JP2001068130A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP2001068130A
JP2001068130A JP24450199A JP24450199A JP2001068130A JP 2001068130 A JP2001068130 A JP 2001068130A JP 24450199 A JP24450199 A JP 24450199A JP 24450199 A JP24450199 A JP 24450199A JP 2001068130 A JP2001068130 A JP 2001068130A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
metal
metal particles
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24450199A
Other languages
Japanese (ja)
Other versions
JP3652932B2 (en
Inventor
Takashi Shigehisa
高志 重久
Masahito Nishihara
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24450199A priority Critical patent/JP3652932B2/en
Publication of JP2001068130A publication Critical patent/JP2001068130A/en
Application granted granted Critical
Publication of JP3652932B2 publication Critical patent/JP3652932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell in which power generating characteristics can be enhanced, adhesion strength of a fuel electrode can be improved with respect to a solid electrolyte and excellent power generation can be maintained for a long period. SOLUTION: In a solid electrolyte fuel cell in which an air electrode 32 is formed at one surface of a ceramics solid electrolyte 31 and a fuel electrode 33 made of mainly metal is formed at the other surface, metal particles 43 are made to exist on a two-plane grain boundary of ceramic grains 41 at the obverse on the fuel electrode 33 side in the solid electrolyte 31, so that the metal particles 43 are connected to the fuel electrode 33 via a boundary metal 45 on the two-plane boundary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックスから
なる固体電解質の片面に空気極、他方の面に金属を主成
分とする燃料極を形成してなる固体電解質型燃料電池セ
ルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell in which an air electrode is formed on one surface of a solid electrolyte made of ceramics, and a fuel electrode mainly composed of metal is formed on the other surface.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, since a solid oxide fuel cell has a high operating temperature of 900 to 1050 ° C., it has a high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルには、円
筒型と平板型が知られている。平板型燃料電池セルは、
発電の単位体積当たり出力密度が高いという特徴を有す
るが、実用化に関してはガスシール不完全性やセル内の
温度分布の不均一性などの問題がある。それに対して、
円筒型燃料電池セルでは、出力密度は低いものの、セル
の機械的強度が高く、またセル内の温度の均一性が保て
るという特徴がある。両形状の固体電解質型燃料電池セ
ルとも、それぞれの特徴を生かして積極的に研究開発が
進められている。
[0003] In general, a cylindrical type and a flat type are known as solid oxide fuel cells. Flat fuel cells are
Although it has the feature of high power density per unit volume of power generation, there are problems such as incomplete gas sealing and non-uniformity of temperature distribution in the cell for practical use. On the other hand,
Cylindrical fuel cells are characterized by low mechanical strength of the cells, while maintaining a uniform temperature within the cells, although the output density is low. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.

【0004】円筒型の固体電解質型燃料電池セルは、図
4に示すように開気孔率30〜40%程度のLaMnO
3 系材料からなる多孔性の空気極支持管2を形成し、そ
の表面にY2 3 安定化ZrO2 からなる固体電解質3
を被覆し、さらにこの表面に多孔性のNi−ジルコニア
の燃料極4が設けられている。
As shown in FIG. 4, a cylindrical solid oxide fuel cell has a LaMnO having an open porosity of about 30 to 40%.
A porous air electrode support tube 2 made of a ternary material is formed, and a solid electrolyte 3 made of Y 2 O 3 stabilized ZrO 2 is formed on the surface thereof.
, And a porous Ni-zirconia fuel electrode 4 is provided on the surface.

【0005】燃料電池のモジュールでは、各セルはLa
CrO3 系の集電体(インターコネクタ)5を介して接
続される。発電は、空気極支持管2内部に空気(酸素)
6を、外部に燃料(水素)7を流し、1000〜105
0℃の温度で行われる。
In a fuel cell module, each cell is La
It is connected via a CrO 3 -based current collector (interconnector) 5. Power is generated by air (oxygen) inside the cathode support tube 2.
6 and a fuel (hydrogen) 7 flowing outside,
It is performed at a temperature of 0 ° C.

【0006】上記のような燃料電池セルを製造する方法
としては、例えば絶縁粉末を押出成形法などにより円筒
状に成形後、これを焼成して円筒状支持管を作製し、こ
の支持管の外周面に空気極、固体電解質、燃料極、集電
体のスラリーを塗布してこれを順次焼成して積層する
か、あるいは円筒状支持管の表面に電気化学的蒸着法
(EVD法)やプラズマ溶射法などにより空気極、固体
電解質、燃料極、集電体を順次形成することも行われて
いる。
As a method of manufacturing the above-described fuel cell, for example, an insulating powder is formed into a cylindrical shape by an extrusion method or the like, and then fired to form a cylindrical support tube. A slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the surface and sequentially fired and laminated, or the surface of a cylindrical support tube is subjected to electrochemical deposition (EVD) or plasma spraying. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed by a method or the like.

【0007】近年ではセルの製造工程を簡略化し且つ製
造コストを低減するために、各構成材料のうち少なくと
も2つを同時焼成する、いわゆる共焼結法が提案されて
いる。この共焼結法は、例えば、円筒状の空気極支持管
の成形体に固体電解質成形体及び集電体成形体をロール
状に巻き付けて同時焼成を行い、その後、固体電解質表
面に燃料極を形成する方法である。この共焼結法は非常
に簡単なプロセスで製造工程数も少なく、セルの製造時
の歩留まり向上、コスト低減に有利である。
In recent years, a so-called co-sintering method has been proposed in which at least two of the constituent materials are simultaneously fired in order to simplify the manufacturing process of the cell and reduce the manufacturing cost. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound in a roll shape around a molded body of a cylindrical air electrode support tube, and simultaneously fired, and then the fuel electrode is formed on the solid electrolyte surface. It is a method of forming. This co-sintering method is a very simple process with a small number of manufacturing steps, and is advantageous for improving the yield and cost reduction in manufacturing cells.

