JPH02196065A - Production of aluminum nitride sintered body - Google Patents

Production of aluminum nitride sintered body

Info

Publication number
JPH02196065A
JPH02196065A JP1014632A JP1463289A JPH02196065A JP H02196065 A JPH02196065 A JP H02196065A JP 1014632 A JP1014632 A JP 1014632A JP 1463289 A JP1463289 A JP 1463289A JP H02196065 A JPH02196065 A JP H02196065A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
particle size
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1014632A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakano
和彦 中野
Masaaki Hama
浜 正明
Shinichiro Tanaka
紳一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1014632A priority Critical patent/JPH02196065A/en
Publication of JPH02196065A publication Critical patent/JPH02196065A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dense AlN sintered body having high heat conductivity by molding and sintering a mixture of specified two kinds of AlN powders having different central particle sizes. CONSTITUTION:A mixture of two kinds of AlN powders having different central particle sizes is mixed with a sintering aid, a binder, etc., as required and this mixture is molded and sintered at 1,600-2,000 deg.C in a nitrogen atmosphere. The ratio in central particle size between the powders is >=2, preferably >=4, the larger central particle size is 2-50mum, preferably 5-20mum and the content of the powder having the smaller central particle size is 10-50wt.%, preferably 20-40wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高熱伝導性基板用材料として用いられる緻密
で熱伝導率の高い窒化アルミニウム焼結体の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a dense aluminum nitride sintered body with high thermal conductivity, which is used as a material for highly thermally conductive substrates.

〔従来の技術〕[Conventional technology]

近年ICやLSIの高集積化がますます進展するにつれ
て、素子が発生する熱の除去の問題が生じてきてふり、
さらなる高集積化を妨げている。
In recent years, as ICs and LSIs have become increasingly highly integrated, the problem of removing heat generated by the elements has arisen.
This is hindering further integration.

そこで素子が発生する熱の放散を効率的に行なえる熱伝
導率が高い絶縁性基板材料が求められている。
Therefore, there is a need for an insulating substrate material with high thermal conductivity that can efficiently dissipate the heat generated by the elements.

従来のアルミナ基板の熱伝導率は20W/mK程度であ
るが、窒化アルミニウム焼結体はアルミナ基板よりも熱
伝導率が高く、また良好な機械的強度および電気絶縁性
を有してあり、熱放散性に優れた材料として注目されて
いる。
The thermal conductivity of conventional alumina substrates is about 20 W/mK, but aluminum nitride sintered bodies have higher thermal conductivity than alumina substrates, and also have good mechanical strength and electrical insulation properties. It is attracting attention as a material with excellent dissipation properties.

そこで、熱伝導性に優れた窒化アルミニウム焼結体を得
るには、窒化アルミニウム粉末を成形し、緻密に焼結す
ることが必要である。
Therefore, in order to obtain an aluminum nitride sintered body with excellent thermal conductivity, it is necessary to shape aluminum nitride powder and sinter it densely.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

窒化アルミニウムは難焼結性物質であり、通常は焼結助
剤を添加し、1600℃〜2000℃の温度で焼結を行
なう。
Aluminum nitride is a material that is difficult to sinter, and sintering is usually carried out at a temperature of 1600°C to 2000°C with the addition of a sintering aid.

焼結助剤としては、酸化イツ) IJウムや酸化カルシ
ウムがよく用いられるが、その他多くの物質が焼結助剤
として試みられている。
As sintering aids, IJ oxide and calcium oxide are often used, but many other substances have been tried as sintering aids.

例えば、特公昭58−49510号公報にはCaQ、 
BaQ。
For example, in Japanese Patent Publication No. 58-49510, CaQ,
BaQ.

SrO等を焼結助剤として焼結することにより、相対密
度98.5%以上の緻密な窒化アルミニウム焼結体を得
る製造方法が開示されている。
A manufacturing method is disclosed in which a dense aluminum nitride sintered body having a relative density of 98.5% or more is obtained by sintering using SrO or the like as a sintering aid.

