JP3359412B2 - Solid oxide fuel cell - Google Patents
Solid oxide fuel cellInfo
- Publication number
- JP3359412B2 JP3359412B2 JP04082494A JP4082494A JP3359412B2 JP 3359412 B2 JP3359412 B2 JP 3359412B2 JP 04082494 A JP04082494 A JP 04082494A JP 4082494 A JP4082494 A JP 4082494A JP 3359412 B2 JP3359412 B2 JP 3359412B2
- Authority
- JP
- Japan
- Prior art keywords
- air electrode
- element selected
- group
- solid electrolyte
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、固体電解質型燃料電池
セルに係わるものであり、特に導電性空気極材料の改良
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to an improvement in a conductive air electrode material.
【0002】[0002]
【従来の技術】固体電解質型燃料電池としては、円筒型
と平板型の2種類のタイプについて研究開発が行われて
いる。平板型燃料電池セルは、発電の単位体積当り出力
密度が高いという特長を有するが、実用化に関してはガ
スシ−ル不完全性やセル内の温度分布の不均一性などの
問題がある。それに対して、円筒型燃料電池セルでは、
出力密度は低いものの、セルの機械的強度が高く、また
セル内の温度の均一性が保てるという特長がある。両形
状の固体電解質燃料電池セルとも、それぞれの特長を生
かして積極的に研究開発が進められている。2. Description of the Related Art Research and development are being conducted on two types of solid oxide fuel cells, a cylindrical type and a flat type. The flat fuel cell has the feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniformity of the temperature distribution in the cell in practical use. On the other hand, in a cylindrical fuel cell,
Although the power density is low, there are features that the mechanical strength of the cell is high and that the temperature in the cell can be kept uniform. Both types of solid electrolyte fuel cells are being actively researched and developed utilizing their respective features.
【0003】円筒型燃料電池の単セルは、図1に示した
ように開気孔率40%程度のCaO安定化ZrO2 を支
持管1とし、その上にスラリ−ディップ法により多孔性
の空気極としてLaMnO3 系材料2を塗布し、その表
面に気相合成法(EVD)や、あるいは溶射法により電
解質3であるY2 O3 安定化ZrO2 膜を被覆し、さら
にこの表面に多孔性のNi−ジルコニアの燃料極4を設
けられている。燃料電池のモジュ−ルにおいては、各単
セルはLaCrO3 系のインタ−コネクタ5を介して接
続される。発電は、支持管内部に空気(酸素)を、外部
に燃料(水素)を流し、1000〜1050℃の温度で
行われる。近年、このセル作製の工程においてプロセス
を単純化するため、空気極材料であるLaMnO3 系材
料を直接多孔性の支持管として使用する試みがなされて
いる。空気極としての機能を合せ持つ支持管材料として
は、Laを10〜20原子%のCaあるいはSrで置換
したLaMnO3 固溶体材料が用いられている。As shown in FIG. 1, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, on which a porous air electrode is formed by a slurry-dip method. Is coated with a LaMnO 3 -based material 2 and the surface thereof is coated with a Y 2 O 3 -stabilized ZrO 2 film as an electrolyte 3 by a vapor phase synthesis method (EVD) or a thermal spraying method. A Ni-zirconia fuel electrode 4 is provided. In the fuel cell module, each single cell is connected via a LaCrO 3 -based interconnector 5. Power generation is performed at a temperature of 1000 to 1050 ° C. by flowing air (oxygen) inside the support tube and fuel (hydrogen) outside. In recent years, attempts have been made to use a LaMnO 3 -based material, which is an air electrode material, directly as a porous support tube in order to simplify the process in this cell fabrication process. A LaMnO 3 solid solution material in which La is substituted by 10 to 20 atomic% of Ca or Sr is used as a support tube material having a function as an air electrode.
【0004】また、平板型燃料電池の単セルは、円筒型
と同じ材料系を用いて、図2に示されるように電解質6
の一方に多孔性の空気極7が、他方に多孔性の燃料極8
が設けられる。単セル間の接続には、セパレ−タ9と呼
ばれる緻密質のMgOやCaOを添加した緻密質のLa
CrO3 固溶体材料が用いられる。発電はセルの空気極
側に空気(酸素)、燃料極側に燃料(水素)を供給して
1000〜1050℃の温度で行われる。[0004] Further, a single cell of the flat plate type fuel cell uses the same material system as that of the cylindrical type, and as shown in FIG.
Has a porous air electrode 7 on one side and a porous fuel electrode 8 on the other side.
Is provided. For connection between the single cells, a dense La called “separator 9” added with a dense MgO or CaO.
A CrO 3 solid solution material is used. Power generation is performed at a temperature of 1000 to 1050 ° C. by supplying air (oxygen) to the air electrode side of the cell and fuel (hydrogen) to the fuel electrode side.
【0005】[0005]
【発明が解決しようとする問題点】しかしながら、前記
のCaO安定化ZrO2 を支持管とし、これにCa、S
rを固溶したLaMnO3 材料を空気極として設けた構
造のセル、および空気極材料を直接支持管として使用す
る構造の円筒型燃料電池セルおよび平板型燃料電池セル
においては、長時間の発電を行うと空気極の焼結が進
み、その結果セルが変形し出力が序々に低下するという
問題があった。この問題については、電力中央研究所に
よる報告(W9002, 平成2年7月)においても議論され、
温度によりLaMnO3 が3つの結晶形態を有すること
から、相変態により体積変化するなどに起因する変形や
セル破壊なども危惧されている。However, the above-mentioned CaO-stabilized ZrO 2 is used as a support tube, and Ca, S
In a cell having a structure in which a LaMnO 3 material in which r is dissolved is provided as an air electrode, and a cylindrical fuel cell and a flat fuel cell having a structure in which the air electrode material is directly used as a support tube, long-term power generation is performed. Then, the sintering of the air electrode proceeds, and as a result, there is a problem that the cell is deformed and the output gradually decreases. This issue was also discussed in a report by the Central Research Institute of Electric Power Industry (W9002, July 1990).
Since LaMnO 3 has three crystal forms depending on the temperature, deformation or cell destruction due to volume change due to phase transformation or the like is also concerned.
【0006】本発明はこれら円筒型および平板型燃料電
池において、燃料電池システムの長時間運転においてセ
ルの変形が小さく、発電出力の安定した長寿命の燃料電
池セルを提供することを目的とする。An object of the present invention is to provide a long-life fuel cell in which the cell deformation is small and the power generation output is stable in a long-time operation of the fuel cell system in these cylindrical and flat fuel cells.
【0007】[0007]
【問題点を解決するための手段】本発明者は上記の問題
に対して検討を重ねた結果、LaMnO3 系材料を空気
極として形成する場合において、LaMnO3 系材料の
Laの一部をYやYb、Sc、Erなどの希土類元素
と、Ca、Ba,Srアルカリ土類元素で同時に置換
し、場合によってはLaの一部をさらにTi、Zr、Z
n、Ce、Sn、Cuで置換し、またMnの一部をN
i、Co、Fe、Cr、Ce,Zrと置換した組成から
なる材料を用いることにより上記の目的が達成されるこ
とを知見した。Means for Solving the Problems The present inventor has repeatedly studied the above problems, and as a result, when forming a LaMnO 3 -based material as an air electrode, part of La in the LaMnO 3 -based material is converted to Y. And rare earth elements such as Yb, Sc, and Er and Ca, Ba, and Sr alkaline earth elements at the same time, and in some cases, part of La is further replaced with Ti, Zr, and Z.
n, Ce, Sn, and Cu, and a part of Mn is N
It has been found that the above object can be achieved by using a material having a composition substituted with i, Co, Fe, Cr, Ce, and Zr.
【0008】即ち、本発明の固体電解質型燃料電池セル
は、固体電解質の片面に空気極が、他方の面に燃料極が
形成してなるものであって、その空気極が下記化1That is, the solid oxide fuel cell of the present invention comprises a solid electrolyte having an air electrode formed on one surface and a fuel electrode formed on the other surface.
