JPH0982336A - Hollow flat board-shaped electrode substrate and manufacture thereof - Google Patents

Hollow flat board-shaped electrode substrate and manufacture thereof

Info

Publication number
JPH0982336A
JPH0982336A JP7259212A JP25921295A JPH0982336A JP H0982336 A JPH0982336 A JP H0982336A JP 7259212 A JP7259212 A JP 7259212A JP 25921295 A JP25921295 A JP 25921295A JP H0982336 A JPH0982336 A JP H0982336A
Authority
JP
Japan
Prior art keywords
electrode
substrate
nio
hollow flat
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7259212A
Other languages
Japanese (ja)
Other versions
JP3230423B2 (en
Inventor
Himeko Kanekawa
姫子 金川
Toshio Matsushima
敏雄 松島
Daisuke Ikeda
大助 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25921295A priority Critical patent/JP3230423B2/en
Publication of JPH0982336A publication Critical patent/JPH0982336A/en
Application granted granted Critical
Publication of JP3230423B2 publication Critical patent/JP3230423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To prevent the peeling off or breakage of a sheet and increase the strength of a substrate by complicating the bonding interfaces of different kind materials to increase the bonding area, and enhancing the adhesion of the different kind material sheets during sintering, or in raising or lowering temperature of a cell stack. SOLUTION: In a hollow flat board-shaped substrate having a plurality of gas flow paths on the inside, used in a solid electrolyte fuel cell, an air electrode and a fuel electrode are constituted with two kinds of electrode materials 3', 3" having different composition in the thickness direction of the substrate on each side of the gas flow paths. Both materials are bonded in pillar-shaped parts P for forming the gas flow paths, and the bonded surfaces are made complicate. As a result, stress caused by the difference in shrinkage factors on the sheet interfaces in sintering is relaxed, the peeling off or breakage of the sheet is suppressed, the flat board-shaped substrate with no distortion can be manufactured and the strength of the electrode substrate is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
の電極基板、さらに詳細には固体電解質型燃料電池の電
極材料からなる、内部にガス流路を有する中空平板状電
極基板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode substrate for a solid oxide fuel cell, and more specifically, a hollow flat plate electrode substrate having a gas flow passage therein, which is made of an electrode material for a solid oxide fuel cell, and its manufacture. It is about the method.

【0002】[0002]

【従来技術および問題点】固体電解質型燃料電池の原理
は燃料の化学エネルギーを直接電気エネルギーに変換す
るものであり、高効率で環境への影響が少ない次世代の
発電技術として研究が進められている。この固体電解質
型燃料電池の単セルは空気極、燃料極、電解質、インタ
ーコネクタから構成されるが、セルの運転温度が100
0℃と非常に高温であるため、各構成部は表1に示すよ
うなセラミックス材料が一般的に用いられている。
[Prior Art and Problems] The principle of the solid oxide fuel cell is to directly convert the chemical energy of the fuel into electric energy, and research has been advanced as a next-generation power generation technology with high efficiency and little impact on the environment. There is. A single cell of this solid oxide fuel cell is composed of an air electrode, a fuel electrode, an electrolyte, and an interconnector, and the operating temperature of the cell is 100.
Since the temperature is as high as 0 ° C., a ceramic material as shown in Table 1 is generally used for each component.

【0003】表1 Table 1

【0004】固体電解質型燃料電池の基本構成は電解質
を挟んで、燃料極、空気極を配し、両電極にそれぞれ燃
料(水素)、空気(酸素)ガスを供給するものである
が、実用的なセル設計においては、これらのガスが直接
接触することによる発電効率の低下を防ぐために、ガス
シールしやすい構造であることが重要である。また、実
際の発電は十分な出力を得るために単セルを複数積層し
たスタックの形で行うが、単セルにはスタック化の時に
加わる荷重に耐えうる強度も要求される。
The basic structure of a solid oxide fuel cell is to arrange a fuel electrode and an air electrode with an electrolyte in between, and to supply fuel (hydrogen) and air (oxygen) gas to both electrodes, respectively. In a simple cell design, it is important to have a structure that facilitates gas sealing in order to prevent a decrease in power generation efficiency due to direct contact of these gases. In addition, although actual power generation is performed in the form of a stack in which a plurality of single cells are stacked in order to obtain a sufficient output, the single cell is also required to have a strength capable of withstanding the load applied at the time of stacking.

【0005】これまでに、これらの要求項目を満足する
セル構造として、図4に示すような内部に複数のガス流
路を有する平板状電極基板上にセルを形成する方式が考
えられる(特開平5−36417号)。図4において1
は電解質、2は燃料極、3は空気極、4はインターコネ
クタ、5は内部ガス流路、6は緻密膜である。
As a cell structure satisfying these requirements, there has been considered a method of forming cells on a flat electrode substrate having a plurality of gas flow passages therein as shown in FIG. 5-36417). In FIG.
Is an electrolyte, 2 is a fuel electrode, 3 is an air electrode, 4 is an interconnector, 5 is an internal gas flow path, and 6 is a dense membrane.