また、特開昭60−151280号公報では、Ca、 
Sr等のアセチリド化合物を添加して焼結することが提
案され、CaC,を添加した場合に140W/mKの高
い熱伝導率を有する窒化アルミニウノ、焼結体が得られ
ている。
Furthermore, in JP-A-60-151280, Ca,
It has been proposed to perform sintering by adding an acetylide compound such as Sr, and when CaC is added, an aluminum nitride sintered body having a high thermal conductivity of 140 W/mK has been obtained.

しかし、窒化アルミニウム粉末の粒度分布等についての
詳細な検討は行なわれておらず、種々の助剤を使用l、
でも、使用する窒化アルミニウム粉末により、必ずしも
緻密で高い熱伝導率を有する焼結体が得られるものでは
なか、った。
However, detailed studies have not been conducted on the particle size distribution of aluminum nitride powder, and various auxiliary agents have been used.
However, depending on the aluminum nitride powder used, it was not always possible to obtain a sintered body that was dense and had high thermal conductivity.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この問題点を解決し、より安定して緻密で熱伝導率の高
い焼結体を得るべ(、使用する窒化アルミニウム粉末と
焼結体の熱伝導率の関係について研究検討を重ねた結果
、中心粒径の異なる2種の窒化”rルミニウム粉末を混
合して使用すると、焼結体の緻密化および熱伝導率の向
上に効果があることを見出した。
It is necessary to solve this problem and obtain a sintered body that is more stable, dense, and has high thermal conductivity. It has been found that the use of a mixture of two types of aluminum nitride powders having different particle sizes is effective in making the sintered body denser and improving its thermal conductivity.

即ち、本発明は窒化アルミニウム粉末を成形、焼成して
窒化アルミニウム焼結体を製造する方法において、中心
粒径が異なる2種の窒化アルミニウノ、粉末の混合粉末
で、(1)該粉末の中心粒径の比が2以上であり、(2
)大きい方の中心粒径が2−−50μmの範囲にあり、
かつ(3)中心粒径が小さい方の粉末の量が窒化アルミ
ニウム混合粉末全体に対し10〜50重量%であるもの
を用いることを特徴とする窒化アルミニウム焼結体の製
造方法である。
That is, the present invention provides a method for producing an aluminum nitride sintered body by molding and firing aluminum nitride powder, which includes: (1) a mixed powder of two types of aluminum nitride powder having different center grain sizes; The diameter ratio is 2 or more, and (2
) The larger central grain size is in the range of 2-50 μm,
and (3) a method for producing an aluminum nitride sintered body, characterized in that the amount of powder having a smaller center particle size is 10 to 50% by weight based on the entire aluminum nitride mixed powder.

本発明によれば、焼成前の成形体の嵩密度を高めること
ができ、それによって緻密でしかも熱伝導率の高い焼成
体を安定して得ることができる。
According to the present invention, it is possible to increase the bulk density of the molded body before firing, and thereby it is possible to stably obtain a fired body that is dense and has high thermal conductivity.

2種の粉末の中心粒径の比が小さい場合は、緻密で熱伝
導率の高い焼結体を得ることができない。
If the ratio of the center particle diameters of the two types of powder is small, a dense sintered body with high thermal conductivity cannot be obtained.

中心粒径比は2以」二、好ましくは3以上、さらに好ま
しくは4以上である。
The center particle size ratio is 2 or more, preferably 3 or more, and more preferably 4 or more.

また、中心粒径の比が2以上であっても、大きい方の中
心粒径が小さ過ぎると均一な混合が困難となり、中心粒
径の異な2種の粉末を混合したことによる成形体嵩密度
の向上の効果が得られない。
In addition, even if the ratio of the center particle sizes is 2 or more, if the larger center particle size is too small, uniform mixing will be difficult, and the bulk density of the compact due to mixing two types of powders with different center particle sizes. The effect of improvement cannot be obtained.

また、使用する粒子が大き過ぎると、特に数百μmの薄
いシート状に成形しようとした場合、成形が困難になる
Furthermore, if the particles used are too large, molding becomes difficult, especially when trying to mold them into a thin sheet of several hundred μm.