【0009】[0009]
【化1】 Embedded image
【0010】で表される原子比による組成の複合ペロブ
スカイト型酸化物で、AはYおよび希土類元素の群から
選ばれる少なくとも1種の元素、BはCa、Baおよび
Srの群からアルカリ土類元素から選ばれる少なくとも
1種の元素、CはNi、Co、Fe、Cr、Ceおよび
Zrの群から選ばれる少なくとも1種の元素であり、化
1中のx、y、zおよびpが、0.02≦x≦0.4
0、0.22≦y≦0.60、0.88≦z≦1.0
5、0≦p≦0.30を満足する導電性セラミックスで
あることを特徴とするものである。A composite perovskite oxide having a composition according to the atomic ratio represented by the following formula, wherein A is at least one element selected from the group consisting of Y and rare earth elements, and B is an alkaline earth element selected from the group consisting of Ca, Ba and Sr. And C is at least one element selected from the group consisting of Ni, Co, Fe, Cr, Ce and Zr, wherein x, y, z and p in Chemical Formula 1 are 0. 02 ≦ x ≦ 0.4
0, 0.22 ≦ y ≦ 0.60, 0.88 ≦ z ≦ 1.0
5, a conductive ceramic satisfying 0 ≦ p ≦ 0.30.
【0011】また、本発明によれば、空気極が下記化2According to the present invention, the air electrode has the following formula:
【0012】[0012]
【化2】 (La1-x-y-wAxByDw)z(Mn1-pCp)
Oq ## STR2 ## (La 1-xyw A x B y D w) z (Mn 1-p C p)
O q
【0013】で表される原子比による組成の複合ペロブ
スカイト型酸化物で、式中、AはYおよび希土類元素の
群から選ばれる少なくとも1種の元素、BはCa、Ba
およびSrの群から選ばれる少なくとも1種の元素、C
はNi、Co、Fe、Cr、CeおよびZrの群から選
ばれる少なくとも1種の元素、DはTi、Zr、Zn、
Ce、SnおよびCuの群から選ばれる少なくとも1種
の元素からなり、原子比を示すx、y、w、z、pおよ
びqが、0.02≦x≦0.40、0.22≦y≦0.
60、0.88≦z≦1.05、0<w≦0.30、0
≦p≦0.30を満足する導電性セラミックスからなる
ことを特徴とするものである。Is a complex perovskite oxide having a composition according to the atomic ratio represented by the formula: wherein A is at least one element selected from the group consisting of Y and rare earth elements, and B is Ca, Ba
And at least one element selected from the group consisting of
Is at least one element selected from the group consisting of Ni, Co, Fe, Cr, Ce and Zr, and D is Ti, Zr, Zn,
X, y, w, z, p, and q, which are composed of at least one element selected from the group consisting of Ce, Sn, and Cu, and indicate the atomic ratio, are 0.02 ≦ x ≦ 0.40, 0.22 ≦ y ≦ 0.
60, 0.88 ≦ z ≦ 1.05, 0 <w ≦ 0.30, 0
It is characterized by being made of a conductive ceramic satisfying ≦ p ≦ 0.30.
【0014】また、これらの導電性セラミックスは、大
気中、1000℃においてq≦3.03を満足するもの
であり、さらに金属不純物としてSiおよびAlが合計
で1000ppm以下、平均細孔径が1.0〜5.0μ
m、平均結晶粒径が3.0〜25.0μm、開気孔率が
20〜45%であることが空気極の性能上重要である。These conductive ceramics satisfy q ≦ 3.03 at 1000 ° C. in the air, and further have a total of 1000 ppm or less of Si and Al as metal impurities and an average pore diameter of 1.0 ppm or less. ~ 5.0μ
m, the average crystal grain size is 3.0 to 25.0 μm, and the open porosity is 20 to 45%.
【0015】本発明における空気極を形成する導電性セ
ラミックスの化1および化2で示される組成を上記の範
囲に限定した理由について説明する。まず、Laに対す
るCa、SrおよびBaの置換比率yが0.22より小
さい場合は、陽イオン空孔の生成が抑制できないため、
焼結が進行し緻密化が起こる。また、yが0.60を越
えると、焼結性が悪くなり1650℃以上の高温でない
と所定の開気孔率を有する材料が作製しにくいために不
経済である。The reason why the composition represented by Chemical Formula 1 and Chemical Formula 2 of the conductive ceramic forming the air electrode in the present invention is limited to the above range will be described. First, when the substitution ratio y of Ca, Sr, and Ba with respect to La is smaller than 0.22, generation of cation vacancies cannot be suppressed.
Sintering proceeds and densification occurs. On the other hand, if y exceeds 0.60, the sinterability deteriorates, and unless the temperature is higher than 1650 ° C., it is difficult to produce a material having a predetermined open porosity, which is uneconomical.
【0016】次に、Yおよび希土類元素のLaに対する
置換比率xが0.02より小さいと焼結に対する抑制効
果が極めて小さく、xが0.40を越えると焼結が早く
なり変形を防止することができない。Next, if the substitution ratio x of Y and the rare earth element to La is less than 0.02, the effect of suppressing sintering is extremely small, and if x exceeds 0.40, sintering is accelerated and deformation is prevented. Can not.
【0017】また、ペロブスカイト型結晶構造中のAサ
イトとBサイトの原子比率zが0.88までの不定比系
においても同様な結果が得られるが、これはその格子欠
陥構造が定比系に類似しているためである。しかし、こ
のz値が0.88より小さくなると焼結が促進され変形
が大きくなる。これは、Mn2 O3 等の第2成分の析出
が起こり、収縮が促進されるためと考えられる。逆に、
このz値が1.05を越えるとLa2 O3 が析出して空
気中の水分あるいは炭酸ガスと反応して材料が短時間に
風化してしまう。また、Mnに対するNi、Co、Fe
などの置換比率pが0.30を越えると焼結が促進され
て変形が大きくなる。A similar result can be obtained in a nonstoichiometric system in which the atomic ratio z between the A site and the B site in the perovskite type crystal structure is up to 0.88, but the lattice defect structure becomes a stoichiometric system. This is because they are similar. However, when the z value is smaller than 0.88, sintering is promoted and deformation is increased. It is considered that this is because the precipitation of the second component such as Mn 2 O 3 occurs and the shrinkage is promoted. vice versa,
If the z value exceeds 1.05, La 2 O 3 precipitates and reacts with moisture or carbon dioxide in the air, causing the material to weather in a short time. Also, Ni, Co, Fe with respect to Mn
When the substitution ratio p exceeds 0.30, sintering is promoted and deformation is increased.
【0018】さらに、化2において、Laに対するT
i、Zrなどの置換比率wが0.20を越えるとTiO
2 、ZnO2 の酸化物単体あるいは他の元素との複合酸
化物が析出するようになるために焼結が促進されるとと
もに、電気伝導度が小さくなり空気極としての性能が悪
くなる。以上のような理由から、化1および化2で示さ
れる組成に関しては上記の範囲を規定した。Further, in the chemical formula 2, T to La
If the substitution ratio w of i, Zr, etc. exceeds 0.20, TiO
2. Since a single oxide of ZnO 2 or a composite oxide with another element is deposited, sintering is promoted, and electric conductivity is reduced, and performance as an air electrode is deteriorated. For the reasons described above, the above ranges are defined for the compositions represented by Chemical Formulas 1 and 2.
【0019】また、セルの構成においては、空気極材料
と電解質および支持管材料との熱膨張係数の差が10%
以内であることが好ましい。これを越えると熱膨張係数
の差により熱応力が発生しセルが破壊する可能性があ
る。これを防止するためには、セルの形状あるいは大き
さを限定したり、あるいはこの熱膨張係数の差を緩和す
るため、空気極材料と電解質の間あるいは支持管材料と
の間に中間層を設けるなどの手段が必要となる。このた
め、セルの形状の限定の問題やプロセスを省略する観点
から、セル材料はそれぞれの熱膨張係数の差が10%以
内であることが好ましい。上述の焼結抑制効果と電解質
との熱膨張の整合性の両観点から、本発明の特に好まし
い範囲は、化1では、0.10≦x≦0.20、0.2
5≦y≦0.40、0.95≦z≦1.00、0≦p≦
0.10が、また、化2では、0.10≦x≦0.3
0、0.25≦y≦0.40、0.95≦z≦1.0
0、0.05≦w≦0.10、0≦p≦0.10であ
る。In the cell configuration, the difference in the coefficient of thermal expansion between the air electrode material, the electrolyte and the support tube material is 10%.