【0006】この方式では、一方の反応ガスは中空基板
内のガス流路を流れるため、基板両端部のガスシールを
行うだけで気密性を保つことができる。また、厚みのあ
る中空電極基板により単セルの強度は確保されるため、
導電率が低い電解質の薄膜化が可能となり、発電特性の
向上が期待される。
In this system, one of the reaction gases flows through the gas flow path in the hollow substrate, so that airtightness can be maintained only by sealing the gas at both ends of the substrate. In addition, the strength of the single cell is ensured by the thick hollow electrode substrate,
It is possible to reduce the thickness of the electrolyte with low conductivity, and it is expected that the power generation characteristics will be improved.

【0007】このようなセルの作製方法としては、押し
出し成形法であらかじめ中空電極基板を作製した後、そ
の表面に電解質、電極、インターコネクタを溶射法、E
VD法等により形成する方法と、ドクターブレード法等
により作製したセル各部分のセラミックスシートを積層
して形成し、燒結する共燒結法が考えられる。
As a method for producing such a cell, a hollow electrode substrate is produced in advance by an extrusion molding method, and then an electrolyte, an electrode and an interconnector are sprayed on the surface of the hollow electrode substrate, E
A method of forming by the VD method or the like, and a co-sintering method of forming and sintering the ceramic sheets of the respective cell parts produced by the doctor blade method or the like are conceivable.

【0008】押し出し成形法は、断面形状が一定のもの
を大量に成形する方法に適しているが、基板の厚みや、
厚み方向において密度や導電率などの燒結体の物性を部
分的に変えることができず、形状の自由度も小さい。ま
た、単セルの形成に複数の工程が必要となるため、使用
する装置が大掛かりとなることや、高温処理過程が複数
になることから、その間に多孔性であるべき電極基板が
緻密化し、失活してしまうという欠点がある。
[0008] The extrusion molding method is suitable for molding a large number of materials having a constant cross-sectional shape, but
The physical properties of the sintered body such as density and conductivity cannot be partially changed in the thickness direction, and the degree of freedom of shape is small. In addition, since multiple steps are required to form a single cell, the equipment to be used becomes large and the high temperature treatment process becomes multiple, so the electrode substrate that should be porous becomes dense and lost during that time. It has the drawback of being activated.

【0009】一方、共燒結法は異種材料シーとを積層、
圧着しセルを形成した後、これを燒結するもので、高温
処理過程が一度で済むことから電極の劣化が最小限に抑
えられ、用いる装置も簡単であるため経済的にも優れた
方法と言える。また、シート積層により基板を作製する
際には、シートの積層数による成形体の厚みの制御や、
積層するシートの組成を変えることで部分的に物性の異
なる基板の作製も可能となる。
On the other hand, in the co-sintering method, layers of different materials are laminated,
It is a method that can be said to be economical because it is a method in which the cells are bonded by pressure bonding and then sintered, and the deterioration of the electrodes can be minimized because the high temperature treatment process is done only once and the equipment used is simple. . Further, when manufacturing a substrate by stacking sheets, controlling the thickness of the molded body by the number of stacked sheets,
By changing the composition of the sheets to be laminated, it is possible to manufacture substrates having partially different physical properties.

【0010】シート積層法のこのような長所を活かし、
これまでに図5に示すような組成の異なる空気極材料を
組み合わせた形の電極基板が考えられている(特願平7
−72319号)。図5で3’はLSM(x=0.3)
からなる第一の電極、3”はLSM(x=0.5)から
なる第二の電極、5はガス流路である。このように強度
の大きなLSM(x=0.3)と比抵抗の小さいLSM
(x=0.5)の複合基板とすることで、両空気極材料
のそれぞれの利点を活かした、強度と導電率の高い電極
基板を作製することができる。
Taking advantage of such advantages of the sheet laminating method,
Up to now, an electrode substrate having a combination of air electrode materials having different compositions as shown in FIG.
-72319). In FIG. 5, 3'is LSM (x = 0.3)
, A second electrode made of LSM (x = 0.5) and a second electrode made of LSM (x = 0.5). 5 is a gas flow path. Small LSM
By using the composite substrate of (x = 0.5), it is possible to manufacture an electrode substrate having high strength and high electrical conductivity, which takes advantage of the respective advantages of both air electrode materials.