従って、使用する窒化アルミニウム粉末のうち、大きい
方の中心粒径をもつ粉末の中心粒径の範囲は2〜50μ
m、好ましくは3〜30μm さらに好ましくは5〜2
0μmの範囲である。
Therefore, among the aluminum nitride powders used, the range of the center particle size of the powder with the larger center particle size is 2 to 50μ.
m, preferably 3 to 30 μm, more preferably 5 to 2
It is in the range of 0 μm.

また、混合する2種の窒化アルミニウム粉末のうち、中
心粒径が小さい方の粉末の量は中心粒径の大きい方の粉
末の量に対して多すぎる場合、または少なすぎる場合は
成形体嵩密度の向上の効果がない。
Also, among the two types of aluminum nitride powders to be mixed, if the amount of the powder with a smaller center particle size is too large or too small compared to the amount of the powder with a larger center particle size, the bulk density of the compact will be There is no improvement effect.

従って、中心粒径が小さい方の粉末の窒化゛rルミニウ
ム粉末全体に対する割合は10 =50111i 1%
、好ましくは20〜40重量%の範囲である。
Therefore, the ratio of the powder with the smaller center particle size to the total aluminum nitride powder is 10 = 50111i 1%
, preferably in the range of 20 to 40% by weight.

本発明は、成形方法について特に限定するものではなく
、公知の方法が適用される。
The present invention does not particularly limit the molding method, and any known method can be applied.

2種の窒化アルミニウム粉末に適当な焼結助剤と適当な
バインダー等を加え、ボールミル等で混合し、スラリー
のままドクターブレード法でシト状に成形する方法が適
用できる。
An applicable method is to add a suitable sintering aid and a suitable binder to two types of aluminum nitride powders, mix them in a ball mill, etc., and form the slurry into a sheet shape using a doctor blade method.

焼結助剤としてはCaOやY2O3等を用いることがで
きる。
CaO, Y2O3, etc. can be used as the sintering aid.

バインダーとしては、ポリビニルブチラールやポリメチ
ルメタクリレート等を用いることができる。
As the binder, polyvinyl butyral, polymethyl methacrylate, etc. can be used.

また、湿式ボールミルで生成したスラリーを乾燥させた
り、乾式で混合するなどして得た混合粉末を、プレス成
形により成形することもできる。
Further, a mixed powder obtained by drying a slurry produced in a wet ball mill or by dry mixing can also be molded by press molding.

作製した成形体は、窒素雰囲気中で1600 ℃〜20
00℃で焼結することにより窒化アルミニウムの焼結体
が得られる。
The produced molded body was heated at 1600°C to 20°C in a nitrogen atmosphere.
A sintered body of aluminum nitride is obtained by sintering at 00°C.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明はこれ
等に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to examples, but the present invention is not limited to these examples.

なお、諸物性の測定は次の方法および装置で行った。The various physical properties were measured using the following method and apparatus.

(酸素含量) インパルス加熱−赤外線吸収法 装置:堀場製作所 EMGA−2800(粒径分布) セディグラフ 装置: Micromeritics社Sedigra
ph 5000εT(焼結体密度) アルキメデス法 装置:島津製作所 固体比重測定装置 (熱伝導率) レザーフラッシュ法 装置:真空理工  TC−7000型 実施例 1 中心粒径3.1μm酸素量0.8重量%の窒化アルミニ
ウム粉末に対し、中心粒径が0.7μm酸素量1.5重
量%の窒化アルミニウム粉末を、重量比で2;1の割合
で混合した。さらに、CaCO5をCaO換算で1重量
%になるように添加し、n−ブタツルを使用してボール
ミルで混合し乾燥した。
(Oxygen content) Impulse heating-infrared absorption method device: Horiba, Ltd. EMGA-2800 (particle size distribution) Sedigra device: Micromeritics Sedigra
ph 5000εT (sintered compact density) Archimedes method device: Shimadzu Corporation Solid specific gravity measuring device (thermal conductivity) Laser flash method device: Shinku Riko TC-7000 model Example 1 Center particle size 3.1 μm Oxygen content 0.8% by weight Aluminum nitride powder having a center particle size of 0.7 μm and an oxygen content of 1.5% by weight was mixed with the aluminum nitride powder in a weight ratio of 2:1. Further, CaCO5 was added to give a concentration of 1% by weight in terms of CaO, mixed in a ball mill using an n-buta vine, and dried.