【0008】固体電解質の表面に燃料極を形成するため
には、一般的にNi粉末とZrO2(Y2 3 含有)粉
末、あるいはNiO粉末とZrO2 (Y2 3 含有)粉
末の混合粉末を含有するペーストをスクリ−ン印刷法に
より固体電解質表面に塗布するか、あるいは上記混合粉
末を含有する溶液中に浸漬した後、乾燥し燃料極として
形成されていた。また、後者のNiO/ZrO2 (Y2
3 含有)混合粉末の場合は、1000〜1400℃の
還元雰囲気で1〜5時間熱処理して形成されていた。
In order to form a fuel electrode on the surface of a solid electrolyte, generally, a mixture of Ni powder and ZrO 2 (containing Y 2 O 3 ) powder or NiO powder and ZrO 2 (containing Y 2 O 3 ) powder is used. A paste containing the powder was applied to the surface of the solid electrolyte by a screen printing method, or immersed in a solution containing the mixed powder, and then dried to form a fuel electrode. The latter NiO / ZrO 2 (Y 2
In the case of the mixed powder (containing O 3 ), it was formed by heat treatment in a reducing atmosphere at 1000 to 1400 ° C. for 1 to 5 hours.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、これら
の方法で作製された燃料極は、初期発電性能が低く、ま
た長時間の発電においてNi(NiOは発電中に還元さ
れNiとなる)の凝集や粒成長により、燃料極が固体電
解質から剥離して界面の抵抗が増加し、これにより、熱
サイクル印加時に発電性能が低下するという問題があっ
た。
However, the fuel electrode manufactured by these methods has a low initial power generation performance, and in a long period of power generation, Ni (NiO is reduced during the power generation to become Ni) aggregates and the like. Due to the grain growth, the fuel electrode is separated from the solid electrolyte, and the resistance at the interface increases, which causes a problem that the power generation performance is reduced when a heat cycle is applied.

【0010】本発明は、初期発電性能を向上することが
できるとともに、固体電解質に対する燃料極の付着強度
を向上することができ、これにより良好な発電性能を長
期間維持できる固体電解質型燃料電池セルを提供するこ
とを目的とする。
The present invention can improve the initial power generation performance and the adhesion strength of the fuel electrode to the solid electrolyte, thereby maintaining a good power generation performance for a long period of time. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、セラミックスからなる固体電解質の片面
に空気極、他方の面に金属を主成分とする燃料極を形成
してなる固体電解質型燃料電池セルにおいて、前記固体
電解質の燃料極側表層部におけるセラミック粒子の2面
間粒界に金属粒子を存在せしめ、該金属粒子を2面間粒
界の粒界金属を介して前記燃料極に接続してなるもので
ある。
According to the present invention, there is provided a solid electrolyte fuel cell comprising a solid electrolyte made of ceramics having an air electrode formed on one surface and a fuel electrode mainly composed of a metal formed on the other surface. In the fuel cell of the type, the metal particles are present at the grain boundary between the two surfaces of the ceramic particles in the fuel electrode side surface layer portion of the solid electrolyte, and the metal particles are passed through the grain boundary metal at the grain boundary between the two surfaces. It is connected to.

【0012】このような構成を採用することにより、固
体電解質内に侵入した金属粒子および粒界金属の分だ
け、固体電解質と燃料極の接触面積が増加し、電気化学
的な反応サイトが増加するので、燃料極/固体電解質界
面で生じる分極抵抗が減少し、このため、発電性能を向
上できる。
By adopting such a configuration, the contact area between the solid electrolyte and the fuel electrode is increased by the amount of the metal particles and grain boundary metal penetrating into the solid electrolyte, and the number of electrochemical reaction sites is increased. Therefore, the polarization resistance generated at the fuel electrode / solid electrolyte interface is reduced, so that the power generation performance can be improved.

【0013】また、固体電解質のセラミック粒子の2面
間粒界に金属粒子が存在しており、該金属粒子を2面間
粒界の粒界金属を介して燃料極に接続したため、粒界金
属に接続された金属粒子のアンカー効果により、固体電
解質に対する燃料極の付着強度を向上することができ、
起動、停止といった熱サイクルにおいて、固体電解質か
らの燃料極の剥離を有効に防止でき、良好な発電性能を
長期間劣化することなく維持できる。
Further, metal particles are present at the grain boundary between the two surfaces of the ceramic particles of the solid electrolyte, and the metal particles are connected to the fuel electrode via the grain boundary metal at the grain boundary between the two surfaces. By the anchor effect of the metal particles connected to the, it is possible to improve the adhesion strength of the fuel electrode to the solid electrolyte,
In a thermal cycle such as starting and stopping, the separation of the fuel electrode from the solid electrolyte can be effectively prevented, and good power generation performance can be maintained without deterioration for a long time.

【0014】また、金属粒子はセラミック粒子の2面間
粒界に複数存在しており、2面間粒界の粒界金属により
相互に接続されていることが望ましい。このような構成
を採用することにより、金属粒子が電気的ち接続され、
金属粒子と固体電解質間で電気的な反応がより多く生
じ、発電特性をさらに向上できるとともに、固体電解質
に対する燃料極の付着強度をさらに向上することができ
る。
A plurality of metal particles are present at the grain boundary between the two surfaces of the ceramic particles, and are desirably connected to each other by a grain boundary metal at the grain boundary between the two surfaces. By adopting such a configuration, the metal particles are electrically connected,
More electrical reactions occur between the metal particles and the solid electrolyte, and the power generation characteristics can be further improved, and the adhesion strength of the fuel electrode to the solid electrolyte can be further improved.