It is preferably within the range. If it exceeds this, thermal stress is generated due to a difference in thermal expansion coefficient, and the cell may be broken. In order to prevent this, an intermediate layer is provided between the air electrode material and the electrolyte or between the air electrode material and the support tube material in order to limit the shape or size of the cell or to reduce the difference in the coefficient of thermal expansion. And other means are required. For this reason, from the viewpoint of omitting the process of limiting the shape of the cell and omitting the process, it is preferable that the difference in thermal expansion coefficient between the cell materials be within 10%. From the viewpoints of both the above-described sintering suppressing effect and the consistency of thermal expansion with the electrolyte, a particularly preferred range of the present invention is that in Chemical formula 1, 0.10 ≦ x ≦ 0.20, 0.2
5 ≦ y ≦ 0.40, 0.95 ≦ z ≦ 1.00, 0 ≦ p ≦
0.10, and in Chemical formula 2, 0.10 ≦ x ≦ 0.3
0, 0.25 ≦ y ≦ 0.40, 0.95 ≦ z ≦ 1.0
0, 0.05 ≦ w ≦ 0.10, and 0 ≦ p ≦ 0.10.
【0020】なお、元素Aにおける希土類元素として
は、Y、Yb、Sc、Er、Nd、Gd、Dy、Prお
よびSmが挙げられるが、これらの中でもY、Yb、D
y、Ndが、元素BとしてはCa、Ba、元素Cとして
はNi、Crが、元素DとしてはCe、Zrが望まし
い。The rare earth elements in the element A include Y, Yb, Sc, Er, Nd, Gd, Dy, Pr, and Sm. Of these, Y, Yb, D
It is desirable that y and Nd are Ca and Ba as the element B, Ni and Cr as the element C, and Ce and Zr as the element D.
【0021】また、本発明によれば、前記化1および化
2で示された組成式において、酸素量qがq≦3.03
であることが望ましい。これは、酸素量qが3.03よ
り大きいと結晶内のLaおよびMnイオン空孔の生成が
抑制されず、焼結が促進されるためである。望ましく
は、2.97≦q<3.03がよい。Further, according to the present invention, in the composition formulas represented by the chemical formulas (1) and (2), the amount of oxygen q is q ≦ 3.03.
It is desirable that This is because when the oxygen amount q is larger than 3.03, generation of La and Mn ion vacancies in the crystal is not suppressed, and sintering is promoted. Desirably, 2.97 ≦ q <3.03.
【0022】また、セラミックスの焼結は材料中の不純
物によっても影響される。そのため、本発明では材料中
の不純物に関して検討を加えた結果、材料中の不純物が
金属成分で換算して、特にAlおよびSi量が合計で1
000ppmを越えると焼結が促進される傾向にあるこ
とから、SiとAlの量を1000ppm以下に限定し
た。望ましくはSiとAlの合量が500ppm以下で
ある。The sintering of ceramics is also affected by impurities in the material. Therefore, in the present invention, as a result of studying the impurities in the material, the impurities in the material are converted into metal components, and particularly, the total amount of Al and Si is 1 in total.
If it exceeds 000 ppm, sintering tends to be accelerated. Therefore, the amounts of Si and Al are limited to 1000 ppm or less. Desirably, the total amount of Si and Al is 500 ppm or less.
【0023】本発明における空気極は、図1に示される
ような円筒型および図2に示されるような平板型のいず
れのセル形状にも適応することができる。通常この空気
極は多孔質からなり、円筒型燃料電池セルにおいては、
本発明品は空気極としての機能を付与した支持管として
も直接使用される。空気極を直接支持管として用いる場
合には、ガスの透過量と強度が重要な問題である。これ
に関連して、空気極の開気孔率が20%より小さいか、
または平均結晶粒径が3μmより小さいとガスの透過係
数が小さくなり所定の発電性能が得られない。それに対
して、開気孔率が45%を越えるか、または平均結晶粒
径が25μmより大きいとガス透過係数は大きくなるが
支持管の強度が低下しセル作製工程での支持管の取扱い
が困難となりセルの製造歩留りが悪くなる。従って、空
気極の開気孔率は20〜45%、特に30〜40%、平
均結晶粒径が3〜25μm、特に7〜15μmの範囲に
設定される。The air electrode according to the present invention can be applied to any of a cylindrical type as shown in FIG. 1 and a flat type as shown in FIG. Usually, this air electrode is made of porous material, and in a cylindrical fuel cell,
The product of the present invention is also directly used as a support tube having a function as an air electrode. When an air electrode is used directly as a support tube, the gas permeation amount and strength are important issues. In this connection, the open porosity of the cathode is less than 20%,
Alternatively, if the average crystal grain size is smaller than 3 μm, the gas transmission coefficient becomes small, and a predetermined power generation performance cannot be obtained. On the other hand, if the open porosity exceeds 45% or the average crystal grain size is more than 25 μm, the gas permeability coefficient increases, but the strength of the support tube decreases, making it difficult to handle the support tube in the cell manufacturing process. The production yield of the cell becomes poor. Accordingly, the open porosity of the air electrode is set in the range of 20 to 45%, particularly 30 to 40%, and the average crystal grain size is set in the range of 3 to 25 μm, particularly 7 to 15 μm.
【0024】また、このガス透過率は空気極の平均細孔
径にも依存する。図1に示したように多孔性で非電子伝
導性の支持管表面に前述した空気極材料を形成する場
合、支持管自身が充分高強度であるため、空気極として
はガスの透過性のみを考慮すれば良く、この場合空気極
の平均細孔径は1〜5μm、特に1.5〜3μmの範囲
であることが望ましい。これは平均細孔径が1μmより
小さいとガスの透過係数が小さくなり本来の発電性能が
得られず、平均細孔径が5μmを越えると強度が低下す
るためである。The gas permeability also depends on the average pore diameter of the air electrode. As shown in FIG. 1, when the above-described air electrode material is formed on the surface of a porous, non-electron conductive support tube, the support tube itself has sufficiently high strength. In this case, it is preferable that the average pore diameter of the air electrode is in the range of 1 to 5 μm, particularly 1.5 to 3 μm. This is because if the average pore diameter is smaller than 1 μm, the gas permeability coefficient decreases and the original power generation performance cannot be obtained, and if the average pore diameter exceeds 5 μm, the strength decreases.
【0025】また、空気極自身を直接支持管として用い
る場合は、ガスの透過性の他、支持管強度も重要な問題
となり、かかる観点から空気極の平均細孔径は1〜4μ
m、特に1.5〜3μmの範囲であることが望ましい。
平均細孔径が1μmより小さいとガスの透過係数が小さ
くなり本来の発電性能が得られず、平均細孔径が4μm
を越えると空気極自身の強度が小さく、セル作製工程で
の支持管の取扱いが困難となりセルの製造歩留りが悪く
なるためである。また、空気極を支持管として用いる場
合、その空気極の表面に固体電解質や燃料極および集電
部材を形成する場合に高温に晒されることになるが、こ
のように高温で長時間晒される場合、従来のCa、Sr
などの固溶したLaMnO3 系材料では耐クリープ性が
小さく、支持管の変形を伴っていたが、本発明品では、
耐クリープ性が優れるという長所も有するものである。When the air electrode itself is used directly as a support tube, the gas permeability and the strength of the support tube become important issues. From this viewpoint, the average pore diameter of the air electrode is 1 to 4 μm.
m, particularly preferably in the range of 1.5 to 3 μm.
If the average pore diameter is smaller than 1 μm, the gas permeability coefficient becomes small, the original power generation performance cannot be obtained, and the average pore diameter is 4 μm.
If the value exceeds, the strength of the air electrode itself is small, and it becomes difficult to handle the support tube in the cell manufacturing process, and the production yield of the cell deteriorates. In addition, when the air electrode is used as a support tube, the air electrode is exposed to a high temperature when a solid electrolyte, a fuel electrode, and a current collecting member are formed on the surface of the air electrode. , Conventional Ca, Sr
Although the solid solution of LaMnO 3 -based material such as this had low creep resistance and was accompanied by deformation of the support tube,
It also has the advantage of excellent creep resistance.
【0026】本発明における空気極を形成する導電性セ
ラミックスは、金属成分を含む酸化物、あるいは熱処理
により酸化物を形成できる炭酸化物、あるいは水酸化物
を特定な比率で充分混合した後、1200〜1500℃
の温度で焼結して作製される。作製される製品の寸法精
度および開気孔率を制御する観点からは、上述の混合粉
末を予め1400〜1500℃の温度で2〜10時間仮
焼し、固溶体粉末を作製し、これをボ−ルミルにより所
定の粒子径を有する粉末に粉砕しそれを成形した後、1
400〜1600℃の温度で大気中または不活性ガス中
2〜5時間焼結して作製する方が好ましい。In the present invention, the conductive ceramic forming the air electrode is prepared by thoroughly mixing an oxide containing a metal component, or a carbonate or a hydroxide capable of forming an oxide by heat treatment at a specific ratio, and then mixing the oxide with a metal. 1500 ° C
And sintered at a temperature of From the viewpoint of controlling the dimensional accuracy and open porosity of the product to be produced, the above-mentioned mixed powder is calcined in advance at a temperature of 1400 to 1500 ° C. for 2 to 10 hours to produce a solid solution powder, which is then subjected to ball milling. After pulverizing into a powder having a predetermined particle size and molding it,
It is more preferable to manufacture by sintering at a temperature of 400 to 1600 ° C. in the air or in an inert gas for 2 to 5 hours.