得られた混合粉末を金型で300kg/Cdの圧力で成
形し、さらに1500 kg/cutでラバープレスを
行なった。
The obtained mixed powder was molded in a mold at a pressure of 300 kg/Cd, and further rubber pressed at 1500 kg/cut.

得られた成形体を窒化アルミニウム粉末と窒化ホウ素粉
末の1=1混合粉末中14埋め込み、グラファイト製ル
ツボ中に入れた。
The obtained compact was embedded in a 1=1 mixed powder of aluminum nitride powder and boron nitride powder, and placed in a graphite crucible.

焼結は窒素雰囲気中1気圧で、1800℃5時間の条件
で行なった。
Sintering was carried out at 1800° C. for 5 hours in a nitrogen atmosphere at 1 atm.

得られた焼結体は、相対密度99.8 %の緻密な焼結
体で、熱伝導率は155W/mKであった。
The obtained sintered body was a dense sintered body with a relative density of 99.8% and a thermal conductivity of 155 W/mK.

実施例 2 中心粒径5.0μm酸素量0.7重量%の窒化アルミニ
ウム粉末に、中心粒径0.7μm酸素量1.5重量%の
窒化アルミニウム粉末を実施例1と同じ重量比で混合し
た。
Example 2 Aluminum nitride powder with a center particle size of 0.7 μm and an oxygen content of 1.5% by weight was mixed in the same weight ratio as in Example 1 to aluminum nitride powder with a center particle size of 5.0 μm and an oxygen content of 0.7% by weight. .

さらに、CaCL をCaO換算で1重量%になるよう
に添加し、施例1と同様にして焼結体を得た。
Further, CaCL was added to give a concentration of 1% by weight in terms of CaO, and a sintered body was obtained in the same manner as in Example 1.

得られた焼結体は、相対密度99.8%の緻密な焼結体
で、熱伝導率は159W /mKであった。
The obtained sintered body was a dense sintered body with a relative density of 99.8% and a thermal conductivity of 159 W/mK.

実施例 3 中心粒径5.0μm酸素量0.7重量%の窒化アルミニ
ウム粉末に、中心粒径1.5μm酸素量1.1重量%の
窒化アルミニウム粉末を実施例1と同じ重量比で混合し
た。
Example 3 Aluminum nitride powder with a center particle size of 1.5 μm and an oxygen content of 1.1% by weight was mixed in the same weight ratio as in Example 1 to aluminum nitride powder with a center particle size of 5.0 μm and an oxygen content of 0.7% by weight. .

さらに、CaCL をCan換算で1重量%になるよう
に添加し、実施例1と同様にして焼結体を得た。
Further, CaCL was added to give a concentration of 1% by weight in terms of Can, and a sintered body was obtained in the same manner as in Example 1.

得られた焼結体は、相対密度99.7 %の緻密な焼結
体で、熱伝導率は145W/mKであった。
The obtained sintered body was a dense sintered body with a relative density of 99.7% and a thermal conductivity of 145 W/mK.

実施例 4 中心粒径5.0μm酸素量0.7重量%の窒化アルミニ
ウム粉末に、中心粒径0.7μm酸素量1.5重量%の
窒化アルミニウム粉末を実施例1と同じ重量比で混合し
た。
Example 4 Aluminum nitride powder with a center particle size of 0.7 μm and an oxygen content of 1.5% by weight was mixed in the same weight ratio as in Example 1 to aluminum nitride powder with a center particle size of 5.0 μm and an oxygen content of 0.7% by weight. .

さらに、Y2O,を3重量%になるように添加し、焼結
温度を1900℃に変えた以外は実施例1と同様にして
焼結体を得た。
Furthermore, a sintered body was obtained in the same manner as in Example 1 except that Y2O was added to the amount of 3% by weight and the sintering temperature was changed to 1900°C.

得られた焼結体は、相対密度99.5%の緻密な焼結体
で、熱伝導率は232W/mKであった。
The obtained sintered body was a dense sintered body with a relative density of 99.5% and a thermal conductivity of 232 W/mK.