【0015】さらに、金属粒子は、固体電解質の燃料極
側面から1〜50μmの深さに存在することが望まし
い。このような構成を採用することにより、固体電解質
中の酸素イオンの伝導性を妨げることがなく、また、燃
料極と固体電解質界面の接触面積が大きくなるため、界
面での全体としての分極抵抗を小さくでき、発電性能を
さらに向上できる。
Further, the metal particles are desirably present at a depth of 1 to 50 μm from the fuel electrode side surface of the solid electrolyte. By adopting such a configuration, the conductivity of oxygen ions in the solid electrolyte is not hindered, and the contact area between the fuel electrode and the solid electrolyte interface is increased, so that the overall polarization resistance at the interface is reduced. The size can be reduced, and the power generation performance can be further improved.

【0016】また、金属粒子の平均粒径は10〜100
nmであることが望ましい。このような構成を採用する
ことにより、金属粒子や粒界金属が燃料極として機能
し、発電特性を向上できるとともに、耐久性および熱サ
イクル特性を向上できる。
The average particle size of the metal particles is 10 to 100.
nm is desirable. By employing such a configuration, the metal particles and the grain boundary metal function as a fuel electrode, so that the power generation characteristics can be improved, and the durability and the heat cycle characteristics can be improved.

【0017】[0017]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルは、図1に示すように、円筒状の固体電解質31の内
面に空気極32、外面に燃料極33を形成してセル本体
34が構成されており、このセル本体34の外面に、空
気極32と電気的に接続する集電体35が形成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a solid oxide fuel cell according to the present invention comprises a cylindrical solid electrolyte 31 having an air electrode 32 formed on the inner surface and a fuel electrode 33 formed on the outer surface. The current collector 35 electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34.

【0018】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37および
切欠部36近傍の固体電解質31の両端部表面が集電体
35により被覆され、集電体35が、固体電解質31の
両端部表面、および固体電解質31の切欠部36から露
出した空気極32の表面に接合されている。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and both ends of the solid electrolyte 31 near the exposed surface 37 and the notch 36 are covered with the current collector 35. The current collector 35 is joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.

【0019】空気極32と電気的に接続する集電体35
はセル本体34の外面に形成され、ほぼ段差のない連続
同一面39を覆うように形成されており、燃料極33と
は電気的に接続されていない。この集電体35は、セル
同士を接続する際に、他のセルの燃料極にNiフェルト
を介して電気的に接続され、これにより燃料電池モジュ
ールが構成される。連続同一面39は、固体電解質成形
体の両端部と空気極成形体の一部とが連続したほぼ同一
面となるまで、固体電解質成形体の両端部間を研摩する
ことにより形成される。
Current collector 35 electrically connected to air electrode 32
Is formed on the outer surface of the cell body 34 so as to cover the continuous same surface 39 having almost no level difference, and is not electrically connected to the fuel electrode 33. When connecting the cells, the current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt, thereby forming a fuel cell module. The continuous same surface 39 is formed by polishing between both ends of the solid electrolyte molded body until both end portions of the solid electrolyte molded body and a part of the air electrode molded body become substantially the same continuous surface.

【0020】そして、本発明の固体電解質型燃料電池セ
ルでは、図2および図3に示すように、固体電解質31
の燃料極33側表層部におけるセラミック粒子41の2
面間粒界に複数の金属粒子43が存在しており、これら
の金属粒子43が2面間粒界の粒界金属45により相互
に連結され、数珠状に形成されるとともに、その一端が
燃料極33に接続されている。尚、燃料極33は金属粒
子43が存在しているが、図2、図3については省略
し、また固体電解質31にはセラミック粒子41が全体
に存在しているが、図2では一部について記載した。
In the solid oxide fuel cell unit according to the present invention, as shown in FIGS.
Of the ceramic particles 41 in the surface layer of the fuel electrode 33 side
A plurality of metal particles 43 are present at the intergranular grain boundaries, and these metal particles 43 are interconnected by the grain boundary metal 45 of the two intergranular boundaries, are formed in a rosary shape, and one end thereof is a fuel. Connected to pole 33. Although the fuel electrode 33 has the metal particles 43, it is omitted in FIGS. 2 and 3, and the ceramic particles 41 are entirely present in the solid electrolyte 31, but in FIG. Described.

【0021】金属粒子43は、図3に示すように、固体
電解質31の燃料極33側面から1〜50μmの深さd
に存在することが望ましく、また、金属粒子43の平均
粒径は10〜100nmであることが望ましい。
As shown in FIG. 3, the metal particles 43 have a depth d of 1 to 50 μm from the side of the fuel electrode 33 of the solid electrolyte 31.
It is desirable that the metal particles 43 have an average particle diameter of 10 to 100 nm.

【0022】ここで、2面間粒界の金属粒子43の分布
範囲を、固体電解質31の燃料極33側面(燃料極/固
体電解質界面)から固体電解質側へ1〜50μmの深さ
dとしたのは、この範囲だと燃料極と固体電解質界面の
分極抵抗が小さく、発電性能を向上できるとともに、固
体電解質に対する燃料極の付着強度を大きくできるから
である。
Here, the distribution range of the metal particles 43 in the grain boundary between the two surfaces is set to a depth d of 1 to 50 μm from the side of the fuel electrode 33 of the solid electrolyte 31 (fuel electrode / solid electrolyte interface) to the solid electrolyte side. This is because in this range, the polarization resistance at the interface between the fuel electrode and the solid electrolyte is small, so that the power generation performance can be improved and the adhesion strength of the fuel electrode to the solid electrolyte can be increased.

【0023】一方、深さdが1μmより小さいと燃料極
と固体電解質界面の接触面積が小さく、界面での全体と
しての分極抵抗が大きくなり、発電性能が低下し易くな
るとともに、固体電解質に対する燃料極の付着強度が低
下し易くなり、耐久性、熱サイクル特性が劣化し易くな
るからである。
On the other hand, if the depth d is less than 1 μm, the contact area between the fuel electrode and the solid electrolyte interface is small, the overall polarization resistance at the interface is large, the power generation performance is liable to decrease, and the fuel for the solid electrolyte This is because the adhesion strength of the electrode is easily reduced, and the durability and the heat cycle characteristics are easily deteriorated.

