JPH0950812A - Electrode substrate for solid electrolytic fuel cell and its production - Google Patents

Electrode substrate for solid electrolytic fuel cell and its production

Info

Publication number
JPH0950812A
JPH0950812A JP7219445A JP21944595A JPH0950812A JP H0950812 A JPH0950812 A JP H0950812A JP 7219445 A JP7219445 A JP 7219445A JP 21944595 A JP21944595 A JP 21944595A JP H0950812 A JPH0950812 A JP H0950812A
Authority
JP
Japan
Prior art keywords
layer
electrode
electrode substrate
fuel cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7219445A
Other languages
Japanese (ja)
Inventor
Himeko Kanekawa
姫子 金川
Toshio Matsushima
敏雄 松島
Daisuke Ikeda
大助 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7219445A priority Critical patent/JPH0950812A/en
Publication of JPH0950812A publication Critical patent/JPH0950812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode substrate which has excellent gas permeative property and at the same time high mechanical strength and conductivity and moreover a large number of three-phase interfaces where battery reactions occur and is useful for a solid electrolytic fuel cell. SOLUTION: An electrode substrate is one to be used for a solid electrolytic fuel cell and the electrode substrate having different diameter of pores and porosity in the thickness direction is installed in a solid electrolytic fuel cell. A ceramic sheet of a powder of electrode raw materials for a solid electrolytic fuel cell, a ceramic sheet produced by adding a foaming agent with 20μm average particle size to the powder of electrode raw materials, and a ceramic sheet produced by adding a foaming agent with 5μm average particle size to the powder of electrode raw materials are layered, press-bonded, and fired. An electrode substrate having a three-layer structure and an electrode substrate having a fourth layer formed, if necessary, between the first layer and the second layer are practical examples of the electrode substrate of the solid electrolytic fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池に使用される電極材料からなる、内部にガス流路を
有する中空平板状電極基板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow flat plate electrode substrate made of an electrode material used in a solid oxide fuel cell and having a gas flow passage therein, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】燃料電池発電は高効率で環境への影響が
小さいため、次世代の発電方式として実用に向けて様々
な検討が行われている。その中でも固体電解質型燃料電
池は動作温度が1000℃もの高温であるため、特に発
電効率が高く、また、セルの構成材料がすべて固体で形
状の自由度が大きいことから様々な構造のセルが提案さ
れている。燃料電池の基本構成は、イオン導電性の固体
電解質を2つの電極で挟み込んだもので、両電極にそれ
ぞれ空気(酸素)、燃料(水素)ガスを供給して発電を
行う。実際の使用においては、十分な出力を得るため単
セルをいくつか積層し、スタック化して用いるが、この
ときガスがリークすると双方のガスが直接反応し、発電
効率が低下するため、セルには気密性が要求される。ま
た、単セルが脆弱だとスタック化の際に外部から加わる
応力により破損するため、セル自体にはある程度の強度
が必要となる。そこで、このような要求項目を満足する
構造として、図3に示すような内部に複数のガス流路を
有する中空平板状電極基板上にセルを形成する方式が提
案されている(特開平5−36417号)。図3におい
て、1は電解質、2は燃料極、3は空気極、4はインタ
ーコネクタ、5はガス流路、6は緻密膜を示している。
この方式ではどちらか一方のガスは基板内部のガス流路
内を通じるためセルの両端部のみのガスシールにより気
密性を保つことができる。また、中空平板状電極基板に
より単セルの強度が確保されるため、基板上に形成され
る電解質の薄膜化が可能となり、内部抵抗の低減による
発電特性の向上が期待される。この方式で用いられる中
空基板は、燃料極又は空気極から構成されるが、現在両
電極材料には電解質材料であるイットリア安定化ジルコ
ニアとの反応性や熱膨張率の相性から、各々Ni−ジル
コニアサーメットとLa(1-x) Srx MnO3系材料
(x=0.05〜0.5)が最も一般的に用いられてい
る。先に述べたように電池の発電はこれらの電極にそれ
ぞれの反応ガスを供給して行う。そのため、両電極には
これらの反応ガスを電池反応の場である電極・電解質界
面まで透過するのに十分な多孔性が必要である。ガス透
過性の向上のためには電極基板の気孔率とその気孔径を
大きくすることが考えられる。しかし、基板の気孔率を
増すと、基板強度が低下すると共に、電極断面積の減少
により内部抵抗の増加を招く恐れがある。また、気孔径
を大きくすると電極・電解質・反応ガスの三相界面が減
少し、電池反応に関与する有効電極面積が小さくなるた
め電池の出力が低下してしまう。
2. Description of the Related Art Since fuel cell power generation is highly efficient and has a small effect on the environment, various studies have been made for practical use as a next-generation power generation method. Among them, the solid oxide fuel cell has an operating temperature as high as 1000 ° C, so that the power generation efficiency is particularly high, and the cells are all solid and have a large degree of freedom in shape, so cells of various structures are proposed. Has been done. The basic configuration of a fuel cell is one in which an ion conductive solid electrolyte is sandwiched between two electrodes, and air (oxygen) and fuel (hydrogen) gas are supplied to both electrodes to generate electricity. In actual use, several single cells are stacked and used in a stack to obtain a sufficient output, but at this time, if gas leaks, both gases react directly and the power generation efficiency decreases, so Airtightness is required. Further, if the unit cell is fragile, it will be damaged by the stress applied from the outside during stacking, so that the cell itself needs a certain strength. Therefore, as a structure satisfying such requirements, there has been proposed a method of forming cells on a hollow flat electrode substrate having a plurality of gas flow passages therein as shown in FIG. 36417). In FIG. 3, 1 is an electrolyte, 2 is a fuel electrode, 3 is an air electrode, 4 is an interconnector, 5 is a gas flow path, and 6 is a dense membrane.