【0011】また、燃料極材料を用いた中空平板状電極
基板についても同様に、複合基板の作製が考えられる。
表1に示したように燃料極材料にはNiOと電解質材料
であるYSZのサーメットが用いられている。このよう
にNiOとYSZを混合することで電解質との熱膨張率
差が小さくなり両者の密着性が向上するが、サーメット
中のYSZの割合が大きくなると電極としての導電率が
低下してしまう。そこで、燃料極材料を用いた中空平板
状電極基板の作製では、電解質を形成する側をNiO/
ZrO2−Y23(NiO:40wt%)サーメット、
反対側を導電率の高いNiO/ZrO2−Y23(Ni
O:60wt%)サーメットとすることで、電解質との
密着性がよく、しかも導電率の高い電極基板を得ること
ができる。
Similarly, for a hollow flat plate electrode substrate using a fuel electrode material, the production of a composite substrate can be considered.
As shown in Table 1, NiO and YSZ cermet which is an electrolyte material are used as the fuel electrode material. By mixing NiO and YSZ in this way, the difference in the coefficient of thermal expansion from the electrolyte is reduced and the adhesion between the two is improved, but if the proportion of YSZ in the cermet is increased, the conductivity as an electrode is reduced. Therefore, in the production of the hollow flat plate electrode substrate using the fuel electrode material, the side on which the electrolyte is formed is NiO /
ZrO 2 -Y 2 O 3 (NiO : 40wt%) cermet,
On the other side, NiO / ZrO 2 —Y 2 O 3 (Ni
O: 60 wt%) By using a cermet, it is possible to obtain an electrode substrate having good adhesion to the electrolyte and high conductivity.

【0012】このような中空状基板の成形は図6に示す
ように、等間隔に配置した短冊状シート積層体(柱状
部)Pを2枚の板状シート積層体(平板部)L’、L”
で挟み込み、熱圧着して行うものである。しかし、これ
らの積層体を熱圧着する際にバインダーを含むシートが
軟化して中空部が潰れやすいため、加圧し過ぎないよう
に注意が必要である。異種材料シートの接着では同一材
料に比べて密着性が悪いため、特に十分な加圧が必要と
されるが、図6のように柱状部Pと平板部L’、L”の
境界で両材料を張り合わせるものでは、前記の理由から
十分に密着できない。
As shown in FIG. 6, the molding of such a hollow substrate is performed by forming two strip-shaped sheet laminates (flat plate portions) L ', which are strip-shaped sheet laminates (columnar portions) P arranged at equal intervals. L "
It is carried out by sandwiching and thermocompression bonding. However, when thermocompression-bonding these laminated bodies, the sheet containing the binder is softened and the hollow portion is easily crushed. Therefore, it is necessary to take care not to apply excessive pressure. Adhesion of different material sheets is poorer in adhesion than the same material, so that sufficient pressure is particularly required. However, as shown in FIG. 6, both materials are formed at the boundary between the columnar portion P and the flat plate portions L ′ and L ″. However, it is not possible to adhere them sufficiently by the above-mentioned reason.

【0013】そこで、基板成形時の密着性を向上させる
ため、図7のように2枚の板状シート積層体L’、L”
で挟み込む短冊状シート積層体Pとして、あらかじめ両
シートを十分加圧して接着した板状シート積層体L’、
L”を短冊状に切断したものを用いることで、図5のよ
うなガス流路を形成する柱状部Pの中央で異種材料を張
り合わせる形のセルを形成することが考えられる。この
場合、熱圧着時の両材料間の密着性は向上するものの、
燒結における両シートの収縮率や、燒結後の熱膨張率が
異なることから、接着界面で応力が生じ、シートの剥離
や基板平面の歪みが起こることがある。このような基板
の歪みは、単セルを積層しスタック化した際に部分的に
大きな応力が加わり割れが生じる原因となるため最小限
に抑える必要がある。
Therefore, in order to improve the adhesion at the time of molding the substrate, as shown in FIG. 7, two plate-shaped sheet laminates L'and L "are formed.
As a strip-shaped sheet laminated body P sandwiched between two sheets, a plate-shaped sheet laminated body L ′ in which both sheets are sufficiently pressed and bonded in advance,
It is conceivable that a cell in which different materials are bonded together is formed at the center of the columnar portion P forming the gas flow path as shown in FIG. 5 by using a strip of L ″ cut into pieces. Although the adhesion between both materials during thermocompression bonding improves,
Since the contraction rate of both sheets in sintering and the coefficient of thermal expansion after sintering are different, stress may occur at the adhesive interface, causing peeling of the sheet or distortion of the substrate plane. Such substrate distortion must be minimized because a large stress is locally applied when single cells are stacked and stacked to cause cracking.