【0027】なお、成形方法としては、例えば、金型プ
レス,冷間静水圧プレス,押出し成形、スラリーディッ
プ法、ドクターブレード法等を採用することができる
が、空気極としての機能を付与した支持管を作製する場
合には、上述の粉末に周知のバインダ−を添加した後、
押出成形法、冷間静水圧プレス成形法等により成形する
ことができる。この場合の円筒管の肉厚としては1〜3
mmが適当である。As a molding method, for example, a mold press, a cold isostatic press, an extrusion molding, a slurry dipping method, a doctor blade method, and the like can be adopted, but a support having a function as an air electrode is provided. When making a tube, after adding a well-known binder to the above-mentioned powder,
It can be formed by an extrusion method, a cold isostatic pressing method, or the like. In this case, the thickness of the cylindrical tube is 1 to 3
mm is appropriate.
【0028】また、上記製造方法において、AlやSi
量を低くするためには、原料として高純度のものを使用
するとともに、混合や粉砕工程において粉砕メディアか
らの混入等を避けるために、樹脂製、ジルコニア製など
の治具を用いることがよい。Further, in the above manufacturing method, Al or Si
In order to reduce the amount, it is preferable to use a high-purity material as a raw material, and to use a jig made of resin, zirconia, or the like in order to avoid mixing from a pulverizing medium in the mixing and pulverization steps.
【0029】さらに、セラミックスの開気孔率や平均結
晶粒径などを制御するには、周知の方法により行うこと
ができるが、例えば、成形する前に上記の仮焼により得
られた固溶体粉末を粉砕して所望の焼結体の平均結晶粒
径と同等の粒径に整粒し、これを成形し緻密化が進行し
すぎない程度で前記の温度範囲で焼成するか、あるいは
成形時のバインダーの量を増加させるに従い、開気孔率
を大きくするなどの制御も可能である。その他、固溶体
粉末やバインダー量の制御に加え、上述の焼成温度、焼
成時間を適宜選択して制御すればよい。Further, the open porosity and the average crystal grain size of the ceramics can be controlled by a well-known method. For example, the solid solution powder obtained by the above-mentioned calcination is pulverized before molding. And then sizing to a grain size equivalent to the average crystal grain size of the desired sintered body, and molding and firing at the above temperature range to such an extent that densification does not proceed excessively, or the binder at the time of molding Control such as increasing the open porosity as the amount is increased is also possible. In addition, in addition to controlling the amount of the solid solution powder and the amount of the binder, the above-described firing temperature and firing time may be appropriately selected and controlled.
【0030】[0030]
【作用】本発明では従来用いられていLaMnO3 固溶
体に関して、Laを10〜30原子%Caで置換したL
aMnO3 固溶体中の格子欠陥構造に着目して研究を進
めた結果、Laを10〜20原子%Caで置換した固溶
体中では大気中、高温において下記化3に示すように酸
素を格子中に取り込み、系の電気的中性を保持するため
LaとMnイオンの空孔がそれぞれ生成することが分か
った。According to the present invention, a LaMnO 3 solid solution conventionally used is prepared by replacing La with 10 to 30 atomic% of Ca.
As a result of research focusing on the lattice defect structure in the aMnO 3 solid solution, oxygen was incorporated into the lattice as shown in the following chemical formula 3 in air and at a high temperature in a solid solution in which La was substituted with 10 to 20 atomic% of Ca. It has been found that La and Mn ion vacancies are generated to maintain the electrical neutrality of the system.
【0031】[0031]
【化3】 Embedded image
【0032】この格子欠陥構造から、LaMnO3 固溶
体中ではLa、Mnイオン空孔濃度が高いため、陽イオ
ンの拡散速度が速くなり、その結果焼結が促進されると
考えられる。したがって、上述の問題は、発電時のセル
内の温度分布の不均一性が空気極に影響し、空気極材料
の焼結が不均一に起こり、その結果セルの変形および空
気極の部分的な剥離のため出力が低下するためと推論で
きる。From the lattice defect structure, it is considered that the La, Mn ion vacancy concentration is high in the LaMnO 3 solid solution, so that the diffusion rate of cations is increased, and as a result, sintering is promoted. Therefore, the above-mentioned problem is that the non-uniformity of the temperature distribution in the cell during power generation affects the cathode, and the sintering of the cathode material occurs non-uniformly, resulting in the deformation of the cell and the partial formation of the cathode. It can be inferred that the output is reduced due to peeling.
【0033】この推論から本発明者は結晶内の格子欠陥
構造を変化させ、La、Mnイオン空孔の生成を抑制す
れば、セル内の温度分布が若干不均一であっても、空気
極の焼結とそれに付随するセルの変形は抑制できると考
えられる。From this inference, the present inventor can change the lattice defect structure in the crystal and suppress the generation of La and Mn ion vacancies, so that even if the temperature distribution in the cell is slightly uneven, It is considered that sintering and the accompanying deformation of the cells can be suppressed.
【0034】そこで、本発明では、上記の考察を基にL
aMnO3 系に対して種々の添加物を検討した結果、L
aを同一原子価のYおよび希土類元素で一部置換すると
同時に、さらにLaをCa、Sr、Ba等のアルカリ土
類元素で置換することにより、また場合によってはMn
の一部をCo、Ni、Fe、Cr、Ceで置換したり、
LaをTi、Zr、Zn、Ce、Sn、Cuで一部置換
することにより大気中、高温で下記化4で示したように
酸素イオン空孔が支配的に生成することを見出だした。Therefore, in the present invention, based on the above consideration, L
As a result of studying various additives for the aMnO 3 system,
a is partially substituted by Y and a rare earth element having the same valence, and at the same time, La is further substituted by an alkaline earth element such as Ca, Sr, and Ba.
Is partially replaced with Co, Ni, Fe, Cr, Ce,
It has been found that by partially substituting La with Ti, Zr, Zn, Ce, Sn, and Cu, oxygen ion vacancies are predominantly generated at a high temperature in the atmosphere as shown in the following chemical formula 4.
【0035】[0035]
【化4】 Embedded image
【0036】上記化4で表される格子欠陥を有する材料
においては、酸素イオンの拡散は促進されるが、逆にL
a、Mnの陽イオンの拡散は促進されないため、100
0℃付近の発電において空気極材料の焼結は抑制され
る。In a material having a lattice defect represented by the above formula 4, the diffusion of oxygen ions is promoted.
a, since diffusion of cations of Mn is not promoted,
Sintering of the air electrode material is suppressed in power generation around 0 ° C.
【0037】また本発明者は、LaをCaで置換したL
aMnO3 固溶体中を大気中1000℃の温度で200
時間焼鈍し水中急冷したものについて、材料中の酸素量
の測定を行った。その結果を図3に示した。これによる
と結晶内の酸素量qは、Caの置換比率が0.22付近
で急激に変化することがわかる。つまり、酸素量が3.
03より大きいとLa、Mnイオン空孔が支配的に生成
するのに対して、3.03以下では酸素イオン空孔が支
配的に生成すると言える。すなわち、酸素量が3.03
以下の材料はLaとMnイオン空孔濃度が低いため陽イ
オン拡散速度が遅く、その結果焼結が抑制される結果、
それに起因するセルの変形や空気極の電解質からの剥離
も防止されるのである。The present inventor has also proposed L in which La is replaced by Ca.
aMnO 3 solid solution in air at 1000 ° C. for 200
The amount of oxygen in the material was measured for those that had been annealed for an hour and quenched in water. The result is shown in FIG. According to this, it can be seen that the oxygen amount q in the crystal rapidly changes when the substitution ratio of Ca is around 0.22. That is, the amount of oxygen is 3.
If it is larger than 03, La and Mn ion vacancies are predominantly generated, whereas if it is 3.03 or less, oxygen ion vacancies are predominantly generated. That is, the amount of oxygen is 3.03.