【0024】また、深さdが50μmより大きいと固体
電解質中の酸素イオンの伝導性を妨げ、発電性能が低下
し易くなるからである。特に発電性能、耐久性、熱サイ
クル特性を向上するという観点から、深さdは5〜30
μmの範囲が望ましい。
Further, if the depth d is larger than 50 μm, the conductivity of oxygen ions in the solid electrolyte is hindered, and the power generation performance tends to be reduced. In particular, from the viewpoint of improving power generation performance, durability, and heat cycle characteristics, the depth d is 5 to 30.
The range of μm is desirable.

【0025】金属粒子43の平均粒径を10〜100n
mとしたのは、この範囲だと金属粒子43や粒界金属4
5が燃料極として機能し、発電特性を向上できるととも
に、耐久性および熱サイクル特性を向上できるからであ
る。
The average particle size of the metal particles 43 is 10 to 100 n.
m is within this range, the metal particles 43 and the grain boundary metal 4
This is because 5 functions as a fuel electrode, and can improve power generation characteristics, as well as durability and heat cycle characteristics.

【0026】一方、金属粒子43の平均粒径が10nm
より小さいと電子のパスが無く、燃料極として機能しに
くく、また、100nmより大きいと熱膨張差により固
体電解質中に亀裂が生じ、耐久性や熱サイクル特性が低
下し易いからである。特に、発電性能、耐久性、熱サイ
クル特性をすべて満足するという観点から、金属粒子4
3の平均粒径は10〜50nmの範囲が望ましい。
On the other hand, the average particle diameter of the metal particles 43 is 10 nm.
If the diameter is smaller, there is no electron path and it is difficult to function as a fuel electrode. If the diameter is larger than 100 nm, a crack is generated in the solid electrolyte due to a difference in thermal expansion, and durability and heat cycle characteristics are liable to deteriorate. In particular, from the viewpoint of satisfying all the power generation performance, durability, and heat cycle characteristics, the metal particles 4
The average particle size of No. 3 is preferably in the range of 10 to 50 nm.

【0027】燃料極としては、金属成分と、無機成分か
らなり、無機成分としては、ZrO2 またはCeO2
体、あるいは(Zr、Ce)O2 固溶体であってもよい
し、またはY、Yb、Sc、Er、Nd、Gd、Dy、
Sm及びPrを3〜30モル%含有したZrO2 、Ce
2 であっても使用できる。
The fuel electrode comprises a metal component and an inorganic component. The inorganic component may be ZrO 2 or CeO 2 alone, (Zr, Ce) O 2 solid solution, or Y, Yb, Sc, Er, Nd, Gd, Dy,
ZrO 2 , Ce containing 3 to 30 mol% of Sm and Pr
O 2 can be used.

【0028】金属成分としては、Ni、Co、Ti、F
eおよびRuの少なくとも一つを用いることができる
が、使用する燃料ガスにもよるが、Ni金属と、ZrO
2 (Y2 3 含有)あるいはCeO2 (Y2 3 含有)
との組み合わせが、燃料ガスに対する汎用性と経済性の
観点からは好ましい。
As the metal component, Ni, Co, Ti, F
e and Ru can be used, but depending on the fuel gas used, Ni metal and ZrO
2 (containing Y 2 O 3 ) or CeO 2 (containing Y 2 O 3 )
Is preferable from the viewpoints of versatility and economy for fuel gas.

【0029】これらの無機成分と金属成分との存在比率
は、無機成分10〜50重量%、金属成分50〜90重
量%が好ましい。無機成分の含有量が10重量%より少
なくなると、即ち、金属成分が90重量%より多いと、
Niの粒成長の抑制効果が小さくなる。また、無機成分
の含有量が50重量%を越えると、即ち、金属成分が5
0重量%より少ないと、燃料極の電気伝導性が損なわれ
るからである。
The proportion of the inorganic component to the metal component is preferably 10 to 50% by weight of the inorganic component and 50 to 90% by weight of the metal component. When the content of the inorganic component is less than 10% by weight, that is, when the metal component is more than 90% by weight,
The effect of suppressing the grain growth of Ni is reduced. When the content of the inorganic component exceeds 50% by weight, that is, when the metal component is 5% by weight.
If the amount is less than 0% by weight, the electric conductivity of the fuel electrode is impaired.

【0030】固体電解質31は、例えば3〜20モル%
のY2 3 あるいはYb2 3 を含有した部分安定化あ
るいは安定化ZrO2 が用いられ、このうちでも3〜2
0モル%のY2 3 を含有した部分安定化あるいは安定
化ZrO2 が望ましい。
The solid electrolyte 31 is, for example, 3 to 20 mol%
Of partially stabilized or stabilized ZrO 2 containing Y 2 O 3 or Yb 2 O 3, of which 3 to 2
Partially stabilized or stabilized ZrO 2 containing 0 mol% of Y 2 O 3 is desirable.

【0031】また、空気極32は、例えば、Laおよび
Mnを含有するペロブスカイト型複合酸化物を主成分と
するもので、Caを酸化物換算で8〜10重量%、希土
類元素のうち少なくとも一種を酸化物換算で10〜20
重量%含有するものである。希土類元素としては、Y、
Nd、Dy、Er、Yb等があり、このうちでもYが望
ましい。
The air electrode 32 is mainly composed of, for example, a perovskite-type composite oxide containing La and Mn, and contains 8 to 10% by weight of Ca in terms of oxide and at least one of rare earth elements. 10 to 20 in terms of oxide
% By weight. As rare earth elements, Y,
There are Nd, Dy, Er, Yb, etc., of which Y is desirable.