【0014】そこで本発明では、このような異種材料か
らなる中空平板状基板の課題を解決するため、異種材料
の接着界面を互いに入り組んだ形状にして接着面積を大
きくし、燒結時やセルスタックの昇・降温時に異種材料
シートの密着性をよくすることで、シートの剥離や割れ
を防ぎ、基板強度の向上を図ることを目的とする。
Therefore, in the present invention, in order to solve the problem of such a hollow flat substrate made of different kinds of materials, the bonding interfaces of different kinds of materials are made to be intricate with each other to increase the adhesion area, and at the time of sintering or cell stacking. The purpose is to improve the substrate strength by improving the adhesion of different material sheets at the time of temperature rise and fall, thereby preventing the sheets from peeling and cracking.

【0015】[0015]

【問題を解決するための手段】上記の問題点を解決する
ため、本発明による固体電解質型燃料電池に用いる、内
部に複数のガス流路を有する中空平板状電極基板は、基
板の厚み方向においてガス流路を境に、空気極または燃
料極で、組成の異なる2種の電極材料から構成されてお
り、両材料はガス流路を形成する柱状部において接着さ
れ、その接着面は互いに入り組んだ形状であることを特
徴とする。
In order to solve the above problems, a hollow flat plate electrode substrate having a plurality of gas flow passages inside, which is used in a solid oxide fuel cell according to the present invention, has a thickness direction of the substrate. The electrode is composed of two kinds of electrode materials having different compositions at the air electrode or the fuel electrode with the gas flow path as a boundary. The two materials are adhered to each other at the columnar portion forming the gas flow path, and the adhering surfaces are intricate with each other. It has a shape.

【0016】また、上記中空平板状電極基板はLa
(1-x)SrxMnO3(x=0.3±0.1)とLa(1-x)
SrxMnO3(x=0.5±0.05)から構成される
ことを特徴とする。
The hollow flat plate electrode substrate is La
(1-x) Sr x MnO 3 (x = 0.3 ± 0.1) and La (1-x)
It is characterized by being composed of Sr x MnO 3 (x = 0.5 ± 0.05).

【0017】また、上記中空平板状電極基板は、NiO
/ZrO2−Y23(NiO:40±10wt%)とN
iO/ZrO2−Y23(NiO:60±10wt%)
から構成されることを特徴とする。
The hollow flat electrode substrate is made of NiO.
/ ZrO 2 -Y 2 O 3 ( NiO: 40 ± 10wt%) and N
iO / ZrO 2 —Y 2 O 3 (NiO: 60 ± 10 wt%)
It is characterized by being composed of.

【0018】さらに、上記の固体電解質型燃料電池の中
空平板状電極基板は、La(1-x)SrxMnO3(x=
0.3±0.1)とLa(1-x)SrxMnO3(x=0.
5±0.05)、または、NiO/ZrO2−Y2
3(NiO:40±10wt%)とNiO/ZrO2−Y
23(NiO:60±10wt%)のセラミックスシー
トを複数枚用意し、両シートの積層・切断により作製し
た複数の短冊状シート積層体を上下方向として等間隔で
配置し、これをそれぞれの組成のシートからなる2枚の
板状シート積層体で挟み込み、圧着し、燒結することを
特徴としている。
Further, the hollow flat plate electrode substrate of the solid oxide fuel cell described above is La (1-x) Sr x MnO 3 (x =
0.3 ± 0.1) and La (1-x) Sr x MnO 3 (x = 0.
5 ± 0.05) or NiO / ZrO 2 —Y 2 O
3 (NiO: 40 ± 10 wt%) and NiO / ZrO 2 -Y
A plurality of ceramic sheets of 2 O 3 (NiO: 60 ± 10 wt%) are prepared, and a plurality of strip-shaped sheet laminates prepared by laminating and cutting both sheets are arranged at equal intervals in the vertical direction. It is characterized in that it is sandwiched between two plate-shaped sheet laminates composed of sheets of the composition, pressure-bonded, and sintered.

【0019】[0019]

【実施例】以下に本発明を、実施例により詳細に説明す
る。図1は本発明の実施例を示すもので、図1中の番号
は図5と同じものを示している。ここでは空気極材料か
らなる基板について示すが、本発明は燃料極材料を用い
る電極基板についても同様に実施することができる。
EXAMPLES The present invention will be described in detail below with reference to examples. FIG. 1 shows an embodiment of the present invention, and the numbers in FIG. 1 are the same as those in FIG. Although a substrate made of an air electrode material is shown here, the present invention can be similarly applied to an electrode substrate using a fuel electrode material.

【0020】以下に本発明の具体的実施例について詳細
に述べるが、本発明は以下の実施例のみ限定されるもの
ではない。表1からSOFCの電極材料としては空気極
材料のLSMと燃料極材料のNi−YSZの二つが考え
られるが、以下にLSMを用いた例について述べる。ま
た、本実施例はLSM(x=0.3)とLSM(x=
0.5)を組み合わせたものであるが、本発明はこれら
の組成の組み合わせに限定されるものではない。
Specific examples of the present invention will be described in detail below, but the present invention is not limited to the following examples. From Table 1, there are two possible electrode materials for SOFC, LSM as an air electrode material and Ni-YSZ as a fuel electrode material. An example using LSM will be described below. Further, in this embodiment, LSM (x = 0.3) and LSM (x =
0.5), but the present invention is not limited to the combination of these compositions.