比較例 1 中心粒径3.1μm酸素量0,8重量%の窒化アルミニ
ウム粉末に、中心粒径2.2μm酸素量0.8重量%の
窒化アルミニウム粉末を実施例1と同じ重量比で混合し
た。
Comparative Example 1 Aluminum nitride powder with a center particle size of 2.2 μm and an oxygen content of 0.8% by weight was mixed in the same weight ratio as in Example 1 to aluminum nitride powder with a center particle size of 3.1 μm and an oxygen content of 0.8% by weight. .

さらに、(:aCO* をCaO換算で1重量%になる
ように添加し、実施例1と同様にして焼結体を得た。
Furthermore, (:aCO*) was added to give a concentration of 1% by weight in terms of CaO, and a sintered body was obtained in the same manner as in Example 1.

得られた焼結体は、相対密度98.2%の焼結体で、熱
伝導率は108W/mKであった。
The obtained sintered body had a relative density of 98.2% and a thermal conductivity of 108 W/mK.

比較例 2 中心粒径1.5μm酸素量0.8重量%の窒化アルミニ
ウム粉末に、中心粒径0.9μm酸素量1.3重量%の
窒化アルミニウム粉末を実施例1と同じ重量比で混合し
た。
Comparative Example 2 Aluminum nitride powder with a center particle size of 0.9 μm and an oxygen content of 1.3% by weight was mixed in the same weight ratio as in Example 1 to aluminum nitride powder with a center particle size of 1.5 μm and an oxygen content of 0.8% by weight. .

さらに、CaCL をCaO換算で1重量%になるよう
に添加し、実施例1と同様にして焼結体を得た。
Further, CaCL was added to give a concentration of 1% by weight in terms of CaO, and a sintered body was obtained in the same manner as in Example 1.

得られた焼結体は、相対密度99.0%の焼結体で、熱
伝導率は119W/mKであった。
The obtained sintered body had a relative density of 99.0% and a thermal conductivity of 119 W/mK.

比較例 3 中心粒径3.1μm酸素量0.8重量%の窒化アルミニ
ラム粉末に、中心粒径2.2μm酸素量0.8重量%の
窒化アルミニウム粉末を実施例1と同じ重量比で混合し
た。
Comparative Example 3 Aluminum nitride powder with a center particle size of 2.2 μm and an oxygen content of 0.8% by weight was mixed in the same weight ratio as in Example 1 to aluminum nitride lamb powder with a center particle size of 3.1 μm and an oxygen content of 0.8% by weight. .

さらに、Y2O,を3重量%になるように添加し、焼結
温度を1900℃に変えた以外は実施例1と同様にして
焼結体を得た。
Furthermore, a sintered body was obtained in the same manner as in Example 1 except that Y2O was added to the amount of 3% by weight and the sintering temperature was changed to 1900°C.

得られた焼結体は、相対密度98.2%の焼結体で、熱
伝導率は163W/mKであった。
The obtained sintered body had a relative density of 98.2% and a thermal conductivity of 163 W/mK.

比較例 4 中心粒径0,7μm酸素量1.5重量%の窒化アルミニ
ウム粉末に、CaC0a をCaO換算で1重量%にな
るように添加し、実施例1と同様にして焼結体を得た。
Comparative Example 4 CaC0a was added to aluminum nitride powder with a center particle size of 0.7 μm and an oxygen content of 1.5% by weight in an amount of 1% by weight in terms of CaO, and a sintered body was obtained in the same manner as in Example 1. .

得られた焼結体は、相対密度99.7%で熱伝導率は1
02W/mKであツタ。
The obtained sintered body has a relative density of 99.7% and a thermal conductivity of 1.
Ivy at 02W/mK.

比較例 5 中心粒径3.1μm酸素量0,8重量%の窒化アルミニ
ウム粉末に、CaCO3をCaO換算で1重量%になる
ように添加し、実施例1と同様にして焼結体を得た。
Comparative Example 5 CaCO3 was added to aluminum nitride powder with a center particle size of 3.1 μm and an oxygen content of 0.8% by weight to give a concentration of 1% by weight in terms of CaO, and a sintered body was obtained in the same manner as in Example 1. .