【0032】集電体35は、例えば、金属元素としてL
a、CrおよびMgを含有するぺロブスカイト型複合酸
化物を主結晶とするものであり、希土類元素やアルカリ
土類金属元素を含有するものであっても良い。集電体3
5には、さらにMgO結晶を含有することが、集電体3
5の熱膨張係数を高くして、固体電解質31や空気極3
2のそれと一致させることができるため望ましい。
The current collector 35 is made of, for example, L as a metal element.
The main crystal is a perovskite-type composite oxide containing a, Cr and Mg, and may contain a rare earth element or an alkaline earth metal element. Current collector 3
5 further contains a MgO crystal.
5, the solid electrolyte 31 and the air electrode 3 are increased.
This is desirable because it can match that of 2.

【0033】固体電解質31、空気極32、燃料極3
3、集電体35としては、上記例に限定されるものでは
なく、公知材料を用いても良い。
Solid electrolyte 31, air electrode 32, fuel electrode 3
3. The current collector 35 is not limited to the above example, and a known material may be used.

【0034】本発明の固体電解質型燃料電池セルでは、
例えば、開気孔率40%程度のY23 あるいはCaO
安定化ZrO2 を支持管とし、その上にスラリーディッ
プ法により多孔性の空気極としてLaをCa、Srで1
0〜20原子%置換したLaMnO2 系材料を塗布し、
その表面に気相合成法(EVD)やあるいは溶射法によ
り固体電解質であるY2 3 安定化ZrO2 膜あるいは
2 3 、Yb2 3あるいはCaO含有するCeO2
を被覆し、さらにこの表面に多孔性の燃料極を形成して
も良い。
In the solid oxide fuel cell according to the present invention,
For example, Y 2 O 3 or CaO having an open porosity of about 40%
Stabilized ZrO 2 is used as a support tube, and La is used as a porous air electrode by a slurry dipping method.
Applying a LaMnO 2 -based material substituted with 0 to 20 atomic%,
Its vapor phase synthesis on the surface (EVD) and or a solid electrolyte by thermal spraying Y 2 O 3 stabilized ZrO 2 film or Y 2 O 3, Yb 2 O 3 or CeO 2 containing CaO
And a porous fuel electrode may be formed on this surface.

【0035】本発明の固体電解質型燃料電池セルは、例
えば、以下のようにして作製される。先ず、例えば所定
の調合組成に従いLa2 3 、Y2 3 、CaO、Mn
2の素原料を秤量、混合した後、1500℃程度の温
度で2〜10時間仮焼し、その後4〜8μmの粒度に粉
砕調製する。
The solid oxide fuel cell of the present invention is manufactured, for example, as follows. First, for example, La 2 O 3 , Y 2 O 3 , CaO, Mn according to a predetermined formulation.
After weighing and mixing the raw materials of O 2 , they are calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm.

【0036】調製した粉体に、バインダーを混合、混練
し押出成形法により円筒状の空気極成形体を作製し、さ
らに脱バインダー処理し、1200〜1250℃で仮焼
を行うことで空気極仮焼体を作製する。
A binder is mixed with and kneaded with the prepared powder to form a cylindrical air electrode molded body by an extrusion molding method, further debindered, and calcined at 1200 to 1250 ° C. Prepare a fired body.

【0037】固体電解質31用のシートとして、例えば
3〜20モル%のY2 3 またはYb2 3 を含有した
部分安定化あるいは安定化ZrO2 からなる粉末を0.
1〜5μmの大きさに調製し、市販の溶媒、分散剤、バ
インダーを所定濃度添加しドクターブレード等の方法に
より50〜100μmの厚さのシートを作製する。
As a sheet for the solid electrolyte 31, for example, a powder composed of partially stabilized or stabilized ZrO 2 containing 3 to 20 mol% of Y 2 O 3 or Yb 2 O 3 is used.
A sheet having a thickness of 1 to 5 μm is prepared, a commercially available solvent, dispersant, and binder are added at a predetermined concentration, and a sheet having a thickness of 50 to 100 μm is prepared by a method such as a doctor blade.

【0038】集電体35用のシートとして、LaCrO
3 系材料からなる粉末を用いてドクターブレード等の方
法により50〜100μmの厚さのシートを作製する。
As a sheet for the current collector 35, LaCrO
To prepare a sheet having a thickness of 50~100μm by a method such as a doctor blade with a powder consisting of 3 based material.

【0039】そして、円筒状の空気極仮焼体の表面に、
固体電解質シート、集電体シートをそれぞれ貼り付け、
これを1200〜1600℃の温度で2〜10時間大気
中焼成することにより得られる。
Then, on the surface of the cylindrical air electrode calcined body,
Paste the solid electrolyte sheet and the current collector sheet respectively,
This is obtained by firing in air at a temperature of 1200 to 1600 ° C. for 2 to 10 hours.

【0040】燃料極は、燃料極材料を含むスラリーをシ
ート状にして固体電解質表面に貼り付け、またはスラリ
ーを塗布し、熱処理して焼き付けるか、あるいは未焼成
の固体電解質シートにスラリーを塗布し、またはシート
を積層し、固体電解質シートと共焼結することにより作
製する。
The fuel electrode may be prepared by forming a slurry containing the fuel electrode material into a sheet and affixing it to the surface of the solid electrolyte, applying the slurry, and baking by heating, or applying the slurry to an unfired solid electrolyte sheet, Alternatively, it is manufactured by laminating sheets and co-sintering with a solid electrolyte sheet.

【0041】具体的には、例えば、所定の粒径からなる
NiOとZrO2 原料粉末をそれぞれ所定の比率になる
ように調整した後、水などを溶媒としてボ−ルミルにて
混合した後、スクリーン印刷にて固体電解質表面に塗布
するか、水などを溶媒とした混合粉末溶液中に含侵す
る、いわゆるスラリーディップ法により固体電解質表面
に塗布する。この後、大気中1100〜1700℃で1
〜8時間熱処理して、燃料極を固体電解質表面に焼き付
ける。
Specifically, for example, NiO and ZrO 2 raw material powders each having a predetermined particle diameter are adjusted so as to have a predetermined ratio, and then mixed with a ball mill using water or the like as a solvent. It is applied to the surface of the solid electrolyte by printing, or is applied to the surface of the solid electrolyte by a so-called slurry dipping method in which a mixed powder solution using water or the like as a solvent is impregnated. Then, at 1100-1700 ° C in air,
Heat treatment is performed for 8 hours to burn the fuel electrode to the solid electrolyte surface.