In this method, either one of the gases passes through the gas flow path inside the substrate, so that the airtightness can be maintained by the gas seals only at both ends of the cell. Further, since the strength of the single cell is ensured by the hollow flat electrode substrate, it is possible to reduce the thickness of the electrolyte formed on the substrate, and it is expected that the power generation characteristic is improved by reducing the internal resistance. The hollow substrate used in this method is composed of a fuel electrode or an air electrode. Currently, both electrode materials are Ni-zirconia because of their compatibility with yttria-stabilized zirconia, which is an electrolyte material, and thermal expansion coefficient. cermet and La (1-x) Sr x MnO 3 system material (x = 0.05 to 0.5) are most commonly used. As described above, the power generation of the battery is performed by supplying the respective reaction gases to these electrodes. Therefore, both electrodes must have sufficient porosity to allow these reaction gases to permeate to the electrode / electrolyte interface, which is the field of the cell reaction. In order to improve the gas permeability, it is considered that the porosity of the electrode substrate and its pore diameter are increased. However, when the porosity of the substrate is increased, the strength of the substrate is reduced and the cross-sectional area of the electrode is reduced, which may increase the internal resistance. Further, if the pore diameter is increased, the three-phase interface between the electrode, the electrolyte and the reaction gas is reduced, and the effective electrode area involved in the battery reaction is reduced, so that the output of the battery is reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、ガス
透過性と共に機械的強度及び導電性が優れ、しかも電池
反応に関与する三相界面を多く有する電極基板を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrode substrate which is excellent in gas permeability, mechanical strength and conductivity, and which has many three-phase interfaces involved in battery reaction.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明による固体電解質型燃料電池の電極基板は、基板の
厚み方向で気孔径及び気孔率が異なることを特徴とす
る。また、本発明による固体電解質型燃料電池の電極基
板は、内部で多数のガス流路を有する中空平板状であ
り、厚み方向で気孔率が異なった構造を有し、第一の層
は気孔率10%以下の緻密質層、第二の層は気孔率35
〜45%で気孔径10〜20μmの多孔質層、及び第三
の層は気孔率25〜35%で気孔径2〜5μmの多孔質
層であり、第一の層に第二の層を重ね、更に第二の層に
第三の層を重ねて構成され、必要により気孔率20〜3
0%の第四の層を第一の層と第二の層の間に配置するこ
とを特徴とする。更に本発明による固体電解質型燃料電
池の電極基板の製造方法は、電極材料粉末のセラミック
スシートと、前記電極材料粉末に平均粒径20μmの多
孔化剤を添加したセラミックスシート、及び前記電極材
料粉末に平均粒径5μmの多孔化剤を添加したセラミッ
クスシートを、積層し、圧着し、焼結することを特徴と
する。
The present invention will be described in brief. The electrode substrate of the solid oxide fuel cell according to the present invention is characterized in that the pore diameter and the porosity are different in the thickness direction of the substrate. Further, the electrode substrate of the solid oxide fuel cell according to the present invention is a hollow flat plate having a large number of gas passages inside, and has a structure having different porosities in the thickness direction, and the first layer has a porosity. 10% or less dense layer, the second layer has a porosity of 35
A porous layer having a porosity of 10 to 20 μm at ˜45%, and a third layer having a porosity of 2 to 5 μm with a porosity of 25 to 35%, and the second layer is superposed on the first layer. , And a third layer stacked on the second layer, if necessary, a porosity of 20 to 3
Characterized by placing 0% of the fourth layer between the first and second layers. Furthermore, the method for producing an electrode substrate of a solid oxide fuel cell according to the present invention is directed to a ceramic sheet of electrode material powder, a ceramic sheet obtained by adding a porosifying agent having an average particle size of 20 μm to the electrode material powder, and the electrode material powder. It is characterized in that ceramic sheets to which a porosifying agent having an average particle diameter of 5 μm is added are laminated, pressed and sintered.