得られた焼結体は、相対密度98.9%で熱伝導率は1
07W/mKであった。
The obtained sintered body has a relative density of 98.9% and a thermal conductivity of 1.
It was 0.07W/mK.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、緻密で熱伝導率の高い、窒化アルミニ
ウム焼結体を得ることができる。
According to the present invention, an aluminum nitride sintered body that is dense and has high thermal conductivity can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 窒化アルミニウム粉末を成形、焼成して窒化アルミニウ
ム焼結体を製造する方法において、中心粒径が異なる2
種の窒化アルミニウム粉末の混合粉末で、(1)該粉末
の中心粒径の比が2以上であり、(2)大きい方の中心
粒径が2〜50μmの範囲にあり(3)かつ中心粒径が
小さい方の粉末の量が窒化アルミニウム混合粉末全体に
対し10〜50重量%であるものを用いることを特徴と
する窒化アルミニウム焼結体の製造方法。
In a method of manufacturing an aluminum nitride sintered body by molding and firing aluminum nitride powder, two
A mixed powder of seed aluminum nitride powder, (1) the ratio of the center particle size of the powder is 2 or more, (2) the larger center particle size is in the range of 2 to 50 μm, and (3) the center particle is A method for producing an aluminum nitride sintered body, characterized in that the amount of powder having a smaller diameter is 10 to 50% by weight based on the entire aluminum nitride mixed powder.
JP1014632A 1989-01-23 1989-01-23 Production of aluminum nitride sintered body Pending JPH02196065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014632A JPH02196065A (en) 1989-01-23 1989-01-23 Production of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014632A JPH02196065A (en) 1989-01-23 1989-01-23 Production of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPH02196065A true JPH02196065A (en) 1990-08-02

Family

ID=11866571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014632A Pending JPH02196065A (en) 1989-01-23 1989-01-23 Production of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPH02196065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146617A1 (en) * 2014-03-26 2015-10-01 Jx日鉱日石金属株式会社 Sputtering target comprising tungsten carbide or titanium carbide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146617A1 (en) * 2014-03-26 2015-10-01 Jx日鉱日石金属株式会社 Sputtering target comprising tungsten carbide or titanium carbide
JPWO2015146617A1 (en) * 2014-03-26 2017-04-13 Jx金属株式会社 Sputtering target made of tungsten carbide or titanium carbide
TWI671276B (en) * 2014-03-26 2019-09-11 日商Jx日鑛日石金屬股份有限公司 Sputter target composed of tungsten carbide or titanium carbide, and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR20160117472A (en) Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JP2007308360A (en) Hexagonal boron nitride powder
TW202010707A (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same
JP3404813B2 (en) Aluminum nitride sintered body and method for producing the same
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JP2006256940A (en) Method of manufacturing aluminum nitride powder
JPH02196065A (en) Production of aluminum nitride sintered body
JP2001122615A (en) Boron nitride coated spherical borate particle,, mixed powder containing the same and method for manufacture thereof
WO2021200973A1 (en) Method for producing composite body
JPH05117039A (en) Aluminum nitride-based powder and its production
JP3814842B2 (en) Aluminum nitride powder, production method thereof and use thereof
JPH05147910A (en) Aluminum nitride-based powder and its production
JP3572692B2 (en) α-Alumina powder-containing resin composition and rubber composition
JPH02221162A (en) Production of aluminum nitride-based sintered body
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPS623065A (en) Manufacture of magnesia ceramic
JPH04317402A (en) Aluminum nitride power and its production
WO2021200719A1 (en) Boron nitride sintered body, composite body, and manufacturing methods therefor, and heat dissipation member
JPH02196066A (en) Production of aluminum nitride-based sintered body
JPS6252178A (en) Aluminum nitride composition
JPH03218977A (en) Production of aluminum nitride sintered body
JP2001019555A (en) Silicon nitride sintered compact and substrate using the same
JP4050798B2 (en) Aluminum nitride press body
JPS58204863A (en) Manufacture of hightemperature heat conductive ceramics
JPS63225506A (en) Production of aluminum nitride powder