 nm or less and 5% by weight or less, and a mullite non-spherical powder with an average particle size of 5 μm or less, average grain Al_2 with a diameter of 5 μm or less
A total of 80 parts by weight or less of at least one kind of powder selected from the group of O_3 powder and SiO_2 powder with an average particle size of 5 μm or less, and A in these raw material compositions.
The weight ratio of l_2O_3/SiO_2 is 40/60 to 80
A method for producing a mullite sintered body, characterized in that the raw material composition is adjusted to have a value within the range of /20, and the raw material containing this mullite spherical powder is molded and fired.
JP2325926A 1990-08-17 1990-11-29 Raw material powder of mullite based sintered compact and production of mullite based sintered compact Pending JPH04175264A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-216725 1990-08-17
JP21672590 1990-08-17

Publications (1)

Publication Number Publication Date
JPH04175264A true JPH04175264A (en) 1992-06-23

Family

ID=16692948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325926A Pending JPH04175264A (en) 1990-08-17 1990-11-29 Raw material powder of mullite based sintered compact and production of mullite based sintered compact

Country Status (1)

Country Link
JP (1) JPH04175264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735309B2 (en) 2010-09-28 2014-05-27 Kyocera Corporation Mullite-based sintered body, circuit board using same and probe card
WO2015186560A1 (en) * 2014-06-06 2015-12-10 日本碍子株式会社 Mullite sintered compact, method for producing same, and composite substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735309B2 (en) 2010-09-28 2014-05-27 Kyocera Corporation Mullite-based sintered body, circuit board using same and probe card
WO2015186560A1 (en) * 2014-06-06 2015-12-10 日本碍子株式会社 Mullite sintered compact, method for producing same, and composite substrate
JP5861016B1 (en) * 2014-06-06 2016-02-16 日本碍子株式会社 Sintered mullite, its manufacturing method and composite substrate
US9776924B2 (en) 2014-06-06 2017-10-03 Ngk Insulators, Ltd. Mullite sintered body, method for producing the same, and composite substrate

Similar Documents

Publication Publication Date Title
Lee et al. Crystallization and densification of nano‐size amorphous cordierite powder prepared by a PVA solution‐polymerization route
JP2010508231A (en) Compound for manufacturing heat-resistant materials
JPS6117469A (en) Manufacture of minute cordierite
JPS6054976A (en) Silicon nitride sintered body and manufacture
JPH0388762A (en) Production of mullite-cordierite combined ceramics
JPH02111658A (en) Ceramic insulating material and production thereof
JPH04175264A (en) Raw material powder of mullite based sintered compact and production of mullite based sintered compact
JP2527744B2 (en) Structure included in electronic circuit packaging and manufacturing method
JP3217502B2 (en) Cordierite powder and method for producing porcelain
KR101200718B1 (en) Fabrication method of high density &amp; high fracture toughness silica radome
KR100381097B1 (en) Method for preparing of silica sleeve for hearth roll
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPH06100358A (en) Production of mullite sintered compact
JP3888714B2 (en) Alumina sintered body
JPS6360106A (en) Spinel powder and its production
JPS6357383B2 (en)
JPH04209761A (en) Zirconia porcelain and its production
JPH08175864A (en) Production of low-temperature sintered anorthite-gehlenite ceramic
JP2000159570A (en) Production of compact cordierite sintered product
JPH06219828A (en) Production of mullite-silicon carbide combined ceramics
JPH02296717A (en) Aluminum oxide powder of improved treatment characteristics, its production and its use
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP3042899B2 (en) Mixture of fine-grained barium titanate and method for producing the same
KR100419060B1 (en) A method of preparing silica sleeve for hearth roll by sol-gel process
KR100419061B1 (en) A method of preparing silica sleeve for hearth roll by slip casting