The following materials have low La and Mn ion vacancy concentrations, so the cation diffusion rate is low, and as a result, sintering is suppressed,
As a result, deformation of the cell and separation of the air electrode from the electrolyte are also prevented.
【0038】また、本発明品に関してペロブスカイト構
造中のAサイトの原子が不足した不定比系においても、
その格子欠陥構造が定比系に類似しているため同様な結
果が得られる。また、Mnの一部をCo、Ni、Fe、
Cr、Ce、Zrで置換した材料も同様な格子欠陥を有
しており空気極として使用できる。Further, in the nonstoichiometric system in which the atoms of the A site in the perovskite structure of the product of the present invention are insufficient,
Similar results are obtained because the lattice defect structure is similar to the stoichiometric system. Further, a part of Mn is Co, Ni, Fe,
Materials substituted with Cr, Ce, and Zr also have similar lattice defects and can be used as air electrodes.
【0039】加えて、上述の焼結は材料中の不純物によ
り促進される。セラミック材料においては不純物は粒界
においてガラス相あるいは結晶相で粒界相を構成する。
通常、成分イオンの内、遅い方のイオンは粒界拡散が顕
著であるため、LaMnO3の場合はLa、Mnイオン
が酸素イオンより粒界において拡散が促進されると考え
られる。一般にセラミック材料の焼結は遅い方のイオン
で律速されるため、この遅い方のイオンを促進する粒界
相はできるだけ抑制する必要がある。この観点から本発
明では不純物の焼結に対する効果についても検討した結
果、特にSiとAl量が多いほど、焼結が進行し空気極
の変形を招くことから、SiとAl量を前述した範囲に
特定した。In addition, the above-mentioned sintering is promoted by impurities in the material. In a ceramic material, impurities constitute a grain boundary phase with a glass phase or a crystal phase at a grain boundary.
Normally, the slower ion among the component ions has a remarkable diffusion at the grain boundary. Therefore, in the case of LaMnO 3 , it is considered that the diffusion of La and Mn ions is promoted at the grain boundary than oxygen ions. Generally, the sintering of a ceramic material is rate-determined by the slower ions, so that the grain boundary phase that promotes the slower ions must be suppressed as much as possible. From this viewpoint, the present invention also examined the effect of sintering of impurities. As a result, sintering progresses and the air electrode is deformed as the amount of Si and Al increases. Identified.
【0040】また、本発明によれば空気極としての機能
を付与した支持管や非電子伝導性の支持管表面に空気極
を塗布したものについて、発電性能の観点からガスの透
過性が重要であるが、この尺度として平均細孔径、開気
孔率および平均結晶粒径が重要である。即ち、本発明に
よれば、平均細孔径、開気孔率および平均結晶粒径と前
述した所定の範囲に制御することにより、空気極として
優れたガス透過性を付与することができるのである。According to the present invention, gas permeability is important from the viewpoint of power generation performance of a support tube having a function as an air electrode or a non-electron conductive support tube coated with an air electrode. However, the average pore diameter, the open porosity and the average crystal grain size are important as this measure. That is, according to the present invention, by controlling the average pore diameter, the open porosity, and the average crystal grain diameter to the above-described predetermined ranges, it is possible to impart excellent gas permeability as an air electrode.
【0041】[0041]
【実施例】次に、本発明を実施例に基づき説明する。 実施例1 市販の純度99.9%、平均粒径が2〜3μmのLa2
O3 、Y2 O3 、CaCO3 およびMn2 O3 を出発原
料として、これを表1および表2の組成になるように調
合し、ジルコニアボ−ルを用いて10時間混合した後、
1400℃で10時間固相反応させた。この粉末をボー
ルミルを用いて、さらに10時間粉砕して平均粒径が6
〜8μmの固溶体粉末を得た。この後、外径14mm、
内径10mm、長さ100mmの円筒状に成形して、1
470〜1500℃にて焼成し、円筒状焼結体を得た。Next, the present invention will be described based on embodiments. Example 1 La 2 having a commercial purity of 99.9% and an average particle size of 2 to 3 μm
Using O 3 , Y 2 O 3 , CaCO 3 and Mn 2 O 3 as starting materials, they were prepared so as to have the compositions shown in Tables 1 and 2, and mixed with zirconia balls for 10 hours.
Solid phase reaction was performed at 1400 ° C. for 10 hours. The powder was further pulverized for 10 hours using a ball mill to obtain an average particle size of 6
A solid solution powder of 88 μm was obtained. After this, outer diameter 14mm,
Formed into a cylindrical shape with an inner diameter of 10 mm and a length of 100 mm,
It was fired at 470 to 1500 ° C. to obtain a cylindrical sintered body.
【0042】(各種特性評価)得られた焼結体に対し
て、アルキメデス法により開気孔率、水銀圧入法により
平均細孔径を、電子顕微鏡写真より平均結晶粒径、さら
に室温から1000℃までの熱膨張係数を測定した。ま
た、円筒状焼結体から30mmの長さの試料を切り出し
25℃の温度でN2 ガスを用いて透過係数測定装置によ
り円筒状焼結体からのガスの透過係数を測定した。さら
に、ICP発光分光分析によりAlおよびSi量を定量
した。その結果、本発明の焼結体に含まれるAlおよび
Si量は合計で400ppm以下であった。また、いず
れも平均細孔径が2.0〜3.4μm、平均結晶粒径が
7.1〜11.3μm、ガス透過係数が0.075〜
0.110ml・cm2 /g・min・(cmHg)で
あった。その他の特性については、表1に列記した。(Evaluation of Various Characteristics) The obtained sintered body was measured for the open porosity by the Archimedes method, the average pore size by the mercury intrusion method, the average crystal grain size from the electron micrograph, and the room temperature to 1000 ° C. The coefficient of thermal expansion was measured. Further, a sample having a length of 30 mm was cut out from the cylindrical sintered body, and a gas transmission coefficient from the cylindrical sintered body was measured at a temperature of 25 ° C. by using a N 2 gas at a transmission coefficient measuring device. Further, the amounts of Al and Si were quantified by ICP emission spectroscopy. As a result, the amounts of Al and Si contained in the sintered body of the present invention were 400 ppm or less in total. In addition, all have an average pore diameter of 2.0 to 3.4 μm, an average crystal particle diameter of 7.1 to 11.3 μm, and a gas permeability coefficient of 0.075 to
It was 0.110 ml · cm 2 / g · min · (cmHg). Other characteristics are listed in Table 1.
【0043】なお、熱膨張係数については、比較のため
市販の純度99.9%の理論密度比99%以上の8モル
%Y2 O3 含有ZrO2 を用いた。As for the thermal expansion coefficient, a commercially available ZrO 2 containing 8 mol% of Y 2 O 3 having a theoretical density ratio of 99% or more and a purity of 99.9% was used for comparison.
【0044】(変形率)この円筒状焼結体を電気炉を用
いて、大気中、室温から100℃/hの速度で1000
℃まで昇温し、1000℃で2000時間保持した後の
円筒状焼結体の外径の寸法測定を行い、熱処理前のそれ
と比較して下記数1(Deformation rate) This cylindrical sintered body was heated at a rate of 100 ° C./h from room temperature to 1000 ° C. in the air using an electric furnace.
After the temperature was raised to 100 ° C. and the temperature was maintained at 1000 ° C. for 2000 hours, the outer diameter of the cylindrical sintered body was measured.
【0045】[0045]
【数1】 (Equation 1)
【0046】の式に従い変形率を算出した。その結果を
表1に示した。The deformation rate was calculated according to the following equation. The results are shown in Table 1.
【0047】(剥離性の評価方法)また、各組成につい
て、ボ−ルミルを用いて10時間混合した後、1400
℃で10時間固相反応させた。この粉末をボールミルを
用いて、さらに24時間粉砕し、平均粒径3〜5μmの
粉末を作製した。この粉末をそれぞれエチレングリコ−
ルと混合し、ペ−ストを作製した。一方、市販の8モル
%Y2 O3 −92モル%ZrO2 (以下、YSZと呼
ぶ)粉末を円形に成形して外径20mm、厚み0.5m
mで理論密度比99%の焼結体を得た。このYSZ円板
表面に、上記のペ−ストをスクリ−ン印刷し乾燥後、1
200℃で2時間焼鈍してYSZ表面に厚みが約20μ
mになるように原料粉末を焼き付けた。この試料を電気
炉を用いて、大気中、室温から100℃/hの速度で1
000℃まで昇温し、1000℃で2000時間保持し
た後、さらに室温まで100℃/hの速度で冷却した。
この後、焼き付けた粉末の剥離状況を調べ、表3に示し
た。なお、表中では、剥離があったものに×印、剥離が
認められなかったものに○印を付した。(Evaluation Method of Peelability) After mixing each composition for 10 hours using a ball mill, 1400
The solid phase reaction was performed at 10 ° C. for 10 hours. This powder was further pulverized using a ball mill for 24 hours to prepare a powder having an average particle size of 3 to 5 μm. This powder was mixed with ethylene glycol
And a paste was prepared. On the other hand, a commercially available powder of 8 mol% Y 2 O 3 -92 mol% ZrO 2 (hereinafter referred to as YSZ) is molded into a circular shape to have an outer diameter of 20 mm and a thickness of 0.5 m.