【0021】各材料粉末にバインダーとしてポリビニル
ブチラール、分散媒としてイソプロピルアルコールとト
ルエンの混合溶媒を加えてボールミルで混合した後、脱
泡して粘土を調整した。次にこのスラリーをドクターブ
レード法により厚さ100μm程度のシート状に成形し
た。以後、記述の簡単のためLSM(x=0.3)シー
トS’から形成されたものを第一の電極3’、LSM
(x=0.5)シートS”から形成されたものをを第二
の電極3”とする。そして、このようにして作製した各
シートをそれぞれ厚さ2mmとなるように積層・熱圧着
し、これを10×5cmに切り出した板状シート積層体
L’、L”を各1枚ずつ作製した。
Polyvinyl butyral as a binder and a mixed solvent of isopropyl alcohol and toluene as a dispersion medium were added to each material powder and mixed by a ball mill, and then defoamed to prepare clay. Next, this slurry was formed into a sheet having a thickness of about 100 μm by the doctor blade method. Hereafter, for simplicity of description, the one formed from the LSM (x = 0.3) sheet S ′ is used as the first electrode 3 ′, LSM.
The one formed from the (x = 0.5) sheet S ″ is the second electrode 3 ″. Then, the respective sheets thus produced were laminated and thermocompression-bonded to each other so as to have a thickness of 2 mm, and the sheet-like sheet laminates L ′ and L ″ were cut out into 10 × 5 cm to produce one sheet each. .

【0022】また、シートS’:S”=1:1で厚さ3
mmの板状シート積層体を縦10×横0.2cmに切り
出して短冊状シート積層体Pを10枚作製した。次に図
2に示すように、これらの短冊状シート積層体Pを一方
の板状シート積層体(L’あるいはL”)上に、切断面
が上下方向になるように等間隔で配置した後、その上に
もう一方の板状シート積層体(L’あるいはL”)を重
ね合わせ、これらをホットプレスにより接着して中空平
板状成形体とした。このようにして形成した中空平板状
成形体を、360℃で脱脂した後、1300℃で2時間
燒結し、LSM(x=0.3)、LSM(x=0.5)
の2層からなる図1に示すような中空平板型電極基板を
作製した。このようにして作製した中空平板状基板で
は、2種の電極シートの界面の接着性は良好であり、シ
ート間の剥離や割れ、また、基板平面部の歪みは見られ
なかった。
Further, the sheet S ′: S ″ = 1: 1 and the thickness 3
The plate-shaped sheet laminated body having a size of 10 mm was cut into a length of 10 cm and a width of 0.2 cm to prepare 10 strip-shaped sheet laminated bodies P. Next, as shown in FIG. 2, after these strip-shaped sheet laminated bodies P are arranged on one plate-shaped sheet laminated body (L ′ or L ″) at equal intervals so that the cut surfaces are in the vertical direction. Then, the other plate-shaped sheet laminate (L 'or L ") was superposed thereon, and these were adhered by hot pressing to obtain a hollow flat plate-shaped body. The hollow flat plate-shaped molded product thus formed was degreased at 360 ° C. and then sintered at 1300 ° C. for 2 hours to give LSM (x = 0.3) and LSM (x = 0.5).
A two-layer hollow flat plate electrode substrate as shown in FIG. 1 was prepared. In the thus manufactured hollow flat substrate, the adhesiveness at the interface between the two kinds of electrode sheets was good, and neither peeling or cracking between the sheets nor distortion in the plane portion of the substrate was observed.

【0023】上記の中空平板状電極基板は、燃料極材料
として、40wt%のNiOを含むNiO−YSZサー
メットと60wt%のNiOを含むNiO−YSZサー
メットを用いても全く同様にして作製することができ
る。
The above hollow flat plate electrode substrate can be manufactured in exactly the same manner even if NiO-YSZ cermet containing 40 wt% NiO and NiO-YSZ cermet containing 60 wt% NiO are used as the fuel electrode material. it can.