【0005】[0005]

【発明の実施の形態】以下に本発明について、より詳細
に説明する。図1に本発明により作製した、中空平板状
空気極電極基板の構造の一例を斜視図として示す。図1
において、3−1は緻密質空気極層、3−2は気孔径の
大きな多孔性空気極層、3−3は気孔径の小さな多孔性
空気極層、5はガス流路である。また、図2には図1の
基板の多孔性電極部分(3−2及び3−3)の模式図を
示すが、本発明において多孔質電極部は、図2に示すよ
うに気孔径の大きな電極層上に、気孔径の小さな薄層電
極を形成することにより、電極内のガス拡散性の向上と
三相界面の確保を図っている。なお、図2において符号
7は細孔である。すなわち、本発明による固体電解質型
燃料電池の電極基板は、電極材料からなる気孔率の異な
るセラミックスシートの積層により構成されるもので、
セラミックスシートの多孔化は、シートの焼結の際に完
全に燃焼し、あとに気孔を形成するような多孔化剤を添
加することで行った。また、このようなセラミックスシ
ートの気孔率、気孔径は多孔化剤の添加量と粒径により
制御が可能である。なお、ここでは空気極材料からなる
電極基板について示したが、本発明は燃料極についても
同様に適用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. FIG. 1 is a perspective view showing an example of the structure of a hollow flat plate-shaped air electrode electrode substrate manufactured according to the present invention. FIG.
3-1 is a dense air electrode layer, 3-2 is a porous air electrode layer with a large pore diameter, 3-3 is a porous air electrode layer with a small pore diameter, and 5 is a gas flow path. 2 shows a schematic diagram of the porous electrode portions (3-2 and 3-3) of the substrate of FIG. 1, the porous electrode portion in the present invention has a large pore diameter as shown in FIG. By forming a thin layer electrode having a small pore size on the electrode layer, the gas diffusibility in the electrode is improved and the three-phase interface is secured. In FIG. 2, reference numeral 7 is a pore. That is, the electrode substrate of the solid oxide fuel cell according to the present invention comprises a stack of ceramic sheets made of electrode materials and having different porosities,
The ceramic sheet was made porous by adding a porosifying agent that completely burned during the sintering of the sheet and later formed pores. Further, the porosity and the pore diameter of such a ceramic sheet can be controlled by the addition amount of the porosifying agent and the particle diameter. Although the electrode substrate made of the air electrode material is shown here, the present invention can be similarly applied to the fuel electrode.

【0006】後記実施例に示すように、本発明の1例で
は空気極からなる中空平板状電極基板を、気孔率の異な
る3種のセラミックスシートの積層・焼結により作製し
ている。この結果、基板自体の強度・導電性を確保し、
これと共に電極/電解質界面への十分なガス拡散が行わ
れるような気孔率と、電極反応の場である三相界面長の
増加が図られ、SOFCセルの形成に適した、高強度で
高活性な電極基板を得ることができる。
As shown in Examples below, in one example of the present invention, a hollow flat plate-like electrode substrate composed of an air electrode is produced by laminating and sintering three types of ceramic sheets having different porosities. As a result, the strength and conductivity of the substrate itself are secured,
At the same time, the porosity that allows sufficient gas diffusion to the electrode / electrolyte interface and the increase in the three-phase interface length, which is the field of the electrode reaction, are achieved, and high strength and high activity suitable for the formation of SOFC cells. It is possible to obtain a different electrode substrate.

【0007】また、本発明は気孔率の異なる電極シート
の積層により基板を成形する方法であるため、シートの
積層数を変えることによりそれぞれの層の比率や、基板
の厚みを自由に変えることができる。例えば、図4は、
3−1と3−2電極の板状積層体で各々の層が1:1で
ある短冊状積層体を挟み込むことにより得られる中空平
板状基板の断面図であるが、この場合、ガス流路の側面
部分の半分が多孔性電極層となるため、発電時の反応面
へのガス供給がスムーズになる。また、図5は3−2の
板状積層体の厚みを薄くし、その分3−1の層を厚くし
た基板の断面図であり、3−2の厚みが減少した結果、
ガス流路が反応面に近づくためガス拡散抵抗が減少し、
しかも強度の大きな3−1の緻密質電極層が厚くなるこ
とで、電極基板自体の強度が向上する。
Since the present invention is a method of forming a substrate by laminating electrode sheets having different porosities, the ratio of each layer and the thickness of the substrate can be freely changed by changing the number of laminated sheets. it can. For example, in FIG.
FIG. 3 is a cross-sectional view of a hollow flat plate-shaped substrate obtained by sandwiching a strip-shaped laminated body in which each layer is 1: 1 with a plate-shaped laminated body of 3-1 and 3-2 electrodes. Since half of the side surface of the electrode is the porous electrode layer, the gas can be smoothly supplied to the reaction surface during power generation. Further, FIG. 5 is a cross-sectional view of a substrate in which the thickness of the plate-shaped laminated body of 3-2 is thinned and the layer of 3-1 is thickened correspondingly, and as a result of the reduction of the thickness of 3-2,
Gas diffusion resistance decreases because the gas flow path approaches the reaction surface,
Moreover, since the dense electrode layer 3-1 having high strength is thickened, the strength of the electrode substrate itself is improved.

【0008】なお、実施例では気孔率の異なる電極の三
層構造からなる基板について示したが、本発明は三層構
造にのみ限定されるものではない。図1の実施例におい
て、ガス拡散をよりスムーズにするためには、3−2層
に多孔化剤を多量に添加し気孔率を増すことが考えられ
る。しかし、3−2層に加える多孔化剤の量が多量にな
るほど、焼結の際の3−1層との収縮率差が大きくな
り、両層の界面での応力が大きくなってしまう。このよ
うな応力は、基板の歪みや割れの原因となるため、極力
抑制することが望ましい。図6は緻密質電極層3−1と
多孔性電極層3−2の板状積層体間に両者の中間の気孔
率(20〜30%)を有する第四層:3−4の短冊状積
層体を挟み込んで中空基板を作製した例である。このよ
うに3−1層、3−2層の間に中間層を設けることで、
焼結の際の両者の収縮率差は緩和され、基板の反りや割
れを防ぐことができる。また、図7は3−1と3−4層
の厚みが1:1である短冊状積層体を3−1、3−2層
の板状積層体で挟み込んで作製した基板の断面図である
が、その結果、緻密質電極層3−1の厚みの増加により
内部抵抗の減少と基板強度の向上を図ることができる。
In the examples, a substrate having a three-layer structure of electrodes having different porosities was shown, but the present invention is not limited to the three-layer structure. In the example of FIG. 1, in order to make the gas diffusion smoother, it is conceivable to add a large amount of a porosifying agent to the 3-2 layer to increase the porosity. However, as the amount of the porosifying agent added to the 3-2 layer increases, the difference in shrinkage rate between the 3-1 layer and the layer during sintering increases, and the stress at the interface between both layers increases. Since such stress causes distortion and cracking of the substrate, it is desirable to suppress it as much as possible. FIG. 6 is a strip-shaped stack of a fourth layer: 3-4 having a porosity (20 to 30%) intermediate between the plate-shaped stacks of the dense electrode layer 3-1 and the porous electrode layer 3-2. It is an example in which a body is sandwiched to produce a hollow substrate. By thus providing the intermediate layer between the 3-1 layer and the 3-2 layer,
The difference in shrinkage rate between the two during sintering is relaxed, and the warp or crack of the substrate can be prevented. FIG. 7 is a cross-sectional view of a substrate produced by sandwiching a strip-shaped laminated body in which the 3-1 and 3-4 layers have a thickness of 1: 1 between the 3-1 and 3-2 layered plate-shaped laminated bodies. However, as a result, it is possible to reduce the internal resistance and improve the substrate strength by increasing the thickness of the dense electrode layer 3-1.

【0009】[0009]

【実施例】以下に本発明の具体的実施例について詳細に
述べるが、本発明は以下の具体的実施例にのみ限定され
るものではない。
EXAMPLES Specific examples of the present invention will be described in detail below, but the present invention is not limited to the following specific examples.

【0010】実施例1 本実施例では空気極材料としてLa0.7 Sr0.3 MnO
3 粉末を用い、これにバインダーとしてポリビニルブチ
ラール、分散媒としてイソプロピルアルコール:トルエ
ン=77:23の混合溶媒を加えてボールミルで混合し
てスラリーとした。このスラリーを脱泡して粘度を調整
したのち、ドクターブレード法により厚さ100μmの
シート状に成形した。このシートをシート1とする。ま
た、多孔質空気極の作製では、上記のスラリー調製の際
に多孔化剤として真球状ポリエチレンを加えたものを同
様にシート状成形体とした。ここで用いた多孔化剤の粒
子径は、気孔径の大きな多孔質空気極では20μm、気
孔径の小さな多孔質空気極では5μmのものであり、シ
ートの厚みはそれぞれ、100μm、15μmとした。
これらの多孔性空気極シートを以後、シート2、シート
3とする。これらのシートを用いて電極基板を作製する
に先立ち、上記シート1〜3についてそれぞれ、積層・
熱圧着し、棒状に切り出したものを360℃で脱脂した
のち1450℃で2時間焼結したものの気孔率を測定し
た。その結果、シート1〜3よりなる焼結体の気孔率は
それぞれ、7%、38%、30%であった。ここでは多
孔化剤として真球状ポリエチレンを用いているが、本発
明はこれに限定されず、セラミックスシートの焼結の際
に燃焼し、焼結体中に気孔を形成するような材料であれ
ば多孔化剤として用いることができる。図1の実施例で
は上記空気極シート1〜3を使用し、厚み方向で気孔率
の異なる、3層構造の中空平板状電極基板を作製した。
具体的には、シート1を厚さ2mmとなるように積層・
熱圧着し、これを10×5cmに切り出した板状積層体
1枚と、10×0.2cmに切り出した短冊状積層体1
0枚を作製した。この短冊状積層体を板状積層体上に等
間隔で配置したのち、シート1の板状積層体と同様の方
法で同サイズに作製したシート2の板状積層体と10×
5cmのシート3の単一シートをその上に順次重ね合
せ、これらをホットプレスにより接着し、中空平板状成
形体とした。このようにして得られた成形体を360℃
で脱脂したのち、1450℃で2時間焼結し、厚み方向
で気孔率の異なる3層構造の中空平板状電極基板を得
た。なお、この基板の大きさは8×4cmで厚さは0.
5cmである。
Example 1 In this example, La 0.7 Sr 0.3 MnO was used as the air electrode material.
Using 3 powders, polyvinyl butyral as a binder and a mixed solvent of isopropyl alcohol: toluene = 77: 23 as a dispersion medium were added thereto, and mixed by a ball mill to obtain a slurry. After defoaming the slurry to adjust the viscosity, it was formed into a sheet having a thickness of 100 μm by the doctor blade method. This sheet is referred to as sheet 1. Further, in the production of the porous air electrode, a sheet-shaped compact was similarly prepared by adding spherical polyethylene as a porosifying agent in the above-mentioned slurry preparation. The particle size of the porosifying agent used here was 20 μm for the porous air electrode having a large pore size and 5 μm for the porous air electrode having a small pore size, and the sheet thickness was 100 μm and 15 μm, respectively.
These porous air electrode sheets are hereinafter referred to as sheet 2 and sheet 3. Prior to manufacturing an electrode substrate using these sheets, the sheets 1 to 3 are laminated and
The porosity was measured by degreasing the stick-shaped pieces that were thermocompression-bonded and cut at 360 ° C. and then sintered at 1450 ° C. for 2 hours. As a result, the porosities of the sintered bodies formed of the sheets 1 to 3 were 7%, 38% and 30%, respectively. Although spherical polyethylene is used as the porosifying agent here, the present invention is not limited to this, and any material can be used as long as it burns during the sintering of the ceramic sheet to form pores in the sintered body. It can be used as a porosifying agent. In the example of FIG. 1, the air electrode sheets 1 to 3 were used to manufacture a hollow flat plate electrode substrate having a three-layer structure having different porosities in the thickness direction.
Specifically, the sheet 1 is laminated to have a thickness of 2 mm.
One plate-like laminate 1 thermocompressed and cut into 10 × 5 cm, and a strip-like laminate 1 cut into 10 × 0.2 cm
0 sheets were produced. This strip-shaped laminated body was arranged on the plate-shaped laminated body at equal intervals, and then the plate-shaped laminated body of Sheet 2 and a sheet-shaped laminated body of Sheet 2 which were made in the same size as the plate-shaped laminated body of Sheet 1 were manufactured.
A single sheet of sheet 3 of 5 cm was sequentially superposed thereon, and these were bonded by hot pressing to give a hollow flat plate-shaped body. The molded body obtained in this way is processed at 360 ° C.
After degreasing in 1., it was sintered at 1450 ° C. for 2 hours to obtain a hollow flat plate-shaped electrode substrate having a three-layer structure having different porosities in the thickness direction. The size of this substrate is 8 × 4 cm, and the thickness is 0.
It is 5 cm.

【0011】次に、上で作製した電極基板について、厚
み方向での抵抗、曲げ強度、三相界面長を測定した。な
お、ここでは比較のため、図1に示す本発明の実施例と
同一構造の電極基板をシート2だけを使用して作製し、
比較例とした。電極基板の厚み方向における比抵抗は、
基板の上下に端子を設け、1000℃で測定したI−V
特性より求めた。また、曲げ強度は、JIS R 16
01による三点曲げ強度試験によって求めた。また、三
相界面長は比較例と実施例の電極基板について電解質を
形成する表面のSEM観察を行い、気孔の外周の和から
求めた。これらの測定結果を表1に示した。この結果、
基板の抵抗は42%も低減し、強度は53%も向上させ
ることができた。一方、電極反応は、電極・電解質・反
応ガスの三相界面において進行するため、三相界面の数
と長さは重要であるが、本発明では図1のように電解質
との界面に微細な気孔を有する薄層を設けることで界面
長を比較例の2.6倍とすることができた。
Next, the resistance, bending strength, and three-phase interface length in the thickness direction of the electrode substrate prepared above were measured. Here, for comparison, an electrode substrate having the same structure as that of the embodiment of the present invention shown in FIG. 1 was produced using only the sheet 2,
This was a comparative example. The specific resistance in the thickness direction of the electrode substrate is
I-V measured at 1000 ° C with terminals on the top and bottom of the board
Obtained from the characteristics. The bending strength is JIS R 16
It was determined by a three-point bending strength test according to No. 01. The three-phase interface length was obtained from the sum of the outer peripheries of the pores by performing SEM observation of the surface forming the electrolyte on the electrode substrates of the comparative example and the example. The results of these measurements are shown in Table 1. As a result,
The resistance of the substrate was reduced by 42% and the strength was improved by 53%. On the other hand, since the electrode reaction proceeds at the three-phase interface between the electrode, the electrolyte, and the reaction gas, the number and length of the three-phase interfaces are important. However, in the present invention, as shown in FIG. By providing a thin layer having pores, the interface length could be 2.6 times that of the comparative example.

【0012】[0012]

【表1】 *:比較例を1としたときの相対値[Table 1] *: Relative value when the comparative example is 1.

【0013】[0013]

【発明の効果】以上の説明のように、本発明は固体電解
質型燃料電池に使用される電極基板を作製する際に、気
孔率の異なるセラミックスシートの積層・焼結により、
強度及び導電率が高く、しかも反応界面への十分なガス
透過性と多くの三相界面を有する電極基板を作製するも
のである。従来、電極基板の性能の改善においては、導
電率と強度の向上と気孔率、三相界面の増加は相反する
ものであり、これらすべてを満足する電極基板を作製す
ることはできなかった。本発明では、好ましくは、気孔
率10%以下の緻密質層、気孔率35〜45%で気孔径
10〜20μmのガス拡散層、並びに、気孔率25〜3
3%で気孔径2〜5μmの薄層を積層・焼結することに
より、導電性・強度に優れ、その上反応界面に十分にガ
スを供給するような気孔率と多くの三相界面を有する電
極基板を提供するものである。これにより、電極基板の
強度の増加と共に、発電時における基板内部及び電極反
応界面部分における電圧降下の抑制が可能となり、その
結果、セルの出力が向上する。
As described above, according to the present invention, when the electrode substrate used for the solid oxide fuel cell is manufactured, the ceramic sheets having different porosities are laminated and sintered.
It is intended to produce an electrode substrate having high strength and conductivity, and having sufficient gas permeability to the reaction interface and many three-phase interfaces. Conventionally, in improving the performance of an electrode substrate, the improvement of conductivity and strength, the porosity, and the increase of three-phase interface are contradictory, and an electrode substrate satisfying all of these cannot be manufactured. In the present invention, preferably, a dense layer having a porosity of 10% or less, a gas diffusion layer having a porosity of 35 to 45% and a pore diameter of 10 to 20 μm, and a porosity of 25 to 3 are used.
By laminating and sintering thin layers with a pore diameter of 2-5 μm at 3%, it has excellent conductivity and strength, and also has a porosity that allows sufficient gas to be supplied to the reaction interface and many three-phase interfaces. An electrode substrate is provided. This makes it possible to increase the strength of the electrode substrate and suppress the voltage drop inside the substrate and the electrode reaction interface portion during power generation, and as a result, the cell output is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気孔率の異なる複数の電極層からなる
中空平板状電極基板の斜視図である。
FIG. 1 is a perspective view of a hollow flat plate-shaped electrode substrate including a plurality of electrode layers having different porosities according to the present invention.

【図2】図1の電極基板の多孔性電極部分の模式図であ
る。
FIG. 2 is a schematic diagram of a porous electrode portion of the electrode substrate of FIG.

【図3】内部にガス流路を有する電極基板を用いた燃料
電池の斜視図である。
FIG. 3 is a perspective view of a fuel cell using an electrode substrate having a gas channel inside.

【図4】三層構造において、3−1、3−2層の厚みが
等しい電極基板の断面図である。
FIG. 4 is a cross-sectional view of an electrode substrate having a three-layer structure in which 3-1 and 3-2 layers have the same thickness.

【図5】三層構造において、3−1、3−2層の厚みの
比率を変えた電極基板の断面図である。
FIG. 5 is a cross-sectional view of an electrode substrate having a three-layer structure in which the thickness ratios of 3-1 and 3-2 layers are changed.

【図6】図1の3−1、3−2層間に中間層3−4を設
けた四層構造電極基板の断面図である。
6 is a cross-sectional view of a four-layer structure electrode substrate in which an intermediate layer 3-4 is provided between the layers 3-1 and 3-2 of FIG.

【図7】図6の3−1、3−4層の厚みの比率を変えた
四層構造電極基板の断面図である。
7 is a cross-sectional view of a four-layer structure electrode substrate in which the thickness ratio of 3-1 and 3-4 layers in FIG. 6 is changed.

【符号の説明】[Explanation of symbols]

1:電解質、2:燃料極、3:空気極、4:インターコ
ネクタ、5:ガス流路、6:緻密膜、7:細孔、3−
1:緻密質空気極層、3−2:気孔径の大きな多孔性空
気極層、3−3:気孔径の小さな多孔性空気極層、3−
4:3−1、3−2の中間の気孔率を有する空気極層
1: Electrolyte, 2: Fuel electrode, 3: Air electrode, 4: Interconnector, 5: Gas channel, 6: Dense membrane, 7: Pore, 3-
1: dense air electrode layer, 3-2: porous air electrode layer with large pore diameter, 3-3: porous air electrode layer with small pore diameter, 3-
Air electrode layer having an intermediate porosity of 4: 3-1 and 3-2

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質型燃料電池に用いる電極基板
であって、基板の厚み方向で気孔径及び気孔率が異なる
ことを特徴とする固体電解質型燃料電池の電極基板。
1. An electrode substrate used in a solid oxide fuel cell, wherein the pore size and the porosity are different in the thickness direction of the substrate.
【請求項2】 固体電解質型燃料電池の電極基板は、内
部に多数のガス流路を有する中空平板状であり、厚み方
向で気孔率が異なった構造を有し、第一の層は気孔率1
0%以下の緻密質層、第二の層は気孔率35〜45%で
気孔径10〜20μmの多孔質層、及び第三の層は気孔
率25〜35%で気孔径2〜5μmの多孔質層であり、
第一の層に第二の層を重ね、更に第二の層に第三の層を
重ねて構成され、必要により気孔率20〜30%の第四
の層を第一の層と第二の層の間に配置することを特徴と
する固体電解質型燃料電池の電極基板。
2. An electrode substrate for a solid oxide fuel cell is a hollow flat plate having a large number of gas flow passages inside, and has a structure having different porosities in the thickness direction, and the first layer has a porosity. 1
0% or less dense layer, the second layer is a porous layer having a porosity of 35 to 45% and a pore diameter of 10 to 20 μm, and the third layer is a porous layer having a porosity of 25 to 35% and a pore diameter of 2 to 5 μm. Is a quality layer,
The second layer is stacked on the first layer, and the third layer is stacked on the second layer. If necessary, a fourth layer having a porosity of 20 to 30% may be added to the first layer and the second layer. An electrode substrate for a solid oxide fuel cell, which is arranged between layers.
【請求項3】 固体電解質型燃料電池の電極材料粉末の
セラミックスシートと、前記電極材料粉末に平均粒径2
0μmの多孔化剤を添加したセラミックスシート、及び
前記電極材料粉末に平均粒径5μmの多孔化剤を添加し
たセラミックスシートを、積層し、圧着し、焼結するこ
とを特徴とする固体電解質型燃料電池の電極基板の製造
方法。
3. A ceramic sheet of electrode material powder for a solid oxide fuel cell, and an average particle size of 2 in the electrode material powder.
A solid electrolyte fuel, comprising: a ceramic sheet to which a 0 μm porosifying agent is added, and a ceramic sheet to which the porosifying agent having an average particle diameter of 5 μm is added to the electrode material powder are laminated, pressed and sintered. Method for manufacturing battery electrode substrate.
JP7219445A 1995-08-07 1995-08-07 Electrode substrate for solid electrolytic fuel cell and its production Pending JPH0950812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7219445A JPH0950812A (en) 1995-08-07 1995-08-07 Electrode substrate for solid electrolytic fuel cell and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7219445A JPH0950812A (en) 1995-08-07 1995-08-07 Electrode substrate for solid electrolytic fuel cell and its production

Publications (1)

Publication Number Publication Date
JPH0950812A true JPH0950812A (en) 1997-02-18

Family

ID=16735530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7219445A Pending JPH0950812A (en) 1995-08-07 1995-08-07 Electrode substrate for solid electrolytic fuel cell and its production

Country Status (1)