【0042】また、他の方法として、空気極仮焼体の表
面に形成された固体電解質シートに、上記のような方法
によりスラリーを塗布し、1200〜1600℃で1〜
8時間共焼成しても良い。
As another method, a slurry is applied to the solid electrolyte sheet formed on the surface of the air electrode calcined body by the method described above, and the slurry is applied at 1200 to 1600 ° C.
Co-firing may be performed for 8 hours.

【0043】金属粒子43の分布並びに大きさに影響を
与える因子としては、焼成や燃料極焼き付け温度といっ
た熱処理の温度や時間、焼成や熱処理温度からの冷却速
度、あるいは燃料極が形成される固体電解質の密度、熱
処理の状態、あるいは反対側の空気極の熱処理の条件や
組成、拡散促進元素の添加などがある。
Factors that affect the distribution and size of the metal particles 43 include the temperature and time of heat treatment such as firing and fuel electrode baking temperature, the cooling rate from the firing and heat treatment temperature, or the solid electrolyte on which the fuel electrode is formed. Density, heat treatment state, heat treatment condition and composition of the air electrode on the opposite side, addition of diffusion promoting element, and the like.

【0044】即ち、燃料極中の金属成分の固体電解質の
粒界への拡散量(深さd)は、焼成や熱処理の温度や焼
成時間に大きく依存する。焼結した固体電解質に焼き付
ける際は1100〜1700℃の熱処理が行われ、固体
電解質が未焼成な場合には1200〜1600℃の熱処
理(焼成)が行われる。どちらの場合も温度が高い程、
焼成時間が長い程拡散量は多くなる。つまり、固体電解
質の燃料極側面からの深さdが深くなる。未焼成の固体
電解質シートと共焼結する方が、焼き付ける場合よりも
拡散量が多くなる。
That is, the diffusion amount (depth d) of the metal component in the fuel electrode to the grain boundary of the solid electrolyte greatly depends on the temperature and the firing time of firing and heat treatment. When baking on the sintered solid electrolyte, a heat treatment at 1100 to 1700 ° C is performed, and when the solid electrolyte is not fired, a heat treatment (firing) at 1200 to 1600 ° C is performed. In both cases, the higher the temperature,
The longer the firing time, the greater the amount of diffusion. That is, the depth d of the solid electrolyte from the side surface of the fuel electrode increases. The co-sintering with the unsintered solid electrolyte sheet has a larger diffusion amount than the case of baking.

【0045】また、熱処理条件以外で拡散量を制御する
方法として、空気極側に拡散促進剤であるCa、Sr、
Ba、Mg、Mn等を余剰に添加する方法もある。これ
ら余剰の元素は固体電解質中に拡散しやすく、相互拡散
の影響を受け、燃料極中の金属成分が固体電解質中に拡
散しやすくなる。また、微量な拡散量の制御は1〜8時
間の熱処理時間によって制御できる。
As a method of controlling the amount of diffusion under conditions other than the heat treatment, diffusion promoters Ca, Sr,
There is also a method in which Ba, Mg, Mn and the like are excessively added. These surplus elements easily diffuse into the solid electrolyte and are affected by mutual diffusion, so that the metal component in the fuel electrode easily diffuses into the solid electrolyte. Further, the control of the minute amount of diffusion can be controlled by the heat treatment time of 1 to 8 hours.

【0046】また、拡散した燃料極の金属成分により形
成される金属粒子43の大きさは、熱処理または焼成し
た後の3〜20時間の冷却過程により制御される。即
ち、金属粒子43の大きさは、冷却速度に大きく依存
し、冷却速度を100〜300℃/時とすることにより
形成できる。また、この冷却速度で1〜5ステップ変化
させることにより細かな制御が行える。
The size of the metal particles 43 formed by the diffused metal component of the fuel electrode is controlled by a cooling process for 3 to 20 hours after heat treatment or firing. That is, the size of the metal particles 43 greatly depends on the cooling rate, and can be formed by setting the cooling rate to 100 to 300 ° C./hour. Fine control can be performed by changing the cooling rate by 1 to 5 steps.

【0047】尚、上記例では、円筒型固体電解質型燃料
電池セルについて説明したが、本発明は、平板型の燃料
電池セルについても適用できる。
In the above example, the cylindrical solid oxide fuel cell has been described, but the present invention is also applicable to a flat fuel cell.

【0048】[0048]

【実施例】原料粉末として平均粒径が0.5〜3μmの
ZrO2 (3〜10モル%含有Y2 3 )粉末を作製
し、外径20mm、厚み0.5mmで、1000〜17
00℃で焼成して固体電解質円板を得た。
EXAMPLE A ZrO 2 (Y 2 O 3 containing 3 to 10 mol%) powder having an average particle size of 0.5 to 3 μm was prepared as a raw material powder, and had an outer diameter of 20 mm, a thickness of 0.5 mm, and a thickness of 1000 to 17 μm.
It was fired at 00 ° C. to obtain a solid electrolyte disk.

【0049】また、市販の純度99.9%、平均粒径が
1〜10μmのLa0.9 Sr0.1 MnO3 の空気極粉末
を準備し、これにバイダーを添加して空気極ペーストを
作製した。さらに平均粒径が0.1〜10μmのNiO
粉末を準備し、これにバインダーを添加して燃料極ペー
ストを作製した。
A commercially available air electrode powder of La 0.9 Sr 0.1 MnO 3 having a purity of 99.9% and an average particle diameter of 1 to 10 μm was prepared, and a binder was added thereto to prepare an air electrode paste. Further, NiO having an average particle size of 0.1 to 10 μm
A powder was prepared, and a binder was added thereto to prepare a fuel electrode paste.