【0024】NiOとYSZを4:6(NiO40wt
%)、6:4(NiO60wt%)の割合で混合した各
材料粉末にバインダーとしてポリビニルブチラール、分
散媒としてイソプロピルアルコールとトルエンの混合溶
媒を加えてボールミルで混合した後、脱脂して粘土を調
整した。次にスラリーをドクターブレード法により厚差
100μm程度のシート状に成形した。そして、このよ
うにして作製した各シートをそれぞれ厚さ2mmとなる
ように積層・熱圧着し、これを10×5cmにきりだし
た板状シート積層体L’、L”を各1枚ずつと両シート
を1:1で厚さ3mmの板状シート積層体を縦10×横
0.2に切り出した短冊状シート積層体10枚を作製し
た。次にこれらを図7と同様に配置した後、ホットプレ
スにより接着して中空平板状成形体とした。このように
して形成した中空平板状成形体を、360℃で脱脂した
後、1300℃で2時間燒結し、40wt%のNiOを
含むNiO−YSZサーメットと60wt%のNiOを
含むNiO−YSZサーメットからなる中空平板型電極
基板を作製した。
NiO and YSZ are 4: 6 (NiO 40 wt.
%), 6: 4 (NiO 60 wt%), to each material powder, polyvinyl butyral as a binder and a mixed solvent of isopropyl alcohol and toluene as a dispersion medium were added and mixed in a ball mill, and then degreased to prepare clay. . Next, the slurry was formed into a sheet with a thickness difference of about 100 μm by the doctor blade method. Then, the respective sheets produced in this manner were laminated and thermocompression-bonded to each other so as to have a thickness of 2 mm, and plate-like sheet laminated bodies L ′ and L ″ were cut out into 10 × 5 cm to form one sheet each. The sheet-like sheet laminate having a thickness of 3 mm and a ratio of 1: 1 was cut out into a length of 10 and a width of 0.2 to prepare 10 strip-like sheet laminates. Then, the hollow flat plate-shaped product was bonded by hot pressing to form a hollow flat plate-shaped product. A hollow flat plate type electrode substrate made of -YSZ cermet and NiO-YSZ cermet containing 60 wt% NiO was produced.

【0025】また、さらに両シート界面の密着性を向上
するために、図3に示すような中空基板の作製も考えら
れる。シート3’、3”をこれらの積層、ホットプレス
により、3’:3”:3’=1:1:1(I)、3”:
3’:3”=1:1:1(II)で厚さ3mmの積層体
とし、I、IIをそれぞれ縦10×幅0.2cmに切り
出した短冊状シート積層体各5枚を作製した。次にこれ
らの短冊状シート積層体を、一方の板状シート積層体上
に、図1と同様に切断面が上下方向になるようにして、
IとIIを一列おきに等間隔で配置した後、その上にも
う一方の板状シート積層体を重ね合わせ、これらをホッ
トプレスにより接着して図3のような中空平板状成形体
とした。このように異種材料シートの接着面積を大きく
することで、両シートの剥離が起きにくくなり、基板の
割れや反りを抑制できるため、中空基板強度が大きくな
る。
Further, in order to further improve the adhesiveness at the interface between both sheets, it is possible to manufacture a hollow substrate as shown in FIG. Sheets 3 ′ and 3 ″ are laminated and hot pressed to obtain 3 ′: 3 ″: 3 ′ = 1: 1: 1 (I), 3 ″:
3 ′: 3 ″ = 1: 1: 1 (II) was used to form a laminate having a thickness of 3 mm, and I and II were each cut into a length of 10 × a width of 0.2 cm to prepare five strip-shaped sheet laminates. Next, these strip-shaped sheet laminated bodies were placed on one plate-shaped sheet laminated body so that the cut surface was in the vertical direction as in FIG.
After arranging I and II in every other row at equal intervals, the other plate-shaped sheet laminate was superposed thereon, and these were bonded by hot pressing to obtain a hollow flat plate-shaped body as shown in FIG. By increasing the adhesion area of the different material sheets in this way, peeling of both sheets is less likely to occur, and cracking and warpage of the substrate can be suppressed, so that the strength of the hollow substrate is increased.

【0026】[0026]

【発明の効果】以上説明のように、本発明では固体電解
質型燃料電池の空気極または燃料極材料のどちらか一方
で、組成の異なる2種の電極材料からなる中空平板状電
極基板の作製において、中空部を形成する柱状部におけ
る両電極材料の接着面を互いに入り組んだ形状とするこ
とで、接着界面での密着性を向上させるものである。そ
の結果、成形体の燒結時に両シート界面での収縮率差に
よる応力が緩和されるためシートの剥離や割れが抑制さ
れ、歪みのない平らな平板状基板を作製することがで
き、電極基板の強度が向上する。
As described above, according to the present invention, in the production of a hollow flat plate-like electrode substrate made of two kinds of electrode materials having different compositions, either the air electrode or the fuel electrode material of the solid oxide fuel cell. By making the adhesive surfaces of the two electrode materials in the columnar portion forming the hollow portion intricate with each other, the adhesiveness at the adhesive interface is improved. As a result, the stress due to the difference in shrinkage ratio at the interface between the two sheets is relieved during the sintering of the molded body, so that peeling or cracking of the sheet is suppressed, and a flat plate-like substrate without distortion can be produced. Strength is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による中空平板状基板の作製例を示す斜
視図。
FIG. 1 is a perspective view showing an example of manufacturing a hollow flat substrate according to the present invention.