Country Link
JP (1) JPH0950812A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236969A (en) * 2000-02-23 2001-08-31 Kyocera Corp Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery
EP1261059A2 (en) 2001-05-22 2002-11-27 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
JP2002367655A (en) * 2001-06-11 2002-12-20 Toyota Motor Corp Fuel cell
JP2003059496A (en) * 2001-08-13 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2003092113A (en) * 2001-09-17 2003-03-28 Toto Ltd Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell
JP2005533173A (en) * 2002-01-15 2005-11-04 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Porous metal laminate for fuel cell or electrolyzer
US7074513B2 (en) 2001-11-30 2006-07-11 Nissan Motor Co., Ltd. Unit cell for solid electrolyte type fuel cell and related manufacturing method
US7186475B2 (en) 2001-05-01 2007-03-06 Nissan Motor Co., Ltd. Unit cell for solid oxide electrolyte type fuel cell and related manufacturing method
US7226691B2 (en) 2002-09-25 2007-06-05 Nissan Motor Co., Ltd. Unit cell solid oxide fuel cell and related method
JP2009506507A (en) * 2005-08-31 2009-02-12 テクニカル ユニバーシティ オブ デンマーク Reversible solid oxide fuel cell stack and method for preparing the same
JP2009245897A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing the same
KR100969029B1 (en) * 2007-12-12 2010-07-09 현대자동차주식회사 Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell and manufacturing method of it
JP2011165374A (en) * 2010-02-05 2011-08-25 Ngk Insulators Ltd Solid oxide fuel battery cell
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
JP2012514311A (en) * 2008-12-31 2012-06-21 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for SOFC cathode and co-fired battery and stack
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
WO2015046002A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Anode for fuel cells and single cell of fuel cells using same
JP2016520984A (en) * 2013-06-29 2016-07-14 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Solid oxide fuel cell with high density barrier layer
JP2021034248A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2021034249A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236969A (en) * 2000-02-23 2001-08-31 Kyocera Corp Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery
US7186475B2 (en) 2001-05-01 2007-03-06 Nissan Motor Co., Ltd. Unit cell for solid oxide electrolyte type fuel cell and related manufacturing method
US7045243B2 (en) 2001-05-22 2006-05-16 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
EP1261059A2 (en) 2001-05-22 2002-11-27 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
JP2002367655A (en) * 2001-06-11 2002-12-20 Toyota Motor Corp Fuel cell
JP2003059496A (en) * 2001-08-13 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2003092113A (en) * 2001-09-17 2003-03-28 Toto Ltd Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
US7074513B2 (en) 2001-11-30 2006-07-11 Nissan Motor Co., Ltd. Unit cell for solid electrolyte type fuel cell and related manufacturing method
JP2005533173A (en) * 2002-01-15 2005-11-04 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Porous metal laminate for fuel cell or electrolyzer
US7226691B2 (en) 2002-09-25 2007-06-05 Nissan Motor Co., Ltd. Unit cell solid oxide fuel cell and related method
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
JP2009506507A (en) * 2005-08-31 2009-02-12 テクニカル ユニバーシティ オブ デンマーク Reversible solid oxide fuel cell stack and method for preparing the same
US9263758B2 (en) 2005-08-31 2016-02-16 Technical University Of Denmark Reversible solid oxide fuel cell stack and method for preparing same
KR100969029B1 (en) * 2007-12-12 2010-07-09 현대자동차주식회사 Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell and manufacturing method of it
JP2009245897A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing the same
JP2012514311A (en) * 2008-12-31 2012-06-21 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for SOFC cathode and co-fired battery and stack
US8459467B2 (en) 2008-12-31 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. SOFC cathode and method for cofired cells and stacks
JP2011165374A (en) * 2010-02-05 2011-08-25 Ngk Insulators Ltd Solid oxide fuel battery cell
JP2016520984A (en) * 2013-06-29 2016-07-14 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Solid oxide fuel cell with high density barrier layer
US10297853B2 (en) 2013-06-29 2019-05-21 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell having a dense barrier layer
WO2015046002A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Anode for fuel cells and single cell of fuel cells using same
JP2015065014A (en) * 2013-09-25 2015-04-09 株式会社デンソー Anode for fuel cell and single fuel cell
JP2021034248A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2021034249A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack

Similar Documents

Publication Publication Date Title
JPH0950812A (en) Electrode substrate for solid electrolytic fuel cell and its production
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
US8741425B2 (en) All ceramics solid oxide fuel cell
KR101045168B1 (en) Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JP5219298B2 (en) Thin solid oxide battery
US5935727A (en) Solid oxide fuel cells
JP2008538449A5 (en)
KR20080039540A (en) Reversible solid oxide fuel cell stack and method for preparing same
JP2001196069A (en) Fuel cell
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP7261562B2 (en) Fuel cell, fuel cell stack, and method of making same
JP5362605B2 (en) Solid oxide fuel cell
CN111244520A (en) Fuel cell stack and method for manufacturing the same
JP4468678B2 (en) Method for producing solid oxide fuel cell
JP2005166455A (en) Solid oxide fuel battery cell, cell plate, and its manufacturing method
JPH0982336A (en) Hollow flat board-shaped electrode substrate and manufacture thereof
JP2002358976A (en) Solid electrolyte fuel cell
JP2005259489A (en) Solid oxide fuel cell, air electrode collector and film forming method
JPH08241720A (en) Electrode base for solid electrolytic type fuel cell, and its manufacture
JPH06325787A (en) Solid electrolytic fuel cell
JPH0945337A (en) Solid electrolyte fuel cell element
JPH05234603A (en) Supporting film type solid electrolyte fuel cell