【0050】上記の固体電解質円板の一方の面に空気極
ペーストを、他方の面に燃料極ペーストをそれぞれ熱処
理後50μmになるように塗布した後、表1に示す条件
で熱処理して、空気極および燃料極の焼き付けを行い、
また固体電解質緻密化も行い、表1に示す条件で熱処理
温度から冷却し、セルを作製した。
An air electrode paste was applied to one surface of the solid electrolyte disk and a fuel electrode paste was applied to the other surface so as to have a thickness of 50 μm after the heat treatment. Bake the electrode and fuel electrode,
The solid electrolyte was also densified and cooled from the heat treatment temperature under the conditions shown in Table 1 to produce a cell.

【0051】この後、空気極側に酸素を燃料極側に水素
を流し、1000℃で発電し、初期性能、1000時間
後の出力密度の低下率(100時間後の出力密度に対す
る1000時間後の出力密度の低下率:耐久性)、10
00〜600℃間の熱サイクルを20サイクル印加した
後の出力密度の低下率(熱サイクルなしの出力密度に対
する20サイクル後の出力密度の低下率:熱サイクル特
性)を求めた。
Thereafter, oxygen is supplied to the air electrode side and hydrogen is supplied to the fuel electrode side to generate power at 1000 ° C., and the initial performance and the reduction rate of the output density after 1000 hours (the output density after 1000 hours with respect to the output density after 100 hours) Output density reduction rate: durability), 10
The reduction rate of the output density after applying 20 thermal cycles between 00 and 600 ° C. (the reduction rate of the output density after 20 cycles with respect to the output density without the thermal cycle: thermal cycle characteristics) was determined.

【0052】また、同ロットのサンプルを透過型電子顕
微鏡(TEM)で観察して、固体電解質粒界の金属粒子
の大きさを求め、X線マイクロアナリシス(EPMA)
を用いて燃料極/空気極界面からの分布の距離を調査し
た。
The samples of the same lot were observed with a transmission electron microscope (TEM) to determine the size of the metal particles at the solid electrolyte grain boundaries, and the results were measured by X-ray microanalysis (EPMA).
Was used to investigate the distribution distance from the fuel electrode / air electrode interface.

【0053】具体的には、金属粒子の分布状態の測定に
関しては、熱処理後のサンプルを断面方向に研磨し、燃
料極/固体電解質界面をEPMAを用いて分析した。燃
料極/固体電解質界面付近を約100μm四方で捕ら
え、金属成分のカウントをカラーマップ状にした。マッ
プ状で燃料極中の金属成分の平均カウントを100と
し、燃料極からもっとも離れている固体電解質の部分を
0カウントとした。そのときに50カウント以下になる
部分を界面とした。また分布の範囲は界面から垂直方向
に10カウント以下になるまでの範囲とした。
Specifically, regarding the measurement of the distribution state of the metal particles, the sample after the heat treatment was polished in the cross-sectional direction, and the fuel electrode / solid electrolyte interface was analyzed using EPMA. The vicinity of the fuel electrode / solid electrolyte interface was captured in a square of about 100 μm, and the count of metal components was made into a color map. The average count of the metal component in the fuel electrode was set to 100 in a map shape, and the portion of the solid electrolyte farthest from the fuel electrode was set to 0 count. At that time, the part where the count became 50 counts or less was defined as the interface. The distribution range was a range from the interface to 10 counts or less in the vertical direction.

【0054】また、金属粒子41の平均粒径を、同じく
燃料極/固体電解質界面を断面方向にスライスし、研磨
した後、TEMを用いて測定した。固体電解質中の粒界
の組織の違いと組成により、燃料極中の金属成分である
ことを確認し、その粒子の大きさの平均を金属粒子の平
均粒径とした。その結果を表1に記載した。
The average particle size of the metal particles 41 was measured by using a TEM after slicing and polishing the interface between the fuel electrode and the solid electrolyte in the sectional direction. It was confirmed from the difference and composition of the structure of the grain boundary in the solid electrolyte that it was a metal component in the fuel electrode, and the average of the particle size was defined as the average particle size of the metal particles. The results are shown in Table 1.

【0055】[0055]

【表1】 [Table 1]

【0056】この表1より、比較例の試料No.1では、
TEM観察により、固体電解質の燃料極側表層部のセラ
ミック粒子の2面間粒界に粒界金属が存在するものの、
金属粒子が存在おらず、このため、発電性能と熱サイク
ル特性が低かった。
According to Table 1, in the sample No. 1 of the comparative example,
According to the TEM observation, although the grain boundary metal exists at the grain boundary between the two surfaces of the ceramic particles on the fuel electrode side surface layer of the solid electrolyte,
No metal particles were present, which resulted in poor power generation performance and heat cycle characteristics.

【0057】これに対して、本発明の試料では、初期の
発電性能が良好であり、耐久性も熱サイクル特性も良好
であった。特に、金属粒子の平均粒径が10〜50nm
で、拡散深さdが5〜30μmの場合には、初期の発電
性能が0.30W/cm2 以上であり、耐久性も3%以
下、熱サイクル特性も3%以下と優れた特性を有してい
た。
On the other hand, in the sample of the present invention, the initial power generation performance was good, and the durability and the heat cycle characteristics were good. In particular, the average particle size of the metal particles is 10 to 50 nm.
When the diffusion depth d is 5 to 30 μm, the initial power generation performance is 0.30 W / cm 2 or more, the durability is 3% or less, and the thermal cycle characteristics are 3% or less. Was.