【図2】前記実施例の斜視図。FIG. 2 is a perspective view of the embodiment.

【図3】本発明による中空平板状基板の応用例を示す斜
視図。
FIG. 3 is a perspective view showing an application example of a hollow flat substrate according to the present invention.

【図4】内部にガス流路を有する電極基板を用いた燃料
電池の斜視図。
FIG. 4 is a perspective view of a fuel cell using an electrode substrate having a gas channel inside.

【図5】2種の電極材料より構成される中空平板状基板
の斜視図。
FIG. 5 is a perspective view of a hollow flat plate-shaped substrate composed of two kinds of electrode materials.

【図6】前記中空平板状基板のシート積層法による作製
を示す斜視図。
FIG. 6 is a perspective view showing fabrication of the hollow flat substrate by a sheet laminating method.

【図7】2種の電極材料シートの接着位置を変えた中空
平板状基板のシート積層法による作製を示す斜視図。
FIG. 7 is a perspective view showing the production of a hollow flat substrate in which the adhesion positions of two types of electrode material sheets are changed by the sheet laminating method.

【図8】前記中空平板状基板の斜視図。FIG. 8 is a perspective view of the hollow flat substrate.

【符号の説明】[Explanation of symbols]

1 電解質 2 燃料極 3 空気極 3’ 第一の電極基板 3” 第二の電極基板 4 インターコネクタ 5 ガス流路 6 緻密膜 P 短冊状シート積層体 L’ 第一の電極を形成する板状シート積層体 L” 第二の電極を形成する板状シート積層体 S’ 第一の電極を形成するシート S” 第二の電極を形成するシート 1 Electrolyte 2 Fuel Electrode 3 Air Electrode 3'First Electrode Substrate 3 "Second Electrode Substrate 4 Interconnector 5 Gas Channel 6 Dense Membrane P Strip Sheet Laminate L'Plate Sheet Forming First Electrode Laminated body L ″ Plate-shaped sheet forming second electrode Laminated body S ′ Sheet forming first electrode S ″ Sheet forming second electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/12 C04B 35/00 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01M 8/12 C04B 35/00 J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体電解質型燃料電池に用いる内部に複数
のガス流路を有する中空平板状基板であって、基板の厚
み方向においてガス流路を境に、空気極または燃料極で
組成の異なる2種の電極材料から構成されており、両材
料はガス流路を形成する柱状部において接着され、その
接着面は互いに入り組んだ形状であることを特徴とする
中空平板状電極基板。
1. A hollow flat substrate used for a solid oxide fuel cell, having a plurality of gas passages inside, and having different compositions at the air electrode or the fuel electrode with the gas passages as boundaries in the thickness direction of the substrate. A hollow flat plate electrode substrate comprising two kinds of electrode materials, both materials being adhered to each other in a columnar portion forming a gas flow path, and the adhering surfaces being intricate with each other.
【請求項2】前記中空平板状電極基板はLa(1-x)Srx
MnO3(x=0.3±0.1)とLa(1-x)SrxMn
3(x=0.5±0.05)から構成されることを特
徴とする請求項1記載の中空平板状電極基板。
2. The hollow plate electrode substrate is La (1-x) Sr x
MnO 3 (x = 0.3 ± 0.1) and La (1-x) Sr x Mn
The hollow flat plate-like electrode substrate according to claim 1, which is composed of O 3 (x = 0.5 ± 0.05).
【請求項3】前記中空平板状電極基板は、NiO/Zr
2−Y23(NiO:40±10wt%)とNiO/
ZrO2−Y23(NiO:60±10wt%)から構
成されることを特徴とする請求項1記載の中空平板状電
極基板。
3. The hollow flat electrode substrate is made of NiO / Zr.
O 2 -Y 2 O 3 (NiO: 40 ± 10 wt%) and NiO /
The hollow flat electrode substrate according to claim 1, which is composed of ZrO 2 —Y 2 O 3 (NiO: 60 ± 10 wt%).
【請求項4】固体電解質型燃料電池の電極材料でLa
(1-x)SrxMnO3(x=0.3±0.1)とLa(1-x)
SrxMnO3(x=0.5±0.05)または、NiO
/ZrO2−Y23(NiO:40±10wt%)とN
iO/ZrO2−Y23(NiO:60±10wt%)
のセラミックスシートを複数枚用意し、両シートの積層
・切断により作製した複数の短冊状シート積層体を、切
断面を上下方向として等間隔で配置し、これをそれぞれ
の組成のシートからなる2枚の板状シート積層体で挟み
込み、圧着し、燒結することを特徴とする中空平板状電
極基板の製造方法。
4. An electrode material for a solid oxide fuel cell, which is La
(1-x) Sr x MnO 3 (x = 0.3 ± 0.1) and La (1-x)
Sr x MnO 3 (x = 0.5 ± 0.05) or NiO
/ ZrO 2 -Y 2 O 3 ( NiO: 40 ± 10wt%) and N
iO / ZrO 2 —Y 2 O 3 (NiO: 60 ± 10 wt%)
2 pieces of ceramic sheets are prepared, and a plurality of strip-shaped sheet laminates produced by stacking and cutting both sheets are arranged at equal intervals with the cut surface being the vertical direction. 2. A method for manufacturing a hollow flat plate-shaped electrode substrate, which comprises sandwiching the plate-shaped sheet laminates of [1], press-bonding, and sintering.
JP25921295A 1995-09-12 1995-09-12 Hollow flat electrode substrate and method of manufacturing the same Expired - Fee Related JP3230423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25921295A JP3230423B2 (en) 1995-09-12 1995-09-12 Hollow flat electrode substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25921295A JP3230423B2 (en) 1995-09-12 1995-09-12 Hollow flat electrode substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0982336A true JPH0982336A (en) 1997-03-28
JP3230423B2 JP3230423B2 (en) 2001-11-19