With m, a sintered body having a theoretical density ratio of 99% was obtained. The paste is screen-printed on the surface of the YSZ disk, dried, and
Annealed at 200 ° C for 2 hours to have a thickness of about 20μ on the YSZ surface.
The raw material powder was baked to obtain m. Using an electric furnace, the sample was heated at a rate of 100 ° C./h from room temperature to 1 ° C.
After the temperature was raised to 000 ° C and kept at 1000 ° C for 2000 hours, it was further cooled to room temperature at a rate of 100 ° C / h.
Thereafter, the peeling state of the baked powder was examined, and the results are shown in Table 3. In the table, those with peeling were marked with x, and those without peeling were marked with ○.
【0048】[0048]
【表1】 [Table 1]
【0049】実施例2 原料粉末として、純度99.9%以上のLa2 O3 、M
nO2 、アルカリ土類元素酸化物、Yおよび希土類元素
の酸化物を用いてこれらを最終的に表2に示すような組
成となるように秤量混合する以外は、実施例1と全く同
様な方法によって、円筒状焼結体を作製し、この焼結体
に対して、実施例1と同様な方法により各種の特性の評
価を行った。測定の結果、本発明の焼結体に含まれるA
lおよびSi量は合計で350ppm以下、平均細孔径
が2.1〜3.3μm、平均結晶粒径が7.5〜10.
5μm、ガス透過係数が0.075〜0.121ml・
cm2 /g・min・(cmHg)であった。なお、そ
の他の特性については、表2に列記した。Example 2 As a raw material powder, La 2 O 3 , M having a purity of 99.9% or more was used.
Exactly the same method as in Example 1 except that nO 2 , an alkaline earth element oxide, an oxide of Y and a rare earth element are weighed and mixed so that the composition finally becomes as shown in Table 2. Thus, a cylindrical sintered body was produced, and various characteristics of the sintered body were evaluated in the same manner as in Example 1. As a result of the measurement, A contained in the sintered body of the present invention
The total amount of l and Si is 350 ppm or less, the average pore diameter is 2.1 to 3.3 µm, and the average crystal grain size is 7.5 to 10.
5 μm, gas permeability coefficient 0.075-0.121 ml
cm 2 / g · min · (cmHg). Table 2 shows other characteristics.
【0050】[0050]
【表2】 [Table 2]
【0051】実施例3 原料粉末として、純度99.9%以上のLa2 O3 、M
nO2 、アルカリ土類元素酸化物、Yおよび希土類元素
の酸化物および表3乃至表5に示す各種の金属の酸化物
を用いて、表3乃至表5に示すような比率で秤量混合し
た後、これを実施例1と同様にして円筒状焼結体を作製
し、実施例1と同様な方法で各種の特性評価を行った。
測定の結果、本発明の焼結体に含まれるAlおよびSi
量は合計で380ppm以下、平均細孔径が1.9〜
2.8μm、平均結晶粒径が8.1〜12.1μm、ガ
ス透過係数が0.073〜0.114ml・cm2 /g
・min・(cmHg)であった。なお、その他の特性
については、表3乃至表5に列記した。Example 3 As raw material powder, La 2 O 3 , M having a purity of 99.9% or more was used.
After weighing and mixing nO 2 , alkaline earth element oxide, oxides of Y and rare earth elements, and oxides of various metals shown in Tables 3 to 5, at ratios shown in Tables 3 to 5 Then, a cylindrical sintered body was produced in the same manner as in Example 1, and various characteristics were evaluated in the same manner as in Example 1.
As a result of the measurement, Al and Si contained in the sintered body of the present invention
The total amount is 380 ppm or less, and the average pore diameter is 1.9 to
2.8 μm, average crystal grain size 8.1 to 12.1 μm, gas permeability coefficient 0.073 to 0.114 ml · cm 2 / g
Min · (cmHg). Other characteristics are listed in Tables 3 to 5.
【0052】[0052]
【表3】 [Table 3]
【0053】[0053]
【表4】 [Table 4]
【0054】[0054]
【表5】 [Table 5]
【0055】表1乃至表5によれば、Ca等の置換比率
(y)が0.22より小さい試料では変形が大きかっ
た。また、置換比率(y)が0.6を越える試料では焼
結性が悪くなり所定の開気孔率を有した円筒状焼結体の
作製ができなかった。Yの置換比率(x)が0.4を越
える試料については同様に変形が大きかった。また、C
o、Ni、Crの置換量(p)が0.3を越えても変形
率が大きくなる。また、Ce、Zrの置換比率(w)が
0.3を越えると変形量が大きくなった。(Aサイト原
子/Bサイト原子)比に関してz値が0.88より小さ
い試料では、Mn3 O4 が析出して変形が促進された。
また、Zが1.05を越えるとLaO3 が生成した。ま
た、収縮が大きいものは付着力の試験でいずれも剥離し
た。According to Tables 1 to 5, the samples having a substitution ratio (y) of Ca or the like smaller than 0.22 showed a large deformation. On the other hand, the samples having a substitution ratio (y) of more than 0.6 had poor sinterability and could not produce a cylindrical sintered body having a predetermined open porosity. The deformation was similarly large for the sample in which the substitution ratio (x) of Y exceeded 0.4. Also, C
Even if the substitution amount (p) of o, Ni, and Cr exceeds 0.3, the deformation rate increases. When the substitution ratio (w) of Ce and Zr exceeded 0.3, the amount of deformation increased. In the sample in which the z value was smaller than 0.88 with respect to the (A site atom / B site atom) ratio, Mn 3 O 4 was precipitated and deformation was promoted.
When Z exceeded 1.05, LaO 3 was produced. In addition, those with large shrinkage were peeled off in the test of the adhesive force.
【0056】実施例4 実施例1と同様な原料を用いて、最終組成が(La0.4
Y0.2 Ca0.4 )MnOδとなるように秤量混合した
後、ボ−ルミルを用いて10時間混合した後、1500
℃で10時間固相反応させた。この粉末をボールミルを
用いて、さらに12〜24時間粉砕し平均粒径1〜5μ
mの粉末を作製した。この粉末を用いて、焼成温度14
00〜1600℃で焼成して開気孔率や平均細孔径が異
なる数種の円筒状焼結体を作製した。Example 4 Using the same raw materials as in Example 1, the final composition was (La 0.4
Y 0.2 Ca 0.4 ) MnOδ was weighed and mixed, and then mixed using a ball mill for 10 hours.
The solid phase reaction was carried out at 10 ° C. for 10 hours. Using a ball mill, this powder was further ground for 12 to 24 hours, and the average particle size was 1 to 5 μm.
m was prepared. Using this powder, a sintering temperature of 14
By baking at 00 to 1600 ° C., several types of cylindrical sintered bodies having different open porosity and average pore diameter were produced.
【0057】得られた焼結体に対して、アルキメデス法
により開気孔率を、水銀圧入法により平均細孔径を、ま
たN2 ガスを用いて透過係数測定装置により円筒状焼結
体からのガスの透過係数を測定した。さらに、長さ40
mmの円筒状焼結体を切り出し、スパン30mmで抗折
試験装置により破壊強度を測定した。その結果を表6に
示した。With respect to the obtained sintered body, the open porosity was determined by the Archimedes method, the average pore diameter was determined by the mercury intrusion method, and the gas from the cylindrical sintered body was measured by the transmission coefficient measuring device using N 2 gas. Was measured. In addition, length 40
mm was cut out of a cylindrical sintered body, and the breaking strength was measured with a bending test apparatus at a span of 30 mm. Table 6 shows the results.
【0058】[0058]
【表6】 [Table 6]
【0059】表6より、平均細孔径が1.0〜5.0μ
m、平均結晶粒径が3.0〜25.0μmおよび開気孔
率が20〜45%の範囲でガス透過係数が高く、破壊強
度も高くなることが理解される。From Table 6, it can be seen that the average pore diameter is 1.0 to 5.0 μm.
It is understood that the gas permeability coefficient is high and the breaking strength is high when m, the average crystal grain size is 3.0 to 25.0 μm, and the open porosity is in the range of 20 to 45%.
【0060】実施例5 実施例1と同様な方法で作製した平均粒径が6〜8μm
の固溶体粉末原料に表7に示す割合でAl2 O3 、Si
O2 を添加しジルコニアボールで3時間混合した。この
後、外径15mm、内径10mm、長さ100mmの円
筒状に成形し、1470〜1520℃の範囲で焼成して
開気孔率が30〜32%の円筒状焼結体を得た。これを
大気中、1000℃で2000時間熱処理し、熱処理前
後の変形率を測定した。また、試料中のAl、Si量は
ICP発光分光分析により決定した。その結果を表7に
示した。これよりAl、Siの総量が1000ppmを
越えると変形率が大きくなった。Example 5 The average particle size produced in the same manner as in Example 1 was 6 to 8 μm.
Al 2 O 3 and Si at the ratios shown in Table 7
O 2 was added and mixed with zirconia balls for 3 hours. Thereafter, it was formed into a cylindrical shape having an outer diameter of 15 mm, an inner diameter of 10 mm, and a length of 100 mm, and fired in a range of 1470 to 1520 ° C. to obtain a cylindrical sintered body having an open porosity of 30 to 32%. This was heat-treated at 1000 ° C. in the air for 2000 hours, and the deformation ratio before and after the heat treatment was measured. The amounts of Al and Si in the sample were determined by ICP emission spectroscopy. Table 7 shows the results. As a result, when the total amount of Al and Si exceeded 1000 ppm, the deformation ratio increased.
【0061】[0061]
【表7】 [Table 7]
【0062】実施例6 実施例1と同様な方法により平均粒径が6〜8μmの固
溶体粉末を得、これを用いて実施例1と同様な方法によ
り表8に示すような組成の円筒状焼結体を作製した。そ
して、これを大気中1000℃で100時間熱処理した
後に水中に投下急冷した後、この材料を細かく粉砕し、
これを塩酸に溶解させ、発生した塩素をヨウ化カリウム
と反応させてヨウ素を遊離させた。このヨウ素をチオ硫
酸で滴定する、いわゆるヨウ素滴定法で、下記数2Example 6 A solid solution powder having an average particle diameter of 6 to 8 μm was obtained in the same manner as in Example 1, and was used in the same manner as in Example 1 to obtain a cylindrical sintered powder having the composition shown in Table 8. A body was produced. Then, after heat-treating the material at 1000 ° C. for 100 hours in the air and dropping it into water and quenching, the material is finely pulverized,
This was dissolved in hydrochloric acid, and the generated chlorine was reacted with potassium iodide to release iodine. This iodine is titrated with thiosulfuric acid, a so-called iodine titration method.
【0063】[0063]
【数2】 (Equation 2)
【0064】の中和式と、電気的中性条件の数3The neutralization formula of the above equation and the number 3 of the electric neutral conditions
【0065】[0065]
【数3】 (Equation 3)
【0066】を用いて試料中の酸素量を決定した。ま
た、この試料を1000℃で2000時間熱処理し変形
率も測定した。試料中のAl、Siの総量はICP測定
の結果、いずれも430ppm以下であった。測定の結
果は表8に示した。これより酸素量が3.03を越える
と変形率が大きいことがわかった。Was used to determine the amount of oxygen in the sample. The sample was heat-treated at 1000 ° C. for 2000 hours, and the deformation rate was measured. The total amount of Al and Si in the sample was 430 ppm or less as a result of ICP measurement. The results of the measurement are shown in Table 8. From this, it was found that when the oxygen amount exceeded 3.03, the deformation rate was large.
【0067】[0067]
【表8】 [Table 8]
【0068】実施例6 上記実施例1乃至実施例3中の試料No.1,2,7,7
1,112の組成の原料を用いて、一端が封じた円筒を
成形し、1460〜1500℃の温度で外径15mm、
内径11mm、長さ200mmになるように焼成し、開
気孔率が37〜40%の円筒状焼結体を得た。Example 6 Sample Nos. 1, 2, 7, and 7 in Examples 1 to 3 described above.
Using a raw material having a composition of 1,112, a cylinder having one end sealed was formed, and at a temperature of 1460 to 1500 ° C., an outer diameter of 15 mm,
It was calcined to have an inner diameter of 11 mm and a length of 200 mm to obtain a cylindrical sintered body having an open porosity of 37 to 40%.
【0069】その後、この円筒状焼結体を空気極とし
て、この表面に溶射法にて10モル%Y2 O3 −90モ
ル%ZrO2 組成の固体電解質を厚さ130〜150μ
m被覆し、さらにその上にスラリーディップ法にて80
重量%Ni−20重量%ZrO2 (組成8モル%Y2 O
3 含有)からなる燃料極を厚み50μmになるように被
覆し円筒状単セルを作製した。Then, using the cylindrical sintered body as an air electrode, a solid electrolyte having a composition of 10 mol% Y 2 O 3 -90 mol% ZrO 2 having a thickness of 130 to 150 μm was sprayed on the surface of the cylindrical sintered body.
m, and further coated on it by a slurry dipping method.
Wt% Ni-20 wt% ZrO 2 (Composition 8 mol% Y 2 O
3 ) was coated to a thickness of 50 μm to produce a cylindrical single cell.
【0070】この円筒状単セルの内側に酸素ガス、外側
に水素ガスを流しながら、1000〜1020℃で30
00時間の連続発電を行った。表9に300時間後と3
000時間後の単セルの出力密度をそれぞれ示した。そ
の結果、従来品のNo.1,2では出力の低下が観察され
たのに対して、本発明品は3000時間後においても出
力の変化が小さく安定したものであった。While flowing oxygen gas inside the cylindrical single cell and flowing hydrogen gas outside the cylindrical single cell, a temperature of 30 ° C.
00 hours of continuous power generation was performed. Table 9 shows that after 300 hours and 3
The output densities of the single cells after 000 hours are shown. As a result, a decrease in output was observed in Nos. 1 and 2 of the conventional product, whereas a change in output was small and stable after 3000 hours in the product of the present invention.
【0071】[0071]
【表9】 [Table 9]
【0072】[0072]
【発明の効果】以上の説明により明らかなように、本発
明の空気極材料であるランタマンガナイト系導電性セラ
ミックスは、円筒型固体電解質燃料電池セルの空気極と
して用いた場合、システムの運転中空気極の焼成収縮を
抑制し、それに伴うセルの破損とセル間の接続不良を防
ぎ、長期安定性のあるセルを提供できる。また、平板型
燃料電池セルにおいても、空気極の剥離を防ぎ、出力低
下の問題を防止し長期的に出力が安定性したセルを提供
できる。また、平板型燃料電池では、本発明の材料をガ
スディフュ−ザとして使用する場合もありうるが、この
場合もガスディフュ−ザの収縮による変形が小さいた
め、電解質との接続に優れ、その結果接続不良による出
力低下を確実に防止することができる。As is apparent from the above description, the lanthanum manganite-based conductive ceramic, which is the air electrode material of the present invention, is used during the operation of the system when used as the air electrode of a cylindrical solid electrolyte fuel cell. It is possible to provide a cell that has long-term stability by suppressing firing shrinkage of the air electrode, preventing cell damage and poor connection between cells due to this. Further, also in a flat fuel cell, it is possible to provide a cell in which the separation of the air electrode is prevented, the problem of output reduction is prevented, and the output is stable for a long time. In the case of a flat plate fuel cell, the material of the present invention may be used as a gas diffuser. In this case, however, the deformation due to shrinkage of the gas diffuser is small, so that the connection with the electrolyte is excellent, and as a result, the connection failure is poor. Output can be reliably prevented.
【図1】円筒型燃料電池セルの構造を説明するための図
である。FIG. 1 is a view for explaining the structure of a cylindrical fuel cell.
【図2】平板型燃料電池セルの構造を説明するための図
である。FIG. 2 is a diagram illustrating the structure of a flat fuel cell.
【図3】円筒状支持管の焼鈍温度と変形率との関係を示
す図である。FIG. 3 is a diagram showing a relationship between an annealing temperature and a deformation rate of a cylindrical support tube.
1 支持管 2,7 空気極 3,6 固体電解質 4,8 燃料極 5 インターコネクタ 9 セパレータ DESCRIPTION OF SYMBOLS 1 Support pipe 2,7 Air electrode 3,6 Solid electrolyte 4,8 Fuel electrode 5 Interconnector 9 Separator
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 C04B 35/495 H01M 8/02 H01M 8/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/86 C04B 35/495 H01M 8/02 H01M 8/12
Claims (2)
燃料極が形成してなる固体電解質型燃料電池セルにおい
て、前記空気極が下記化1、 【化1】 (La1-x-yAxBy)z(Mn1-pCp)Oq で表される組成の複合ペロブスカイト型酸化物であり、
化1中、AはYおよび希土類元素の群から選ばれる少な
くとも1種の元素、BはCa、BaおよびSrの群から
選ばれる少なくとも1種の元素、CはNi、Co、F
e、Cr、CeおよびZrの群から選ばれる少なくとも
1種の元素であり、化1中のx、y、zおよびpが、 0.02≦ x ≦0.40 0.22≦ y ≦0.60 x+y<1 0.88≦ z ≦1.05 0≦ p ≦0.30 を満足する導電性セラミックスからなり、該導電性セラ
ミックス中に含まれるSiおよびAl元素の含有量が合
計で1000ppm以下、平均細孔径が1.0〜5.0
μm、平均結晶粒径が3.0〜25.0μmおよび開気
孔率が20〜45%であり、且つ大気中、1000℃に
おいてq≦3.03を満足することを特徴とする固体電
解質型燃料電池セル。1. A solid electrolyte fuel cell comprising an air electrode formed on one surface of a solid electrolyte and a fuel electrode formed on the other surface, wherein the air electrode is represented by the following formula (1). an a x B y) z (Mn 1-p C p) complex perovskite type oxide having a composition represented by O q,
In Chemical Formula 1, A is at least one element selected from the group consisting of Y and rare earth elements, B is at least one element selected from the group consisting of Ca, Ba and Sr, and C is Ni, Co, F
e, at least one element selected from the group consisting of Cr, Ce and Zr, wherein x, y, z and p in Chemical formula 1 are 0.02 ≦ x ≦ 0.40 0.22 ≦ y ≦ 0. 60 x + y <1 0.88 ≦ z ≦ 1.050 0 ≦ p ≦ 0.30, made of conductive ceramics, wherein the total content of Si and Al elements contained in the conductive ceramics is 1000 ppm or less, Average pore size is 1.0 to 5.0
a solid electrolyte type fuel having an average crystal grain size of 3.0 to 25.0 μm, an open porosity of 20 to 45%, and satisfying q ≦ 3.03 at 1,000 ° C. in the atmosphere. Battery cells.
燃料極が形成してなる固体電解質型燃料電池セルにおい
て、前記空気極が下記化2 【化2】 (La1-x-y-wAxByDw)z(Mn1-pCp)
Oq で表される組成の複合ペロブスカイト型酸化物であり、
化2中、AはYおよび希土類元素の群から選ばれる少な
くとも1種の元素、BはCa、BaおよびSrの群から
選ばれる少なくとも1種の元素、CはNi、Co、F
e、Cr、CeおよびZrの群から選ばれる少なくとも
1種の元素、DはTi、Zr、Zn、Ce、Snおよび
Cuの群から選ばれる少なくとも1種の元素からなり、
化2中のx、y、w、zおよびpが、 0.02≦ x ≦0.40 0.22≦ y ≦0.60 x+y < 1 0< w ≦0.20 0.88≦ z ≦1.05 0≦ p ≦0.30 を満足する導電性セラミックスからなり、該導電性セラ
ミックス中に含まれるSiおよびAl元素の含有量が合
計で1000ppm以下、平均細孔径が1.0〜5.0
μm、平均結晶粒径が3.0〜25.0μmおよび開気
孔率が20〜45%であり、且つ大気中、1000℃に
おいてq≦3.03を満足することを特徴とする固体電
解質型燃料電池セル。2. A solid electrolyte fuel cell in which an air electrode is formed on one surface of a solid electrolyte and a fuel electrode is formed on the other surface, wherein the air electrode is represented by the following formula (La 1-xyw A). x B y D w) z ( Mn 1-p C p)
A composite perovskite oxide having a composition represented by O q ,
In Chemical Formula 2, A is at least one element selected from the group consisting of Y and rare earth elements, B is at least one element selected from the group consisting of Ca, Ba and Sr, and C is Ni, Co, F
e, at least one element selected from the group consisting of Cr, Ce and Zr, and D comprises at least one element selected from the group consisting of Ti, Zr, Zn, Ce, Sn and Cu;
X, y, w, z and p in Chemical formula 2 are 0.02 ≦ x ≦ 0.40 0.22 ≦ y ≦ 0.60 x + y <10 <w ≦ 0.20 0.88 ≦ z ≦ 1 0.050 ≦ p ≦ 0.30, wherein the total content of Si and Al elements contained in the conductive ceramic is 1000 ppm or less, and the average pore diameter is 1.0 to 5.0.
a solid electrolyte type fuel having an average crystal grain size of 3.0 to 25.0 μm, an open porosity of 20 to 45%, and satisfying q ≦ 3.03 at 1,000 ° C. in the atmosphere. Battery cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04082494A JP3359412B2 (en) | 1994-03-11 | 1994-03-11 | Solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04082494A JP3359412B2 (en) | 1994-03-11 | 1994-03-11 | Solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07249413A JPH07249413A (en) | 1995-09-26 |
JP3359412B2 true JP3359412B2 (en) | 2002-12-24 |
Family
ID=12591418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04082494A Expired - Lifetime JP3359412B2 (en) | 1994-03-11 | 1994-03-11 | Solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3359412B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2925486B1 (en) * | 2007-12-21 | 2011-07-01 | Saint Gobain Ct Recherches | METHOD FOR MANUFACTURING A MELTANE AND MANGANESE MELT PRODUCT |
US9520597B2 (en) * | 2011-12-19 | 2016-12-13 | Ngk Insulators, Ltd. | Cathode material, interconnector material and solid oxide fuel cell |
JP6394866B2 (en) * | 2014-07-25 | 2018-09-26 | 日産自動車株式会社 | Fuel cell system and operation method thereof |
-
1994
- 1994-03-11 JP JP04082494A patent/JP3359412B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07249413A (en) | 1995-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20120140476A (en) | Material for solid oxide fuel cell, cathode including the material and solid oxide fuel cell including the material | |
JP3359413B2 (en) | Solid oxide fuel cell | |
JP3359412B2 (en) | Solid oxide fuel cell | |
JP3121993B2 (en) | Method for producing conductive ceramics | |
JP3342541B2 (en) | Solid oxide fuel cell | |
JP3342571B2 (en) | Solid oxide fuel cell | |
WO2002013296A1 (en) | Composite oxide for air electrode and material of collector of solid electrolyte fuel cell, method for preparation thereof, and solid electrolyte fuel cell | |
JPH07296839A (en) | Solid electrolyte fuel cell | |
JPH0365517A (en) | Lanthanum chromite-based compound oxide and use thereof | |
JP4038628B2 (en) | Oxide ion conductor, method for producing the same, and solid oxide fuel cell | |
JP3743230B2 (en) | Solid electrolyte sintered body, method for producing the same, and fuel cell using the solid electrolyte sintered body | |
JP3350137B2 (en) | Solid oxide fuel cell material | |
JP3389407B2 (en) | Conductive ceramics and fuel cells | |
JP3325378B2 (en) | Conductive ceramics and fuel cell using the same | |
JP3121991B2 (en) | Conductive ceramics | |
JP3740304B2 (en) | Conductive ceramics | |
JP3359421B2 (en) | Solid oxide fuel cell | |
JP3220320B2 (en) | Fuel cell and method for producing conductive ceramics | |
JP4450179B2 (en) | NiO-cerium-containing oxide mixed material and solid oxide fuel cell having the same | |
JP3339936B2 (en) | Method for producing conductive ceramics | |
JP3091100B2 (en) | Method for producing conductive ceramics | |
JP3398213B2 (en) | Solid oxide fuel cell | |
JP4644326B2 (en) | Lanthanum gallate sintered body | |
JP3091064B2 (en) | Method for producing conductive ceramics and method for producing solid oxide fuel cell | |
JPH08130029A (en) | Solid electrolyte fuel cell and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071011 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081011 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091011 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101011 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101011 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111011 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121011 Year of fee payment: 10 |