【0058】[0058]

【発明の効果】本発明の固体電解質型燃料電池セルは、
固体電解質の燃料極側面におけるセラミック粒子の2面
間粒界に金属粒子を存在せしめ、該金属粒子を2面間粒
界の粒界金属を介して燃料極に接続したので、燃料極と
固体電解質の接触面積が増大し、燃料極/固体電解質界
面で生じる分極抵抗が減少し、発電性能を向上できると
ともに、燃料極が固体電解質と強固に付着し、熱サイク
ル印加等において燃料極と固体電解質の剥離が無くな
り、初期の発電性能を劣化させることなく高い状態で維
持できる。
The solid oxide fuel cell according to the present invention has the following features.
Metal particles were present at the grain boundary between the two surfaces of the ceramic particles on the fuel electrode side surface of the solid electrolyte, and the metal particles were connected to the fuel electrode via the grain boundary metal at the two surface grain boundary. The contact area of the fuel electrode increases, the polarization resistance generated at the fuel electrode / solid electrolyte interface decreases, the power generation performance can be improved, and the fuel electrode adheres firmly to the solid electrolyte. Peeling is eliminated, and a high state can be maintained without deteriorating the initial power generation performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型の固体電解質型燃料電池セルを
示す断面図である。
FIG. 1 is a sectional view showing a cylindrical solid oxide fuel cell according to the present invention.

【図2】図1の燃料極と固体電解質の界面付近を拡大し
て示す断面図である。
FIG. 2 is an enlarged sectional view showing the vicinity of an interface between a fuel electrode and a solid electrolyte in FIG. 1;

【図3】(a)は図2の固体電解質のセラミック粒子の
2面間粒界に金属粒子が存在する状態を示す図であり、
(b)は金属粒子が粒界金属により連結し、一端が燃料
極に接続している状態を示す図である。
3A is a view showing a state in which metal particles are present at a grain boundary between two surfaces of ceramic particles of the solid electrolyte of FIG. 2;
(B) is a diagram showing a state in which metal particles are connected by a grain boundary metal and one end is connected to a fuel electrode.

【図4】従来の円筒型の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 4 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 35・・・集電体 41・・・セラミック粒子 43・・・金属粒子 45・・・粒界金属 DESCRIPTION OF SYMBOLS 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 35 ... Current collector 41 ... Ceramic particle 43 ... Metal particle 45 ... Grain boundary metal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セラミックスからなる固体電解質の片面に
空気極、他方の面に金属を主成分とする燃料極を形成し
てなる固体電解質型燃料電池セルにおいて、前記固体電
解質の燃料極側表層部におけるセラミック粒子の2面間
粒界に金属粒子を存在せしめ、該金属粒子を2面間粒界
の粒界金属を介して前記燃料極に接続してなることを特
徴とする固体電解質型燃料電池セル。
1. A solid electrolyte fuel cell comprising a ceramic solid electrolyte having an air electrode on one surface and a fuel electrode mainly composed of metal on the other surface, wherein a fuel electrode side surface layer of the solid electrolyte is provided. Solid electrolyte fuel cell characterized in that metal particles are present in a grain boundary between two surfaces of ceramic particles in the above, and the metal particles are connected to the fuel electrode via a grain boundary metal of the grain boundary between the two surfaces. cell.
【請求項2】金属粒子はセラミック粒子の2面間粒界に
複数存在しており、2面間粒界の粒界金属により相互に
接続されていることを特徴とする請求項1記載の固体電
解質型燃料電池セル。
2. The solid according to claim 1, wherein a plurality of metal particles are present at a grain boundary between the two surfaces of the ceramic particles and are connected to each other by a grain boundary metal of the grain boundary between the two surfaces. Electrolyte fuel cell.
【請求項3】金属粒子は固体電解質の燃料極側面から1
〜50μmの深さに存在することを特徴とする請求項1
または2記載の固体電解質型燃料電池セル。
3. The method according to claim 1, wherein the metal particles are separated from the fuel electrode side of the solid electrolyte.
2. The method according to claim 1, wherein said metal is present at a depth of about 50 .mu.m.
Or a solid oxide fuel cell according to 2.
【請求項4】金属粒子の平均粒径は10〜100nmで
あることを特徴とする請求項1乃至3のうちいずれかに
記載の固体電解質型燃料電池セル。
4. The solid oxide fuel cell according to claim 1, wherein the average particle size of the metal particles is 10 to 100 nm.
JP24450199A 1999-08-31 1999-08-31 Solid oxide fuel cell Expired - Lifetime JP3652932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24450199A JP3652932B2 (en) 1999-08-31 1999-08-31 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24450199A JP3652932B2 (en) 1999-08-31 1999-08-31 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2001068130A true JP2001068130A (en) 2001-03-16
JP3652932B2 JP3652932B2 (en) 2005-05-25

Family

ID=17119622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24450199A Expired - Lifetime JP3652932B2 (en) 1999-08-31 1999-08-31 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3652932B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084404A1 (en) * 2007-12-28 2009-07-09 Honda Motor Co., Ltd. Electrolyte-electrode assembly and method for manufacturing the same
JP2009163883A (en) * 2007-12-28 2009-07-23 Honda Motor Co Ltd Electrolyte-electrode assembly, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084404A1 (en) * 2007-12-28 2009-07-09 Honda Motor Co., Ltd. Electrolyte-electrode assembly and method for manufacturing the same
JP2009163883A (en) * 2007-12-28 2009-07-23 Honda Motor Co Ltd Electrolyte-electrode assembly, and manufacturing method thereof
US8399147B2 (en) 2007-12-28 2013-03-19 Honda Motor Co., Ltd. Electrolyte-electrode assembly comprising an apatite-type oxide electrolyte and method for manufacturing the same

Also Published As

Publication number Publication date
JP3652932B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP4018378B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP4383092B2 (en) Electrochemical element
US5672437A (en) Solid electrolyte for a fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP2005216760A (en) Fuel cell and its manufacturing method
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3347561B2 (en) Solid oxide fuel cell
JP2003045446A (en) Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JPH09180731A (en) Solid electrolyte fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JP3342610B2 (en) Solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP2002053374A (en) Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method
JP3638489B2 (en) Solid oxide fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
JPH11224673A (en) Solid electrolyte fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP2001236969A (en) Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery
JP3725994B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Ref document number: 3652932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term