Family

ID=17330959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25921295A Expired - Fee Related JP3230423B2 (en) 1995-09-12 1995-09-12 Hollow flat electrode substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3230423B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092113A (en) * 2001-09-17 2003-03-28 Toto Ltd Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
JP2003519023A (en) * 1999-12-30 2003-06-17 セラミック・フューエル・セルズ・リミテッド Laminated structure and method for forming the same
KR100709222B1 (en) * 2006-02-20 2007-04-18 삼성에스디아이 주식회사 Stack for mixed reactant fuel cell and mixed reactant fuel cell system comprising same
JP2012512520A (en) * 2008-12-17 2012-05-31 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Electrode gas flow path support and method of forming internal flow path
US8318379B2 (en) 2006-02-16 2012-11-27 Samsung Sdi Co., Ltd. Membrane-electrode assembly for mixed reactant fuel cell and mixed reactant fuel cell system including same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519023A (en) * 1999-12-30 2003-06-17 セラミック・フューエル・セルズ・リミテッド Laminated structure and method for forming the same
JP4845315B2 (en) * 1999-12-30 2011-12-28 セラミック・フューエル・セルズ・リミテッド Laminated structure and method for forming the same
JP2003092113A (en) * 2001-09-17 2003-03-28 Toto Ltd Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
US8318379B2 (en) 2006-02-16 2012-11-27 Samsung Sdi Co., Ltd. Membrane-electrode assembly for mixed reactant fuel cell and mixed reactant fuel cell system including same
KR100709222B1 (en) * 2006-02-20 2007-04-18 삼성에스디아이 주식회사 Stack for mixed reactant fuel cell and mixed reactant fuel cell system comprising same
US8257877B2 (en) 2006-02-20 2012-09-04 Samsung Sdi Co., Ltd. Stack for mixed reactant fuel cell and mixed reactant fuel cell system including the same
JP2012512520A (en) * 2008-12-17 2012-05-31 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Electrode gas flow path support and method of forming internal flow path

Also Published As

Publication number Publication date
JP3230423B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
US5589017A (en) Preparation of a solid oxide fuel cell having thin electrolyte and interconnect layers
EP2098491B1 (en) Ceramic product and ceramic member bonding method.
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JP2945157B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2008538449A5 (en)
JP2008522370A (en) Sealed joint structure for electrochemical devices
KR101405477B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell and cell for a metal-supported solid oxide fuel cell
US7632593B2 (en) Bipolar plate supported solid oxide fuel cell with a sealed anode compartment
JPH0950812A (en) Electrode substrate for solid electrolytic fuel cell and its production
JP3456378B2 (en) Solid oxide fuel cell
JP7261562B2 (en) Fuel cell, fuel cell stack, and method of making same
JP5686190B2 (en) Joining material for solid oxide fuel cell, method for producing solid oxide fuel cell, method for producing solid oxide fuel cell module, solid oxide fuel cell and solid oxide fuel cell module
JPWO2008044429A1 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
US20160197359A1 (en) Solid oxide fuel cell stack and manufacturing method therefor
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JP3230423B2 (en) Hollow flat electrode substrate and method of manufacturing the same
KR20120037175A (en) A fuel cell and a manufacturing metheod thereof
JP2004362913A (en) Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP3358640B2 (en) Manufacturing method of electrode substrate
JP7330689B2 (en) Fuel cells and fuel cell stacks
JPH09180732A (en) Solid electrolyte fuel cell board and method for manufacturing cell using the board
KR101883401B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell
JP3063952B2 (en) Hollow flat solid electrolyte fuel cell
WO2016208449A1 (en) Solid oxide fuel cell
JP2005158269A (en) Forming method of solid oxide fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees