WO2016208449A1 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
WO2016208449A1
WO2016208449A1 PCT/JP2016/067582 JP2016067582W WO2016208449A1 WO 2016208449 A1 WO2016208449 A1 WO 2016208449A1 JP 2016067582 W JP2016067582 W JP 2016067582W WO 2016208449 A1 WO2016208449 A1 WO 2016208449A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
connector layer
connector
fuel cell
Prior art date
Application number
PCT/JP2016/067582
Other languages
French (fr)
Japanese (ja)
Inventor
洋輔 佐藤
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2017525227A priority Critical patent/JP6369633B2/en
Publication of WO2016208449A1 publication Critical patent/WO2016208449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell, and in particular, a solid oxide comprising a plurality of fuel cells each having a surface electrode exposed on one main surface and the other main surface facing in the stacking direction.
  • the present invention relates to a fuel cell.
  • an intermediate film made of conductive ceramic forms part of an interconnector.
  • the portion of the interconnector closer to the separator than the intermediate film contains at least one selected from the group consisting of Ag, Pd, Pt, Fe, Co, Cu, Ru, Rh, Re, and Au.
  • the portion of the interconnector closer to the fuel electrode than the intermediate film is made of the same material as the fuel electrode.
  • the portion on the fuel electrode side includes nickel oxide, yttrium oxide stabilized zirconia containing Ni (yttria stabilized zirconia (YSZ)), calcium oxide stabilized zirconia containing Ni, scandium oxide stabilized zirconia containing Ni. (Scandia stabilized zirconia (ScSZ)), cerium oxide stabilized zirconia containing Ni, titanium oxide containing Ni, alumina containing Ni, magnesia containing Ni, yttria containing Ni, niobium oxide containing Ni or oxidation containing Ni Made of tantalum or the like.
  • each constituent element diffuses to each other in the connecting portion, and a deviation from a predetermined composition is present in both the intermediate film and the portion on the fuel electrode side. appear. Such a shift causes a decrease in conductivity or activity.
  • the intermediate film is directly connected to the portion on the fuel electrode side, the conductive ceramic forming the intermediate film is exposed to a reducing atmosphere during power generation. As a result, cell characteristics deteriorate due to reductive decomposition of the conductive ceramic.
  • a main object of the present invention is to provide a solid oxide fuel cell capable of suppressing a decrease in conductivity or activity.
  • Another object of the present invention is to provide a solid oxide fuel cell capable of suppressing deterioration of cell characteristics resulting from reductive decomposition of conductive ceramics.
  • the solid oxide fuel cell of the present invention is disposed at an electrolyte layer, a position on one main surface side of the electrolyte layer, a first electrode made of conductive ceramics, and a position on the other main surface side of the electrolyte layer. And a second electrode, a separator having a via hole reaching the first electrode, and an interconnector provided in the via hole and connected to the first electrode.
  • the interconnector includes a first connector layer made of conductive ceramics different from the type of conductive ceramics forming the first electrode, and a second connector made of metal and disposed at a position closer to the first electrode than the first connector layer. Including a connector layer.
  • the type of conductive ceramic forming the first connector layer is different from the type of conductive ceramic forming the first electrode. Based on this, a second connector layer made of metal is disposed between different kinds of conductive ceramics. Thereby, element diffusion between different kinds of conductive ceramics is suppressed, and as a result, a decrease in conductivity or activity is suppressed.
  • the interconnector further includes a third connector layer made of a conductive ceramic of the same type as that of the conductive ceramic forming the first electrode, and disposed at a position closer to the first electrode than the second connector layer. .
  • the second connector layer By disposing the third connector layer made of the same type of conductive ceramic as the type of the conductive ceramic forming the first electrode at a position closer to the first electrode than the second connector layer, the second connector layer can be freely arranged. The degree can be increased.
  • the solid oxide fuel cell according to the present invention includes an electrolyte layer, a fuel electrode made of cermet disposed at a position on one main surface side of the electrolyte layer, and an air electrode disposed at a position on the other main surface side of the electrolyte layer. And a separator having a via hole reaching the fuel electrode in cooperation with the electrolyte layer, and an interconnector provided in the via hole and connected to the fuel electrode. And a first connector layer made of conductive ceramics and a second connector layer made of metal and disposed at a position closer to the fuel electrode than the first connector layer.
  • the concern that the conductive ceramic forming the first connector layer is exposed to a reducing atmosphere during power generation is reduced, and deterioration of cell characteristics due to reductive decomposition of the conductive ceramic can be suppressed.
  • the interconnector is made of the same type of cermet as the cermet forming the fuel electrode, and further includes a third connector layer disposed at a position closer to the fuel electrode than the second connector layer.
  • the degree of freedom in arranging the second connector layer can be increased.
  • the cermet material comprises nickel oxide, yttrium oxide stabilized zirconia containing Ni, calcium oxide stabilized zirconia containing Ni, scandium oxide stabilized zirconia containing Ni, cerium oxide stabilized zirconia containing Ni, Ni Titanium oxide, alumina containing Ni, magnesia containing Ni, yttria containing Ni, niobium oxide containing Ni, or tantalum oxide containing Ni.
  • the material of the separator is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) with an addition amount of 3 mol%, or ceria (CeO 2 ) with an addition amount of 12 mol%. ) Stabilized zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ).
  • the thickness of the second connector layer is 30 ⁇ m or less.
  • the thickness of the second connector layer is 30 ⁇ m or less, the stress due to the difference between the thermal expansion amount of the second connector layer and the thermal expansion amount of the separator is suppressed. This reduces the concern that the cell is physically destroyed during the heat cycle due to cracks and delamination.
  • the metal forming the second connector layer includes at least one of Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au.
  • the conductive ceramic material is ABO3 (where A is at least one of Ca, Sr, Ba, La, Pr and Y, and B is Ni, Ti, V, Cr, Mn, Fe, A perovskite oxide represented by at least one of Co, Mo, Ru, Rh, Pd, and Re).
  • the material of the separator is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) with an addition amount of 3 mol%, or ceria (CeO 2 ) with an addition amount of 12 mol%. ) Stabilized zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ).
  • the fuel cell unit 10 is a solid oxide fuel cell unit, and includes two fuel cells 20a and 20b and a single conductive layer 22.
  • the fuel cells 20a, 20b and the conductive layer 22 are deposited so that the side surfaces thereof are flush with each other (however, it is not essential that they are flush with each other), thereby forming the flat fuel cell stack 12.
  • the X axis, the Y axis, and the Z axis are assigned to the width direction, the depth direction, and the height direction of the rectangular parallelepiped forming the fuel cell stack 12, respectively.
  • each of the fuel cells 20a and 20b is formed by laminating an air electrode side conductor layer 121, an air electrode layer 122, an electrolyte layer 123, a fuel electrode layer 124, and a fuel electrode side conductor layer 125 in this order. It becomes.
  • Via holes VHa, VHa,... Reaching the lower surface are formed on the upper surface of the air electrode side conductor layer 121, and via holes VHf, VHf,. .. Are embedded in the via holes VHa, VHa,..., And the interconnectors CNf, CNf,... Are embedded in the via holes VHf, VHf,.
  • cathodes CT1 to CT4 are formed at positions overlapping the interconnectors CNa, CNa,... As viewed from the Z-axis direction.
  • anodes AN1 to AN4 are formed at positions overlapping the interconnectors CNf, CNf,... As viewed from the Z-axis direction.
  • manifolds MFf1 and MFf2 for propagating the fuel electrode gas in the Z-axis direction are formed, and further, manifolds MFa1 and MFa2 for propagating the air electrode gas in the Z-axis direction are formed.
  • the manifolds MFf1 and MFf2 are formed on straight lines extending in the Y-axis direction from the center of the upper surface of each of the fuel cells 20a and 20b, and the manifolds MFa1 and MFa2 are each of the fuel cells 20a and 20b. Is formed on a straight line extending in the X-axis direction with the center of the upper surface of the substrate as the base point.
  • the manifold MFf1 is arranged on the positive side in the Y-axis direction from the center of the upper surface, and the manifold MFf2 is arranged on the negative side in the Y-axis direction from the center of the upper surface.
  • the manifold MFa1 is arranged on the positive side in the X-axis direction from the center of the upper surface, and the manifold MFa2 is arranged on the negative side in the X-axis direction from the center of the upper surface.
  • the interconnectors CNf, CNf,... On the anode AN1 to AN4 side are divided into four parts based on the manifolds MFf1, MFf2, MFa1, and MFa2.
  • the interconnectors CNa, CNa,... On the cathodes CT1 to CT4 side are also divided into four parts based on the manifolds MFf1, MFf2, MFa1, and MFa2.
  • the air electrode side conductor layer 121 uses the separator SP1 as a base material
  • the air electrode layer 122 uses the separator SP2 as a base material
  • the electrolyte layer 123 uses the electrolyte EL as a base material
  • the fuel electrode layer 124 uses the separator SP4 as a base material.
  • the pole-side conductor layer 125 uses the separator SP5 as a base material.
  • the separator SP2 is composed of partial separators SP21 to SP23
  • the separator SP4 is composed of partial separators SP41 to SP43.
  • the separator SP1 that forms the air electrode side conductor layer 121 includes two through-holes that form each of the manifolds MFf1, MFf2, MFa1, and MFa2, each in the Y-axis direction.
  • Four air electrode gas flow paths GRa, GRa,... Extending and arranged in the X-axis direction are provided.
  • the total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
  • the four air electrode gas flow paths GRa, GRa,... are all formed on the upper surface of the separator SP1.
  • the two air electrode gas flow paths GRa and GRa respectively overlap with two through holes forming the manifold MFa1.
  • the remaining two air electrode gas flow paths GRa and GRa respectively overlap with the two through holes forming the manifold MFa2.
  • the interconnectors CNa, CNa,... are provided at positions that avoid these through holes and the air electrode gas flow paths GRa, GRa,. Further, the interconnectors CNa, CNa,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP1, respectively.
  • the separator SP5 forming the fuel electrode side conductor layer 125 also has two through-holes forming each of the manifolds MFf1, MFf2, MFa1, and MFa2, and each in the X-axis direction.
  • Four fuel electrode gas passages GRf, GRf,... Extending and arranged in the Y-axis direction are provided.
  • the total number of through holes is eight, and all the through holes form a perfect circle when viewed from the Z-axis direction.
  • all of the four fuel electrode gas flow paths GRf, GRf,... are formed on the lower surface of the separator SP5.
  • the two fuel electrode gas flow paths GRf and GRf respectively overlap the two through holes forming the manifold MFf1.
  • the remaining two fuel electrode gas flow paths GRf and GRf respectively overlap with the two through holes forming the manifold MFf2.
  • Interconnectors CNf, CNf,... are provided at positions that avoid these through holes and fuel electrode gas flow paths GRf, GRf,. Further, the interconnectors CNf, CNf,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP5, respectively.
  • the partial separators SP21 to SP23 are formed in a stick shape having a common thickness.
  • the partial separator SP21 extends in the Y-axis direction at the position of the positive end in the X-axis direction
  • the partial separator SP22 extends in the Y-axis direction at the center in the X-axis direction
  • the partial separator SP23 is the negative end in the X-axis direction.
  • the position of the part extends in the Y-axis direction.
  • the width of the partial separator SP21 matches the width of the partial separator SP23, and the width of the partial separator SP22 is approximately twice the width of each of the partial separators SP21 and SP23.
  • the partial separator SP22 is formed with two through holes that form the manifolds MFf1 and MFf2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the Y-axis direction.
  • two plate-like cathodes CT1 and CT4 are provided side by side in the Y-axis direction. Further, two plate-like cathodes CT2 and CT3 are provided side by side in the Y-axis direction in a region sandwiched between the partial separators SP22 and SP23. At this time, the cathodes CT1 and CT2 are arranged on the positive side in the Y-axis direction, and the cathodes CT3 and CT4 are arranged on the negative side in the Y-axis direction.
  • All of the cathodes CT1 to CT4 have the same thickness as that of the partial separators SP21 to SP23 and are rectangular when viewed from the Z-axis direction.
  • Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the Y-axis direction is less than 1 ⁇ 2 of the length of each of the partial separators SP21 to SP23.
  • the side surface facing the positive side in the Y-axis direction is flush with the cathodes CT1, CT2 and the partial separators SP21 to SP23.
  • the side surface facing the negative side in the Y-axis direction is flush with the cathodes CT3, CT4 and the partial separators SP21 to SP23.
  • a rectangular through-hole is formed between the cathodes CT1 and CT4 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the cathodes CT2 and CT3 as viewed from the Z-axis direction.
  • the long side extends along the X axis and the short side extends along the Y axis.
  • the two through holes formed in this way form manifolds MFa1 and MFa2.
  • the partial separators SP41 to SP43 have a common thickness and are formed in a stick shape.
  • the partial separator SP41 extends in the X-axis direction at the position of the positive end in the Y-axis direction
  • the partial separator SP42 extends in the X-axis direction at the center in the Y-axis direction
  • the partial separator SP43 is the negative end in the Y-axis direction.
  • the position of the part extends in the X-axis direction.
  • the width of the partial separator SP41 matches the width of the partial separator SP43, and the width of the partial separator SP42 is approximately twice the width of each of the partial separators SP41 and SP43.
  • the partial separator SP42 is formed with two through holes that form the manifolds MFa1 and MFa2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the X-axis direction.
  • two plate-like anodes AN1 and AN2 are provided side by side in the X-axis direction. Further, two plate-like anodes AN3 and AN4 are provided side by side in the X-axis direction in a region sandwiched between the partial separators SP42 and SP43. At this time, the anodes AN1 and AN4 are arranged on the positive side in the X-axis direction, and the anodes AN2 and AN3 are arranged on the negative side in the X-axis direction.
  • All of the anodes AN1 to AN4 have the same thickness as that of the partial separators SP41 to SP43 and are rectangular when viewed from the Z-axis direction. Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the X-axis direction is less than 1 ⁇ 2 of the length of each of the partial separators SP41 to SP43. Further, the side surface facing the positive side in the X-axis direction is flush with the anodes AN1, AN4 and the partial separators SP41 to SP43. Similarly, the side surface facing the negative side in the X-axis direction is flush with the anodes AN3 and AN4 and the partial separators SP41 to SP43.
  • a rectangular through-hole is formed between the anodes AN1 and AN2 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the anodes AN3 and AN4 as viewed from the Z-axis direction.
  • the long side extends along the Y axis, and the short side extends along the X axis.
  • the two through holes formed in this way form manifolds MFf1 and MFf2.
  • the electrolyte layer 123 is formed by forming, in the electrolyte EL, four through holes that respectively form manifolds MFf1, MFf2, MFa1, and MFa2. All the through holes are rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
  • the upper surfaces of the cathodes CT1 to CT4 provided on the air electrode layer 122 are in surface contact with the lower surface of the electrolyte layer 123, and the lower surfaces of the anodes AN1 to AN4 provided on the fuel electrode layer 124 are in surface contact with the upper surface of the electrolyte layer 123.
  • the current collecting layer 16a is formed by four small current collecting plates 161a to 164a and a single spacer 18a.
  • Each of the small current collectors 161a to 164a is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b.
  • the area of the upper surface or the lower surface of each of the small current collectors 161a to 164a is slightly less than 1 ⁇ 4 of the area of the upper surface or the lower surface of the fuel cell 20a.
  • the thicknesses of the small current collectors 161a to 164a coincide with each other.
  • the small current collecting plate 161a is arranged at a position on the X axis direction positive side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface thereof faces a part of the interconnectors CNf, CNf,.
  • the small current collecting plate 162a is positioned at the X axis direction negative side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 162a faces another part of the interconnectors CNf, CNf,. Arranged.
  • the small current collecting plate 163a is positioned at the X axis direction negative side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 163a faces the other part of the interconnectors CNf, CNf,. Arranged.
  • the small current collecting plate 164a is positioned on the X axis direction positive side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 164a faces the other part of the interconnectors CNf, CNf,. Arranged.
  • the small current collectors 161a to 164a are electrically connected to the interconnectors CNf, CNf,.
  • the spacer 18a has the same thickness as the small current collecting plates 161a to 164a, and is disposed at a position where the small current collecting plates 161a to 164a are missing. Since the small current collectors 161a to 164a are arranged as described above, the upper surface or the lower surface of each spacer 18a forms a cross. Note that the thickness of the spacer 18a is not necessarily the same as the thickness of the small current collectors 161a to 164a. This is because the difference in thickness can be adjusted by a conductive material or a sealing material.
  • the current collecting layer 16b shown in FIG. 3 is formed by four small current collecting plates 161b to 164b and a single spacer 18b.
  • Each of the small current collectors 161b to 164b is also made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b.
  • the area of the upper surface or lower surface of each of the small current collectors 161b to 164b is slightly less than 1 ⁇ 4 of the area of the upper surface or lower surface of the fuel cell 20b.
  • the thicknesses of the small current collectors 161b to 164b are equal to each other.
  • the small current collecting plate 161b is arranged at a position on the positive side in the X-axis direction and on the positive side in the Y-axis direction of the lower surface of the fuel cell 20b so that the upper surface thereof faces a part of the interconnectors CNa, CNa,.
  • the small current collecting plate 162b is positioned at the negative side in the X-axis direction and the positive side in the Y-axis direction on the lower surface of the fuel cell 20b so that the upper surface thereof faces the other part of the interconnectors CNa, CNa,. Arranged.
  • the small current collecting plate 163b is positioned at the X-axis direction negative side and the Y-axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface thereof faces the other part of the interconnectors CNa, CNa,. Arranged.
  • the small current collecting plate 164b is positioned on the X axis direction positive side and the Y axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface of the small current collecting plate 164b faces a further part of the interconnectors CNa, CNa,. Arranged.
  • the small current collectors 161b to 164b are electrically connected to the interconnectors CNa, CNa,.
  • the spacer 18b has the same thickness as the small current collecting plates 161b to 164b, and is disposed at a position where the small current collecting plates 161b to 164b are missing. Since the small current collectors 161b to 164b are arranged as described above, the upper surface or the lower surface of each spacer 18b forms a cross.
  • each through hole is rectangular when viewed from the Z-axis direction.
  • the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis
  • the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
  • the fixing plate 14a is disposed on the upper surface of the current collecting layer 16a so that a part of the lower surface thereof faces the upper surface of the current collecting layer 16a.
  • the fixing plate 14b is disposed on the lower surface of the current collecting layer 16b so that a part of the upper surface thereof faces the lower surface of the current collecting layer 16b.
  • the side surfaces of the fixing plates 14a and 14b are flush with the side surface of the fuel cell stack 12 (however, it is not essential that they be flush).
  • each of the manifolds MFf1, MFf2, MFa1 and MFa2 is provided for the fixing plate 14b.
  • the total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
  • the conductive layer 22 provided between the fuel cells 20a and 20b transmits the current extracted from the fuel cells 20a and 20b to the current collecting layers 16a and 16b.
  • the conductive layer 22 is also formed by four small conductive plates 221 to 224 and a single spacer 24.
  • Each of the small conductive plates 221 to 224 is also made of a metal that relieves the thermal stress of the fuel cells 20a and 20b.
  • the area of the upper surface or the lower surface of each of the small conductive plates 221 to 224 is slightly less than 1 ⁇ 4 of the area of the upper surface or the lower surface of the fuel cells 20a, 20b. Further, the thicknesses of the small conductive plates 221 to 224 coincide with each other.
  • the small conductive plate 221 has a top surface facing a part of the interconnectors CNa, CNa,... And a bottom surface facing a part of the interconnectors CNf, CNf,. Are arranged on the X axis direction positive side and the Y axis direction positive side.
  • the small conductive plate 222 has an upper surface facing another part of the interconnectors CNa, CNa,... And a lower surface facing another part of the interconnectors CNf, CNf,. And 20b between the X axis direction negative side and the Y axis direction positive side.
  • the small conductive plate 223 has an upper surface facing the other part of the interconnectors CNa, CNa,... And a lower surface facing the other part of the interconnectors CNf, CNf,. And 20b between the X axis direction negative side and the Y axis direction negative side.
  • the small conductive plate 224 has a top surface facing another part of the interconnectors CNa, CNa,... And a bottom surface facing another part of the interconnectors CNf, CNf,. It is arranged at a position between the cells 20a and 20b on the X axis direction positive side and the Y axis direction negative side.
  • the interconnectors CNa, CNa,... Provided in the fuel cell 20a are electrically connected to the interconnectors CNf, CNf,... Provided in the fuel cell 20b via the small conductive plates 221 to 224 thus arranged. Connected.
  • the spacer 24 has the same thickness as the small conductive plates 221 to 224, and is disposed at a position where the small conductive plates 221 to 224 are missing. Since the small conductive plates 221 to 224 are arranged as described above, the upper surface or the lower surface of each spacer 24 forms a cross.
  • the spacer 24 is also formed with four through holes that form the manifolds MFf1, MFf2, MFa1, and MFa2.
  • Each through hole is rectangular when viewed from the Z-axis direction.
  • the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis
  • the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
  • the air electrode gas flowing through the manifolds MFa1 and MFa2 is discharged to the outside of the fuel cell stack 12 through the air electrode gas flow paths GRa, GRa,. Further, the fuel electrode gas flowing through the manifolds MFf1 and MFf2 is discharged to the outside of the fuel cell stack 12 via the fuel electrode gas flow paths GRf, GRf,.
  • a part of the air electrode gas and the fuel electrode gas is discharged outside the fuel cells 20a and 20b without causing a chemical reaction.
  • the air electrode gas is discharged through the air electrode gas flow paths GRa, GRa,...,
  • the fuel electrode gas is discharged through the fuel electrode gas flow paths GRf, GRf,.
  • the discharged air electrode gas and fuel electrode gas react with each other to generate heat, thereby achieving heat independence.
  • each of the separators SP1 to SP2 and SP4 to SP5 is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) added in an amount of 3 mol%, or added.
  • zirconia (ZrO 2 ) ceria stabilized zirconia: CeSZ
  • CeSZ ceria stabilized zirconia
  • Each of the cathodes CT1 to CT4 is made of a conductive ceramic, more specifically, ABO 3 or A2BO 4 (where A is at least one of Ca, Sr, Ba, La, Pr and Y, B is made of a perovskite oxide represented by at least one of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re).
  • each of the anodes AN1 to AN4 is composed of a porous cermet, and more specifically, nickel oxide, yttrium oxide stabilized zirconia containing Ni, calcium oxide stabilized zirconia containing Ni, and scandium oxide stabilized with Ni.
  • the materials are zirconia, cerium oxide stabilized zirconia containing Ni, titanium oxide containing Ni, alumina containing Ni, magnesia containing Ni, yttria containing Ni, niobium oxide containing Ni, and tantalum oxide containing Ni.
  • the connector layer CL1a is made of conductive ceramics
  • the connector layer CL2a is made of metal.
  • the connector layer CL2a is disposed at a position closer to the cathodes CT1 to CT4 than the connector layer CL1a. More specifically, the upper surface of the connector layer CL2a is in surface contact with the lower surface of any one of the cathodes CT1 to CT4, and the lower surface of the connector layer CL2a is in surface contact with the upper surface of the connector layer CL1a.
  • each of the interconnectors CNf, CNf,... Provided in the fuel electrode side conductor layer 125 is formed by connector layers CL0f, CL1f, and CL2f stacked in the Z-axis direction.
  • the connector layer CL0f is made of metal
  • the connector layer CL1f is made of conductive ceramics
  • the connector layer CL2f is made of metal.
  • the connector layer CL2f is arranged at a position closer to the anodes AN1 to AN4 than the connector layer CL1f
  • the connector layer CL1f is arranged at a position closer to the anodes AN1 to AN4 than the connector layer CL0f.
  • the lower surface of connector layer CL2f is in surface contact with the upper surface of any one of anodes AN1-AN4, the lower surface of connector layer CL1f is in surface contact with the upper surface of connector layer CL2f, and the lower surface of connector layer CL0f is the connector layer CL1f.
  • the separator SP1 is composed of a flat partial separator SP1a without the air electrode gas flow paths GRa, GRa,... And a partial separator SP1b divided into strips by the air electrode gas flow paths GRa, GRa,. It is formed.
  • the connector layer CL1a is disposed across the partial separators SP1a and SP1b, and the connector layer CL2a is disposed on the partial separator SP1b.
  • the separator SP5 includes a flat partial separator SP5a in which the fuel electrode gas flow paths GRf, GRf,... Do not exist, and a partial separator divided into strips by the fuel electrode gas flow paths GRf, GRf,. And SP5b.
  • the connector layer CL0f is disposed across the partial separators SP5a and SP5b, and the connector layers CL1f and CL2f are disposed on the partial separator SP5b.
  • the conductive ceramic forming each of the connector layers CL1a and CL1f is ABO 3 or A 2 BO 4 (where A is at least one of Ca, Sr, Ba, La, Pr and Y) , B is made of a perovskite oxide represented by Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re).
  • A is at least one of Ca, Sr, Ba, La, Pr and Y
  • B is made of a perovskite oxide represented by Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re).
  • the type of conductive ceramic forming the connector layer CL1a is different from the type of conductive ceramic forming the cathodes CT1 to CT4 (the meaning of different materials will be described later).
  • each of the connector layers CL2f and CL2a is 30 ⁇ m or less, and the metal forming each of the connector layers CL2f and CL2a is Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au. Including at least one.
  • the metal forming the connector layer CL0f also includes at least one of Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au.
  • the type of conductive ceramics forming the connector layer CL1a is different from the type of conductive ceramics forming the cathodes CT1 to CT4. Based on this, a connector layer CL2a made of metal is disposed between different kinds of conductive ceramics. Thereby, element diffusion between different kinds of conductive ceramics is suppressed, and as a result, a decrease in conductivity or catalytic activity is suppressed.
  • a connector layer CL2f made of metal is arranged between the connector layer CL1f made of conductive ceramics and the anode AN1 to AN4 made of porous cermet.
  • each of the connector layers CL2a and CL2f is set to 30 ⁇ m or less.
  • the stress due to the difference between the thermal expansion amounts of the connector layers CL2a and CL2f and the thermal expansion amounts of the separators SP1 and SP5 is suppressed. This reduces the concern that the cell is physically destroyed during the heat cycle due to cracks and delamination.
  • the crack generation rate during the heat cycle is 98% for a via thickness of 200 ⁇ m, 90% for a via thickness of 120 ⁇ m, and 40% for a via thickness of 60 ⁇ m. It was.
  • the via thickness was 30 ⁇ m or less, the crack occurrence rate during the heat cycle was 0%. This shows that the via thickness is preferably 30 ⁇ m or less.
  • the metal forming the connector layer CL2a includes at least one of Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au, element diffusion between different types of conductive ceramics can be achieved. It is suppressed, and as a result, a decrease in conductivity or activity is suppressed.
  • each of the separators SP1 and SP5 is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) with an addition amount of 3 mol%, or an addition amount of 12 Zirconia (ZrO 2 ) stabilized with mol% ceria (CeO 2 ) (ceria stabilized zirconia: CeSZ).
  • the thermal expansion coefficient becomes close between the cermet or the conductive ceramic and the separator. As a result, the occurrence of cracks and delamination due to the difference in thermal expansion is suppressed, and consequently the deterioration of the output characteristics is suppressed.
  • the type of the conductive ceramic material forming the connector layer CL1a is different from the type of the conductive ceramic material forming the cathodes CT1 to CT4, and the meaning of the “foreign material” is as follows.
  • Conductive ceramic constituting the connector layer CL1a or cathode CT1 ⁇ CT4 is, more specifically, LaSrCoO 3, LaSrCoFeO 3, MnCoO 3, SmSrCoO 3, LaCaMnO 3, LaCaCoO 3, LaCaCoFeO 3, LaNiFeO 3, (LaSr) 2 NiO 4 is the basic material.
  • a material in which at least one of the A site and the B site is different is a “different material”.
  • lanthanum chromite LaCrO 3
  • LaFeO 3 lanthanum ferrate
  • (LaSr) MnO 3 lanthanum strontium manganite
  • the As materials for the cathodes CT1 to CT4 for example, PrCoO 3 -based oxides, LaCoO 3 -based oxides, LaMnO 3 -based oxides are employed.
  • Specific examples of the LaMnO 3 -based oxide include La 0.8 Sr 0.2 MnO 3 (common name: LSM) and La 0.6 Ca 0.4 MnO 3 (common name: LCM).
  • the outer diameter of the connector layer CL2f matches the outer diameter of the connector layer CL1f
  • the outer diameter of the connector layer CL2a matches the outer diameter of the connector layer CL1a
  • the outer diameter of the connector layer CL2f may be larger than the outer diameter of each of the connector layers CL0f and CL1f as shown in FIG. 7, and the outer diameter of each of the connector layers CL0f and CL1f as shown in FIG. May be small.
  • the outer diameter of the connector layer CL2a may be larger than the outer diameter of the connector layer CL1a as shown in FIG. 9, or may be smaller than the outer diameter of the connector layer CL1a as shown in FIG.
  • the lower surface of the connector layer CL2f is in surface contact with the upper surfaces of the anodes AN1 to AN4, and the upper surface of the connector layer CL2a is in surface contact with the lower surfaces of the cathodes CT1 to CT4.
  • a connector layer CL3f made of the same material as the anodes AN1 to AN4 is added to the interconnector CNf, and the connector layer CL2f is connected to the anodes AN1 to AN4 via the connector layer CL3f. May be.
  • a connector layer CL3a made of the same material as the cathodes CT1 to CT4 is added to the interconnector CNa, and the connector layer CL2a is connected to the cathodes CT1 to CT4 via the connector layer CL3a. It may be.
  • the upper surface of the connector layer CL3f is in surface contact with the lower surface of the connector layer CL2f, and the lower surface of the connector layer CL3f is in surface contact with the upper surfaces of the anodes AN1 to AN4.
  • the lower surface of the connector layer CL3a is in surface contact with the upper surface of the connector layer CL2a, and the upper surface of the connector layer CL3a is in surface contact with the lower surfaces of the cathodes CT1 to CT4.
  • the degree of freedom of arrangement of the connector layer CL2f is improved by adding the connector layer CL3f, and the degree of freedom of arrangement of the connector layer CL2a is improved by adding the connector layer CL3a.
  • the outer diameters when viewed from the Z-axis direction match between the connector layers CLf0 to CLf3 and match between the connector layers CLa1 to CLa3.
  • the outer diameter when viewed from the Z-axis direction may be different between the connector layers CLf0 to CLf3, or may be different between the connector layers CLa1 to CLa3.

Abstract

In this invention, cathodes CT1-CT4 comprise conductive ceramics, and are disposed on the lower surface side of an electrolyte layer 123. Anodes AN1-AN4 are disposed on the upper surface side of the electrolyte layer 123. A separator SP1 is disposed at a position such that, along with the electrolyte layer 123, the cathodes CT1 to CT4 are sandwiched therebetween, and has via holes VHa, VHa,... reaching the cathodes CT1-CT4. Interconnectors CNa, CNa,... are provided in the via holes VHa, VHa,... and are connected to the cathodes CT1-CT4. Each interconnector CNa comprises a connector layer CL1a comprising a conductive ceramic of a different type from the type of the conductive ceramics forming the cathodes CT1-CT4, and a connector layer CL2a comprising a metal and disposed at a position more to the side of the cathodes CT1-CT4 than the connector layer CL1a.

Description

固体酸化物形燃料電池Solid oxide fuel cell
 この発明は、固体酸化物形燃料電池に関し、特に、積層方向を向く一方主面および他方主面に露出した表面電極を各々が有して積層された複数の燃料電池セルを備える、固体酸化物形燃料電池に関する。 The present invention relates to a solid oxide fuel cell, and in particular, a solid oxide comprising a plurality of fuel cells each having a surface electrode exposed on one main surface and the other main surface facing in the stacking direction. The present invention relates to a fuel cell.
 この種の燃料電池の一例が特許文献1に開示されている。この文献によれば、導電性セラミックスからなる中間膜がインターコネクタの一部をなす。インターコネクタのうち中間膜よりもセパレータ側の部分は、Ag,Pd,Pt,Fe,Co,Cu,Ru,Rh,ReおよびAuからなる群から選ばれる少なくとも一種を含む。これに対して、インターコネクタのうち中間膜よりも燃料極側の部分は、燃料極と同じ材料によって構成される。 An example of this type of fuel cell is disclosed in Patent Document 1. According to this document, an intermediate film made of conductive ceramic forms part of an interconnector. The portion of the interconnector closer to the separator than the intermediate film contains at least one selected from the group consisting of Ag, Pd, Pt, Fe, Co, Cu, Ru, Rh, Re, and Au. On the other hand, the portion of the interconnector closer to the fuel electrode than the intermediate film is made of the same material as the fuel electrode.
 具体的には、燃料極側の部分は、酸化ニッケル,Niを含む酸化イットリウム安定化ジルコニア(イットリア安定化ジルコニア(YSZ)),Niを含む酸化カルシウム安定化ジルコニア,Niを含む酸化スカンジウム安定化ジルコニア(スカンジア安定化ジルコニア(ScSZ)),Niを含む酸化セリウム安定化ジルコニア,Niを含む酸化チタン,Niを含むアルミナ,Niを含むマグネシア,Niを含むイットリア,Niを含む酸化ニオブまたはNiを含む酸化タンタル等からなる。 Specifically, the portion on the fuel electrode side includes nickel oxide, yttrium oxide stabilized zirconia containing Ni (yttria stabilized zirconia (YSZ)), calcium oxide stabilized zirconia containing Ni, scandium oxide stabilized zirconia containing Ni. (Scandia stabilized zirconia (ScSZ)), cerium oxide stabilized zirconia containing Ni, titanium oxide containing Ni, alumina containing Ni, magnesia containing Ni, yttria containing Ni, niobium oxide containing Ni or oxidation containing Ni Made of tantalum or the like.
国際公開第2012/133263号(図12,段落0036,0069参照)International Publication No. 2012/133263 (see FIG. 12, paragraphs 0036 and 0069)
 しかし、中間膜が燃料極側の部分と直接的に接続されると、各々の構成元素が接続部分において相互に拡散し、所定の組成からのズレが中間膜および燃料極側の部分の両方に発生する。このようなズレは、導電性ないし活性の低下を引き起こす。 However, when the intermediate film is directly connected to the portion on the fuel electrode side, each constituent element diffuses to each other in the connecting portion, and a deviation from a predetermined composition is present in both the intermediate film and the portion on the fuel electrode side. appear. Such a shift causes a decrease in conductivity or activity.
 また、中間膜が燃料極側の部分と直接的に接続されると、中間膜をなす導電性セラミックスが発電時に還元雰囲気に晒される。この結果、当該導電性セラミックスの還元分解に起因してセル特性が劣化する。 Also, when the intermediate film is directly connected to the portion on the fuel electrode side, the conductive ceramic forming the intermediate film is exposed to a reducing atmosphere during power generation. As a result, cell characteristics deteriorate due to reductive decomposition of the conductive ceramic.
 それゆえに、この発明の主たる目的は、導電性ないし活性の低下を抑制することができる、固体酸化物形燃料電池を提供することである。 Therefore, a main object of the present invention is to provide a solid oxide fuel cell capable of suppressing a decrease in conductivity or activity.
 この発明の他の目的は、導電性セラミックスの還元分解に起因するセル特性の劣化を抑制することができる、固体酸化物形燃料電池を提供することである。 Another object of the present invention is to provide a solid oxide fuel cell capable of suppressing deterioration of cell characteristics resulting from reductive decomposition of conductive ceramics.
 この発明の固体酸化物形燃料電池は、電解質層と、電解質層の一方主面側の位置に配され、導電性セラミックスからなる第1電極と、電解質層の他方主面側の位置に配された第2電極と、電解質層とともに第1電極を挟む位置に配され、第1電極に達するビアホールを有するセパレータと、ビアホールに設けられて第1電極に接続されたインターコネクタと、を有し、インターコネクタは、第1電極をなす導電性セラミックスの種類と異なる種類の導電性セラミックスからなる第1コネクタ層と、金属からなり第1コネクタ層よりも第1電極側の位置に配された第2コネクタ層とを含む。 The solid oxide fuel cell of the present invention is disposed at an electrolyte layer, a position on one main surface side of the electrolyte layer, a first electrode made of conductive ceramics, and a position on the other main surface side of the electrolyte layer. And a second electrode, a separator having a via hole reaching the first electrode, and an interconnector provided in the via hole and connected to the first electrode. The interconnector includes a first connector layer made of conductive ceramics different from the type of conductive ceramics forming the first electrode, and a second connector made of metal and disposed at a position closer to the first electrode than the first connector layer. Including a connector layer.
 第1コネクタ層をなす導線性セラミックスの種類は、第1電極をなす導電性セラミックスの種類と異なる。これを踏まえて、異種の導電性セラミックスの間に金属からなる第2コネクタ層が配される。これによって、異種の導電性セラミックス間での元素拡散が抑制され、ひいては導電性ないし活性の低下が抑制される。 The type of conductive ceramic forming the first connector layer is different from the type of conductive ceramic forming the first electrode. Based on this, a second connector layer made of metal is disposed between different kinds of conductive ceramics. Thereby, element diffusion between different kinds of conductive ceramics is suppressed, and as a result, a decrease in conductivity or activity is suppressed.
 好ましくは、インターコネクタは、第1電極をなす導電性セラミックの種類と同じ種類の導電性セラミックスからなり、第2コネクタ層よりも第1電極側の位置に配された第3コネクタ層をさらに含む。 Preferably, the interconnector further includes a third connector layer made of a conductive ceramic of the same type as that of the conductive ceramic forming the first electrode, and disposed at a position closer to the first electrode than the second connector layer. .
 第1電極をなす導電性セラミックスの種類と同じ種類の導電性セラミックスからなる第3コネクタ層を第2コネクタ層よりも第1電極側の位置に配することで、第2コネクタ層の配置の自由度を高めることができる。 By disposing the third connector layer made of the same type of conductive ceramic as the type of the conductive ceramic forming the first electrode at a position closer to the first electrode than the second connector layer, the second connector layer can be freely arranged. The degree can be increased.
 この発明の固体酸化物形燃料電池は、電解質層と、電解質層の一方主面側の位置に配され、サーメットからなる燃料極と、電解質層の他方主面側の位置に配された空気極と、電解質層と協働して燃料極を挟む位置に配され、燃料極に達するビアホールを有するセパレータと、ビアホールに設けられて燃料極に接続されたインターコネクタと、を有し、インターコネクタは、導電性セラミックスからなる第1コネクタ層と、金属からなり第1コネクタ層よりも燃料極側の位置に配された第2コネクタ層とを含む。 The solid oxide fuel cell according to the present invention includes an electrolyte layer, a fuel electrode made of cermet disposed at a position on one main surface side of the electrolyte layer, and an air electrode disposed at a position on the other main surface side of the electrolyte layer. And a separator having a via hole reaching the fuel electrode in cooperation with the electrolyte layer, and an interconnector provided in the via hole and connected to the fuel electrode. And a first connector layer made of conductive ceramics and a second connector layer made of metal and disposed at a position closer to the fuel electrode than the first connector layer.
 第1コネクタ層をなす導電性セラミックスが発電時に還元雰囲気に晒される懸念が軽減され、当該導電性セラミックスの還元分解に起因するセル特性の劣化を抑制することができる。 The concern that the conductive ceramic forming the first connector layer is exposed to a reducing atmosphere during power generation is reduced, and deterioration of cell characteristics due to reductive decomposition of the conductive ceramic can be suppressed.
 好ましくは、インターコネクタは、燃料極をなすサーメットと同じ種類のサーメットからなり、第2コネクタ層よりも燃料極側の位置に配された第3コネクタ層をさらに含む。 Preferably, the interconnector is made of the same type of cermet as the cermet forming the fuel electrode, and further includes a third connector layer disposed at a position closer to the fuel electrode than the second connector layer.
 燃料極をなすサーメットと同じ種類のサーメットからなる第3コネクタ層を第2コネクタ層よりも燃料極側の位置に配することで、第2コネクタ層の配置の自由度を高めることができる。 By disposing the third connector layer made of the same type of cermet as the cermet forming the fuel electrode at a position closer to the fuel electrode than the second connector layer, the degree of freedom in arranging the second connector layer can be increased.
 好ましくは、サーメットの材料は、酸化ニッケル、Niを含む酸化イットリウム安定化ジルコニア、Niを含む酸化カルシウム安定化ジルコニア、Niを含む酸化スカンジウム安定化ジルコニア、Niを含む酸化セリウム安定化ジルコニア、Niを含む酸化チタン、Niを含むアルミナ、Niを含むマグネシア、Niを含むイットリア、Niを含む酸化ニオブ、またはNiを含む酸化タンタルである。 Preferably, the cermet material comprises nickel oxide, yttrium oxide stabilized zirconia containing Ni, calcium oxide stabilized zirconia containing Ni, scandium oxide stabilized zirconia containing Ni, cerium oxide stabilized zirconia containing Ni, Ni Titanium oxide, alumina containing Ni, magnesia containing Ni, yttria containing Ni, niobium oxide containing Ni, or tantalum oxide containing Ni.
 セパレータの材料は、たとえば、添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)、或いは添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)である。サーメットの材料を上述のものとすることで、サーメットとセパレータとの間で熱膨張係数が近くなる。この結果、熱膨張差によるクラックやデラミネーションの発生が抑制され、ひいては出力特性の低下が抑制される。 The material of the separator is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) with an addition amount of 3 mol%, or ceria (CeO 2 ) with an addition amount of 12 mol%. ) Stabilized zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ). By using the cermet material as described above, the thermal expansion coefficient is close between the cermet and the separator. As a result, the occurrence of cracks and delamination due to the difference in thermal expansion is suppressed, and consequently the deterioration of the output characteristics is suppressed.
 好ましくは、第2コネクタ層の厚みは30μm以下である。 Preferably, the thickness of the second connector layer is 30 μm or less.
 第2コネクタ層の厚みを30μm以下とすることで、第2コネクタ層の熱膨張量とセパレータの熱膨張量との相違による応力が抑制される。これによって、クラックやデラミネーションに起因してヒートサイクル時にセルが物理的に破壊される懸念が軽減される。 When the thickness of the second connector layer is 30 μm or less, the stress due to the difference between the thermal expansion amount of the second connector layer and the thermal expansion amount of the separator is suppressed. This reduces the concern that the cell is physically destroyed during the heat cycle due to cracks and delamination.
 好ましくは、第2コネクタ層をなす金属は、Ag,Pd,Pt,Fe,Cr,Co,Cu,Ru,Rh,ReおよびAuの少なくとも1つを含む。 Preferably, the metal forming the second connector layer includes at least one of Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au.
 異種の導電性セラミックス間での元素拡散が抑制され、ひいては導電性ないし活性の低下が抑制される。 <Element diffusion between different types of conductive ceramics is suppressed, and as a result, the decrease in conductivity or activity is suppressed.
 好ましくは、導電性セラミックスの材料は、ABO3(但し、Aは、Ca,Sr,Ba,La,PrおよびYの少なくとも1つであり、Bは、Ni,Ti,V,Cr,Mn,Fe,Co,Mo,Ru,Rh,PdおよびReの少なくとも1つ)で表されるペロブスカイト型酸化物である。 Preferably, the conductive ceramic material is ABO3 (where A is at least one of Ca, Sr, Ba, La, Pr and Y, and B is Ni, Ti, V, Cr, Mn, Fe, A perovskite oxide represented by at least one of Co, Mo, Ru, Rh, Pd, and Re).
 セパレータの材料は、たとえば、添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)、或いは添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)である。導電性セラミックスの材料を上述のものとすることで、導電性セラミックスとセパレータとの間で熱膨張係数が近くなる。この結果、熱膨張差によるクラックやデラミネーションの発生が抑制され、ひいては出力特性の低下が抑制される。 The material of the separator is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) with an addition amount of 3 mol%, or ceria (CeO 2 ) with an addition amount of 12 mol%. ) Stabilized zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ). By using the above-mentioned conductive ceramic material, the thermal expansion coefficient is close between the conductive ceramic and the separator. As a result, the occurrence of cracks and delamination due to the difference in thermal expansion is suppressed, and consequently the deterioration of the output characteristics is suppressed.
 この発明によれば、導電性ないし活性の低下を抑制することができ、或いは導電性セラミックスの還元分解に起因するセル特性の劣化を抑制することができる。 According to this invention, it is possible to suppress a decrease in conductivity or activity, or it is possible to suppress deterioration of cell characteristics due to reductive decomposition of conductive ceramics.
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この実施例の燃料電池ユニットの外観を示す斜視図である。It is a perspective view which shows the external appearance of the fuel cell unit of this Example. この実施例の燃料電池ユニットの一部を分解して斜め上から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which decomposed | disassembled some fuel cell units of this Example, and was seen from diagonally upward. この実施例の燃料電池ユニットの他の一部を分解して斜め上から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which decomposed | disassembled the other part of the fuel cell unit of this Example, and was seen from diagonally upward. この実施例の燃料電池セルを分解して斜め上から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which decomposed | disassembled and looked at the fuel cell of this Example from diagonally upward. この実施例の燃料電池セルを構成する燃料極側導体層を斜め下から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which looked at the fuel electrode side conductor layer which comprises the fuel battery cell of this Example from diagonally downward. この実施例の燃料電池セルの要部断面を示す断面図である。It is sectional drawing which shows the principal part cross section of the fuel cell of this Example. 他の実施例の燃料電池セルの要部断面を示す断面図である。It is sectional drawing which shows the principal part cross section of the fuel cell of another Example. その他の実施例の燃料電池セルの要部断面を示す断面図である。It is sectional drawing which shows the principal part cross section of the fuel cell of other Examples. さらにその他の実施例の燃料電池セルの要部断面を示す断面図である。Furthermore, it is sectional drawing which shows the principal part cross section of the fuel cell of another Example. 他の実施例の燃料電池セルの要部断面を示す断面図である。It is sectional drawing which shows the principal part cross section of the fuel cell of another Example. その他の実施例の燃料電池セルの要部断面を示す断面図である。It is sectional drawing which shows the principal part cross section of the fuel cell of other Examples. さらにその他の実施例の燃料電池セルの要部断面を示す断面図である。Furthermore, it is sectional drawing which shows the principal part cross section of the fuel cell of another Example.
 図1~図5を参照して、この燃料電池ユニット10は、固体酸化物形の燃料電池ユニットであり、2つの燃料電池セル20a,20bと単一の導電層22とを含む。燃料電池セル20a,20bおよび導電層22は、各々の側面が面一となるように堆積され(ただし、面一であることは必須ではない)、これによって平板型の燃料電池スタック12が構成される。 1 to 5, the fuel cell unit 10 is a solid oxide fuel cell unit, and includes two fuel cells 20a and 20b and a single conductive layer 22. The fuel cells 20a, 20b and the conductive layer 22 are deposited so that the side surfaces thereof are flush with each other (however, it is not essential that they are flush with each other), thereby forming the flat fuel cell stack 12. The
 なお、この実施例では、燃料電池スタック12をなす直方体の幅方向,奥行き方向および高さ方向に、X軸,Y軸およびZ軸をそれぞれ割り当てる。 In this embodiment, the X axis, the Y axis, and the Z axis are assigned to the width direction, the depth direction, and the height direction of the rectangular parallelepiped forming the fuel cell stack 12, respectively.
 図4に示すように、燃料電池セル20aおよび20bの各々は、空気極側導体層121,空気極層122,電解質層123,燃料極層124および燃料極側導体層125をこの順で積層してなる。 As shown in FIG. 4, each of the fuel cells 20a and 20b is formed by laminating an air electrode side conductor layer 121, an air electrode layer 122, an electrolyte layer 123, a fuel electrode layer 124, and a fuel electrode side conductor layer 125 in this order. It becomes.
 空気極側導体層121の上面には下面にまで達するビアホールVHa,VHa,…が形成され、燃料極側導体層125の上面には下面にまで達するビアホールVHf,VHf,…が形成される。インターコネクタCNa,CNa,…はビアホールVHa,VHa,…にそれぞれ埋め込まれ、インターコネクタCNf,CNf,…はビアホールVHf,VHf,…にそれぞれ埋め込まれる。 Via holes VHa, VHa,... Reaching the lower surface are formed on the upper surface of the air electrode side conductor layer 121, and via holes VHf, VHf,. .. Are embedded in the via holes VHa, VHa,..., And the interconnectors CNf, CNf,... Are embedded in the via holes VHf, VHf,.
 空気極層122において、Z軸方向から眺めてインターコネクタCNa,CNa,…と重なる位置には、カソードCT1~CT4が形成される。また、燃料極層124において、Z軸方向から眺めてインターコネクタCNf,CNf,…と重なる位置には、アノードAN1~AN4が形成される。 In the air electrode layer 122, cathodes CT1 to CT4 are formed at positions overlapping the interconnectors CNa, CNa,... As viewed from the Z-axis direction. In the fuel electrode layer 124, anodes AN1 to AN4 are formed at positions overlapping the interconnectors CNf, CNf,... As viewed from the Z-axis direction.
 燃料電池セル20aおよび20bの各々にはまた、Z軸方向に燃料極ガスを伝搬させるマニホールドMFf1およびMFf2が形成され、さらにZ軸方向に空気極ガスを伝搬させるマニホールドMFa1およびMFa2が形成される。 In each of the fuel cells 20a and 20b, manifolds MFf1 and MFf2 for propagating the fuel electrode gas in the Z-axis direction are formed, and further, manifolds MFa1 and MFa2 for propagating the air electrode gas in the Z-axis direction are formed.
 Z軸方向から眺めると、マニホールドMFf1およびMFf2は燃料電池セル20aおよび20bの各々の上面中央を基点としてY軸方向に延びる直線上に形成され、マニホールドMFa1およびMFa2は燃料電池セル20aおよび20bの各々の上面中央を基点としてX軸方向に延びる直線上に形成される。 When viewed from the Z-axis direction, the manifolds MFf1 and MFf2 are formed on straight lines extending in the Y-axis direction from the center of the upper surface of each of the fuel cells 20a and 20b, and the manifolds MFa1 and MFa2 are each of the fuel cells 20a and 20b. Is formed on a straight line extending in the X-axis direction with the center of the upper surface of the substrate as the base point.
 より詳しくは、マニホールドMFf1は上面中央よりもY軸方向の正側に配され、マニホールドMFf2は上面中央よりもY軸方向の負側に配される。また、マニホールドMFa1は上面中央よりもX軸方向の正側に配され、マニホールドMFa2は上面中央よりもX軸方向の負側に配される。 More specifically, the manifold MFf1 is arranged on the positive side in the Y-axis direction from the center of the upper surface, and the manifold MFf2 is arranged on the negative side in the Y-axis direction from the center of the upper surface. The manifold MFa1 is arranged on the positive side in the X-axis direction from the center of the upper surface, and the manifold MFa2 is arranged on the negative side in the X-axis direction from the center of the upper surface.
 したがって、アノードAN1~AN4側のインターコネクタCNf,CNf,…は、マニホールドMFf1,MFf2,MFa1およびMFa2を基準に4分割される。同様に、カソードCT1~CT4側のインターコネクタCNa,CNa,…も、マニホールドMFf1,MFf2,MFa1およびMFa2を基準に4分割される。 Therefore, the interconnectors CNf, CNf,... On the anode AN1 to AN4 side are divided into four parts based on the manifolds MFf1, MFf2, MFa1, and MFa2. Similarly, the interconnectors CNa, CNa,... On the cathodes CT1 to CT4 side are also divided into four parts based on the manifolds MFf1, MFf2, MFa1, and MFa2.
 空気極側導体層121はセパレータSP1を基材とし、空気極層122はセパレータSP2を基材とし、電解質層123は電解質ELを基材とし、燃料極層124はセパレータSP4を基材とし、燃料極側導体層125はセパレータSP5を基材とする。なお、セパレータSP2は部分セパレータSP21~SP23によって構成され、セパレータSP4は部分セパレータSP41~SP43によって構成される。 The air electrode side conductor layer 121 uses the separator SP1 as a base material, the air electrode layer 122 uses the separator SP2 as a base material, the electrolyte layer 123 uses the electrolyte EL as a base material, and the fuel electrode layer 124 uses the separator SP4 as a base material. The pole-side conductor layer 125 uses the separator SP5 as a base material. The separator SP2 is composed of partial separators SP21 to SP23, and the separator SP4 is composed of partial separators SP41 to SP43.
 空気極側導体層121をなすセパレータSP1には、上述したインターコネクタCNa,CNa,…の他に、マニホールドMFf1,MFf2,MFa1およびMFa2の各々をなす2つの貫通孔と、各々がY軸方向に延びてX軸方向に並ぶ4つの空気極ガス流路GRa,GRa,…とが設けられる。貫通孔の数は合計で8つであり、いずれも貫通孔もZ軸方向から眺めて真円をなす。 In addition to the above-described interconnectors CNa, CNa,..., The separator SP1 that forms the air electrode side conductor layer 121 includes two through-holes that form each of the manifolds MFf1, MFf2, MFa1, and MFa2, each in the Y-axis direction. Four air electrode gas flow paths GRa, GRa,... Extending and arranged in the X-axis direction are provided. The total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
 また、4つの空気極ガス流路GRa,GRa,…はいずれも、セパレータSP1の上面に形成される。このうち2つの空気極ガス流路GRa,GRaは、マニホールドMFa1をなす2つの貫通孔とそれぞれ重なる。残りの2つの空気極ガス流路GRa,GRaは、マニホールドMFa2をなす2つの貫通孔とそれぞれ重なる。 Also, the four air electrode gas flow paths GRa, GRa,... Are all formed on the upper surface of the separator SP1. Of these, the two air electrode gas flow paths GRa and GRa respectively overlap with two through holes forming the manifold MFa1. The remaining two air electrode gas flow paths GRa and GRa respectively overlap with the two through holes forming the manifold MFa2.
 インターコネクタCNa,CNa,…は、Z軸方向から眺めてこれらの貫通孔および空気極ガス流路GRa,GRa,…を回避する位置に設けられる。また、インターコネクタCNa,CNa,…はZ軸方向に延在し、その一方端および他方端はセパレータSP1の上面および下面にそれぞれ露出する。 The interconnectors CNa, CNa,... Are provided at positions that avoid these through holes and the air electrode gas flow paths GRa, GRa,. Further, the interconnectors CNa, CNa,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP1, respectively.
 燃料極側導体層125をなすセパレータSP5にも、上述したインターコネクタCNf,CNf,…の他に、マニホールドMFf1,MFf2,MFa1およびMFa2の各々をなす2つの貫通孔と、各々がX軸方向に延びてY軸方向に並ぶ4つの燃料極ガス流路GRf,GRf,…とが設けられる。貫通孔の数は合計で8つであり、いずれの貫通孔もZ軸方向から眺めて真円をなす。 In addition to the above-described interconnectors CNf, CNf,..., The separator SP5 forming the fuel electrode side conductor layer 125 also has two through-holes forming each of the manifolds MFf1, MFf2, MFa1, and MFa2, and each in the X-axis direction. Four fuel electrode gas passages GRf, GRf,... Extending and arranged in the Y-axis direction are provided. The total number of through holes is eight, and all the through holes form a perfect circle when viewed from the Z-axis direction.
 また、図5に示すように、4つの燃料極ガス流路GRf,GRf,…はいずれも、セパレータSP5の下面に形成される。このうち2つの燃料極ガス流路GRf,GRfは、マニホールドMFf1をなす2つの貫通孔とそれぞれ重なる。残りの2つの燃料極ガス流路GRf,GRfは、マニホールドMFf2をなす2つの貫通孔とそれぞれ重なる。 Further, as shown in FIG. 5, all of the four fuel electrode gas flow paths GRf, GRf,... Are formed on the lower surface of the separator SP5. Of these, the two fuel electrode gas flow paths GRf and GRf respectively overlap the two through holes forming the manifold MFf1. The remaining two fuel electrode gas flow paths GRf and GRf respectively overlap with the two through holes forming the manifold MFf2.
 インターコネクタCNf,CNf,…は、Z軸方向から眺めてこれらの貫通孔および燃料極ガス流路GRf,GRf,…を回避する位置に設けられる。また、インターコネクタCNf,CNf,…はZ軸方向に延在し、その一方端および他方端はセパレータSP5の上面および下面にそれぞれ露出する。 Interconnectors CNf, CNf,... Are provided at positions that avoid these through holes and fuel electrode gas flow paths GRf, GRf,. Further, the interconnectors CNf, CNf,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP5, respectively.
 図4に示す空気極層122において、部分セパレータSP21~SP23は共通の厚みを有してスティック状に形成される。部分セパレータSP21はX軸方向における正側端部の位置をY軸方向に延び、部分セパレータSP22はX軸方向における中央の位置をY軸方向に延び、部分セパレータSP23はX軸方向における負側端部の位置をY軸方向に延びる。 In the air electrode layer 122 shown in FIG. 4, the partial separators SP21 to SP23 are formed in a stick shape having a common thickness. The partial separator SP21 extends in the Y-axis direction at the position of the positive end in the X-axis direction, the partial separator SP22 extends in the Y-axis direction at the center in the X-axis direction, and the partial separator SP23 is the negative end in the X-axis direction. The position of the part extends in the Y-axis direction.
 部分セパレータSP21の幅は部分セパレータSP23の幅と一致し、部分セパレータSP22の幅は部分セパレータSP21およびSP23の各々の幅のほぼ2倍である。部分セパレータSP22には、マニホールドMFf1およびMFf2をそれぞれなす2つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなし、その長辺はY軸方向に延在する。 The width of the partial separator SP21 matches the width of the partial separator SP23, and the width of the partial separator SP22 is approximately twice the width of each of the partial separators SP21 and SP23. The partial separator SP22 is formed with two through holes that form the manifolds MFf1 and MFf2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the Y-axis direction.
 部分セパレータSP21およびSP22によって挟まれる領域には、板状の2つのカソードCT1およびCT4がY軸方向に並んで設けられる。また、部分セパレータSP22およびSP23によって挟まれる領域には、板状の2つのカソードCT2およびCT3がY軸方向に並んで設けられる。このとき、カソードCT1およびCT2はY軸方向における正側に配され、カソードCT3およびCT4はY軸方向における負側に配される。 In a region sandwiched between the partial separators SP21 and SP22, two plate-like cathodes CT1 and CT4 are provided side by side in the Y-axis direction. Further, two plate-like cathodes CT2 and CT3 are provided side by side in the Y-axis direction in a region sandwiched between the partial separators SP22 and SP23. At this time, the cathodes CT1 and CT2 are arranged on the positive side in the Y-axis direction, and the cathodes CT3 and CT4 are arranged on the negative side in the Y-axis direction.
 カソードCT1~CT4のいずれも、部分セパレータSP21~SP23の厚みと同じ厚みを有し、かつZ軸方向から眺めて矩形をなす。矩形の各辺はX軸方向またはY軸方向に延在し、Y軸方向に延びる辺の長さは部分セパレータSP21~SP23の各々の長さの1/2を下回る。また、Y軸方向の正側を向く側面は、カソードCT1,CT2,部分セパレータSP21~SP23の間で面一となる。同様に、Y軸方向の負側を向く側面は、カソードCT3,CT4,部分セパレータSP21~SP23の間で面一となる。 All of the cathodes CT1 to CT4 have the same thickness as that of the partial separators SP21 to SP23 and are rectangular when viewed from the Z-axis direction. Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the Y-axis direction is less than ½ of the length of each of the partial separators SP21 to SP23. Further, the side surface facing the positive side in the Y-axis direction is flush with the cathodes CT1, CT2 and the partial separators SP21 to SP23. Similarly, the side surface facing the negative side in the Y-axis direction is flush with the cathodes CT3, CT4 and the partial separators SP21 to SP23.
 したがって、カソードCT1およびCT4の間にはZ軸方向から眺めて長方形をなす貫通孔が形成され、カソードCT2およびCT3の間にもZ軸方向から眺めて長方形をなす貫通孔が形成される。いずれの長方形についても、長辺はX軸に沿って延び、短辺はY軸に沿って延びる。こうして形成された2つの貫通孔が、マニホールドMFa1およびMFa2をそれぞれなす。 Therefore, a rectangular through-hole is formed between the cathodes CT1 and CT4 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the cathodes CT2 and CT3 as viewed from the Z-axis direction. For any rectangle, the long side extends along the X axis and the short side extends along the Y axis. The two through holes formed in this way form manifolds MFa1 and MFa2.
 燃料極層124において、部分セパレータSP41~SP43は共通の厚みを有してスティック状に形成される。部分セパレータSP41はY軸方向における正側端部の位置をX軸方向に延び、部分セパレータSP42はY軸方向における中央の位置をX軸方向に延び、部分セパレータSP43はY軸方向における負側端部の位置をX軸方向に延びる。 In the fuel electrode layer 124, the partial separators SP41 to SP43 have a common thickness and are formed in a stick shape. The partial separator SP41 extends in the X-axis direction at the position of the positive end in the Y-axis direction, the partial separator SP42 extends in the X-axis direction at the center in the Y-axis direction, and the partial separator SP43 is the negative end in the Y-axis direction. The position of the part extends in the X-axis direction.
 部分セパレータSP41の幅は部分セパレータSP43の幅と一致し、部分セパレータSP42の幅は部分セパレータSP41およびSP43の各々の幅のほぼ2倍である。部分セパレータSP42には、マニホールドMFa1およびMFa2をそれぞれなす2つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなし、その長辺はX軸方向に延在する。 The width of the partial separator SP41 matches the width of the partial separator SP43, and the width of the partial separator SP42 is approximately twice the width of each of the partial separators SP41 and SP43. The partial separator SP42 is formed with two through holes that form the manifolds MFa1 and MFa2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the X-axis direction.
 部分セパレータSP41およびSP42によって挟まれる領域には、板状の2つのアノードAN1およびAN2がX軸方向に並んで設けられる。また、部分セパレータSP42およびSP43によって挟まれる領域には、板状の2つのアノードAN3およびAN4がX軸方向に並んで設けられる。このとき、アノードAN1およびAN4はX軸方向における正側に配され、アノードAN2およびAN3はX軸方向における負側に配される。 In a region sandwiched between the partial separators SP41 and SP42, two plate-like anodes AN1 and AN2 are provided side by side in the X-axis direction. Further, two plate-like anodes AN3 and AN4 are provided side by side in the X-axis direction in a region sandwiched between the partial separators SP42 and SP43. At this time, the anodes AN1 and AN4 are arranged on the positive side in the X-axis direction, and the anodes AN2 and AN3 are arranged on the negative side in the X-axis direction.
 アノードAN1~AN4のいずれも、部分セパレータSP41~SP43の厚みと同じ厚みを有し、かつZ軸方向から眺めて矩形をなす。矩形の各辺はX軸方向またはY軸方向に延在し、X軸方向に延びる辺の長さは部分セパレータSP41~SP43の各々の長さの1/2を下回る。また、X軸方向の正側を向く側面は、アノードAN1,AN4,部分セパレータSP41~SP43の間で面一となる。同様に、X軸方向の負側を向く側面は、アノードAN3,AN4,部分セパレータSP41~SP43の間で面一となる。 All of the anodes AN1 to AN4 have the same thickness as that of the partial separators SP41 to SP43 and are rectangular when viewed from the Z-axis direction. Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the X-axis direction is less than ½ of the length of each of the partial separators SP41 to SP43. Further, the side surface facing the positive side in the X-axis direction is flush with the anodes AN1, AN4 and the partial separators SP41 to SP43. Similarly, the side surface facing the negative side in the X-axis direction is flush with the anodes AN3 and AN4 and the partial separators SP41 to SP43.
 したがって、アノードAN1およびAN2の間にはZ軸方向から眺めて長方形をなす貫通孔が形成され、アノードAN3およびAN4の間にもZ軸方向から眺めて長方形をなす貫通孔が形成される。いずれの長方形についても、長辺はY軸に沿って延び、短辺はX軸に沿って延びる。こうして形成された2つの貫通孔がマニホールドMFf1およびMFf2をそれぞれなす。 Therefore, a rectangular through-hole is formed between the anodes AN1 and AN2 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the anodes AN3 and AN4 as viewed from the Z-axis direction. In any rectangle, the long side extends along the Y axis, and the short side extends along the X axis. The two through holes formed in this way form manifolds MFf1 and MFf2.
 電解質層123は、マニホールドMFf1,MFf2,MFa1,MFa2をそれぞれなす4つの貫通孔を電解質ELに形成してなる。いずれの貫通孔も、Z軸方向から眺めて長方形をなす。ただし、マニホールドMFf1およびMFf2の各々をなす長方形の長辺はY軸に沿って延びる一方、マニホールドMFa1およびMFa2の各々をなす長方形の長辺はX軸に沿って延びる。空気極層122に設けられたカソードCT1~CT4の上面は電解質層123の下面に面接触し、燃料極層124に設けられたアノードAN1~AN4の下面は電解質層123の上面に面接触する。 The electrolyte layer 123 is formed by forming, in the electrolyte EL, four through holes that respectively form manifolds MFf1, MFf2, MFa1, and MFa2. All the through holes are rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis. The upper surfaces of the cathodes CT1 to CT4 provided on the air electrode layer 122 are in surface contact with the lower surface of the electrolyte layer 123, and the lower surfaces of the anodes AN1 to AN4 provided on the fuel electrode layer 124 are in surface contact with the upper surface of the electrolyte layer 123.
 図2に戻って、集電層16aは、4つの小集電板161a~164aと単一のスペーサ18aとによって形成される。小集電板161a~164aの各々は、燃料電池セル20aおよび20bの熱応力を緩和する金属を材料とする。また、小集電板161a~164aの各々の上面または下面の面積は、燃料電池セル20aの上面または下面の面積の1/4をやや下回る。さらに、小集電板161a~164aの厚みは互いに一致する。 Referring back to FIG. 2, the current collecting layer 16a is formed by four small current collecting plates 161a to 164a and a single spacer 18a. Each of the small current collectors 161a to 164a is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b. Further, the area of the upper surface or the lower surface of each of the small current collectors 161a to 164a is slightly less than ¼ of the area of the upper surface or the lower surface of the fuel cell 20a. Furthermore, the thicknesses of the small current collectors 161a to 164a coincide with each other.
 小集電板161aは、その下面がインターコネクタCNf,CNf,…の一部と対向するように、燃料電池セル20aの上面のX軸方向正側でかつY軸方向正側の位置に配される。小集電板162aは、その下面がインターコネクタCNf,CNf,…の他の一部と対向するように、燃料電池セル20aの上面のX軸方向負側でかつY軸方向正側の位置に配される。 The small current collecting plate 161a is arranged at a position on the X axis direction positive side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface thereof faces a part of the interconnectors CNf, CNf,. The The small current collecting plate 162a is positioned at the X axis direction negative side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 162a faces another part of the interconnectors CNf, CNf,. Arranged.
 小集電板163aは、その下面がインターコネクタCNf,CNf,…のその他の一部と対向するように、燃料電池セル20aの上面のX軸方向負側でかつY軸方向負側の位置に配される。小集電板164aは、その下面がインターコネクタCNf,CNf,…のさらにその他の一部と対向するように、燃料電池セル20aの上面のX軸方向正側でかつY軸方向負側の位置に配される。 The small current collecting plate 163a is positioned at the X axis direction negative side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 163a faces the other part of the interconnectors CNf, CNf,. Arranged. The small current collecting plate 164a is positioned on the X axis direction positive side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 164a faces the other part of the interconnectors CNf, CNf,. Arranged.
 これによって、小集電板161a~164aはインターコネクタCNf,CNf,…と電気的に接続される。 Thereby, the small current collectors 161a to 164a are electrically connected to the interconnectors CNf, CNf,.
 スペーサ18aは、小集電板161a~164aの厚みと同じ厚みを有して、小集電板161a~164aが欠落する位置に配される。小集電板161a~164aが上述のように配されることから、スペーサ18aの各々の上面または下面は十字をなす。なお、スペーサ18aの厚みは、必ずしも小集電板161a~164aの厚みと同じでなくてもよい。厚みの相違は、導電性材料やシール材によって調整できるためである。 The spacer 18a has the same thickness as the small current collecting plates 161a to 164a, and is disposed at a position where the small current collecting plates 161a to 164a are missing. Since the small current collectors 161a to 164a are arranged as described above, the upper surface or the lower surface of each spacer 18a forms a cross. Note that the thickness of the spacer 18a is not necessarily the same as the thickness of the small current collectors 161a to 164a. This is because the difference in thickness can be adjusted by a conductive material or a sealing material.
 また、図3に示す集電層16bは、4つの小集電板161b~164bと単一のスペーサ18bとによって形成される。小集電板161b~164bの各々も、燃料電池セル20aおよび20bの熱応力を緩和する金属を材料とする。また、小集電板161b~164bの各々の上面または下面の面積は、燃料電池セル20bの上面または下面の面積の1/4をやや下回る。さらに、小集電板161b~164bの厚みは互いに一致する。 Further, the current collecting layer 16b shown in FIG. 3 is formed by four small current collecting plates 161b to 164b and a single spacer 18b. Each of the small current collectors 161b to 164b is also made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b. Further, the area of the upper surface or lower surface of each of the small current collectors 161b to 164b is slightly less than ¼ of the area of the upper surface or lower surface of the fuel cell 20b. Further, the thicknesses of the small current collectors 161b to 164b are equal to each other.
 小集電板161bは、その上面がインターコネクタCNa,CNa,…の一部と対向するように、燃料電池セル20bの下面のX軸方向正側でかつY軸方向正側の位置に配される。小集電板162bは、その上面がインターコネクタCNa,CNa,…の他の一部と対向するように、燃料電池セル20bの下面のX軸方向負側でかつY軸方向正側の位置に配される。 The small current collecting plate 161b is arranged at a position on the positive side in the X-axis direction and on the positive side in the Y-axis direction of the lower surface of the fuel cell 20b so that the upper surface thereof faces a part of the interconnectors CNa, CNa,. The The small current collecting plate 162b is positioned at the negative side in the X-axis direction and the positive side in the Y-axis direction on the lower surface of the fuel cell 20b so that the upper surface thereof faces the other part of the interconnectors CNa, CNa,. Arranged.
 小集電板163bは、その上面がインターコネクタCNa,CNa,…のその他の一部と対向するように、燃料電池セル20bの下面のX軸方向負側でかつY軸方向負側の位置に配される。小集電板164bは、その上面がインターコネクタCNa,CNa,…のさらにその他の一部と対向するように、燃料電池セル20bの下面のX軸方向正側でかつY軸方向負側の位置に配される。 The small current collecting plate 163b is positioned at the X-axis direction negative side and the Y-axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface thereof faces the other part of the interconnectors CNa, CNa,. Arranged. The small current collecting plate 164b is positioned on the X axis direction positive side and the Y axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface of the small current collecting plate 164b faces a further part of the interconnectors CNa, CNa,. Arranged.
 これによって、小集電板161b~164bはインターコネクタCNa,CNa,…と電気的に接続される。 Thus, the small current collectors 161b to 164b are electrically connected to the interconnectors CNa, CNa,.
 スペーサ18bは、小集電板161b~164bの厚みと同じ厚みを有して、小集電板161b~164bが欠落する位置に配される。小集電板161b~164bが上述のように配されることから、スペーサ18bの各々の上面または下面は十字をなす。 The spacer 18b has the same thickness as the small current collecting plates 161b to 164b, and is disposed at a position where the small current collecting plates 161b to 164b are missing. Since the small current collectors 161b to 164b are arranged as described above, the upper surface or the lower surface of each spacer 18b forms a cross.
 また、スペーサ18bについては、マニホールドMFf1,MFf2,MFa1およびMFa2をそれぞれなす4つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなす。ただし、マニホールドMFf1およびMFf2の各々をなす長方形の長辺はY軸に沿って延びる一方、マニホールドMFa1およびMFa2の各々をなす長方形の長辺はX軸に沿って延びる。 Further, with respect to the spacer 18b, four through holes that form the manifolds MFf1, MFf2, MFa1, and MFa2 are formed. Each through hole is rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
 図2に示す固定板14aの上面または下面は燃料電池スタック12の上面の面積とほぼ一致する面積を有し、図3に示す固定板14bの上面または下面は燃料電池スタック12の下面の面積とほぼ一致する面積を有する。 2 has an area that substantially matches the area of the upper surface of the fuel cell stack 12, and the upper surface or lower surface of the fixing plate 14b shown in FIG. 3 has an area of the lower surface of the fuel cell stack 12. It has almost the same area.
 固定板14aは、その下面の一部が集電層16aの上面と対向するように集電層16aの上面に配される。固定板14bは、その上面の一部が集電層16bの下面と対向するように集電層16bの下面に配される。ここで、固定板14aおよび14bの各々の側面は、燃料電池スタック12の側面に対して面一となる(ただし、面一であることは必須ではない)。 The fixing plate 14a is disposed on the upper surface of the current collecting layer 16a so that a part of the lower surface thereof faces the upper surface of the current collecting layer 16a. The fixing plate 14b is disposed on the lower surface of the current collecting layer 16b so that a part of the upper surface thereof faces the lower surface of the current collecting layer 16b. Here, the side surfaces of the fixing plates 14a and 14b are flush with the side surface of the fuel cell stack 12 (however, it is not essential that they be flush).
 また、固定板14bについては、マニホールドMFf1,MFf2,MFa1およびMFa2の各々をなす2つの貫通孔が設けられる。貫通孔の数は合計で8つであり、いずれも貫通孔もZ軸方向から眺めて真円をなす。 Further, two through holes forming each of the manifolds MFf1, MFf2, MFa1 and MFa2 are provided for the fixing plate 14b. The total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
 燃料電池セル20aおよび20bの間に設けられた導電層22は、燃料電池セル20aおよび20bから取り出された電流を集電層16aおよび16bに伝送する。 The conductive layer 22 provided between the fuel cells 20a and 20b transmits the current extracted from the fuel cells 20a and 20b to the current collecting layers 16a and 16b.
 導電層22もまた、4つの小導電板221~224と単一のスペーサ24とによって形成される。小導電板221~224の各々もまた、燃料電池セル20aおよび20bの熱応力を緩和する金属を材料とする。また、小導電板221~224の各々の上面または下面の面積は、燃料電池セル20a,20bの上面または下面の面積の1/4をやや下回る。さらに、小導電板221~224の厚みは互いに一致する。 The conductive layer 22 is also formed by four small conductive plates 221 to 224 and a single spacer 24. Each of the small conductive plates 221 to 224 is also made of a metal that relieves the thermal stress of the fuel cells 20a and 20b. Further, the area of the upper surface or the lower surface of each of the small conductive plates 221 to 224 is slightly less than ¼ of the area of the upper surface or the lower surface of the fuel cells 20a, 20b. Further, the thicknesses of the small conductive plates 221 to 224 coincide with each other.
 小導電板221は、その上面がインターコネクタCNa,CNa,…の一部と対向しかつその下面がインターコネクタCNf,CNf,…の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向正側でかつY軸方向正側の位置に配される。小導電板222は、その上面がインターコネクタCNa,CNa,…の他の一部と対向しかつその下面がインターコネクタCNf,CNf,…の他の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向負側でかつY軸方向正側の位置に配される。 The small conductive plate 221 has a top surface facing a part of the interconnectors CNa, CNa,... And a bottom surface facing a part of the interconnectors CNf, CNf,. Are arranged on the X axis direction positive side and the Y axis direction positive side. The small conductive plate 222 has an upper surface facing another part of the interconnectors CNa, CNa,... And a lower surface facing another part of the interconnectors CNf, CNf,. And 20b between the X axis direction negative side and the Y axis direction positive side.
 小導電板223は、その上面がインターコネクタCNa,CNa,…のその他の一部と対向しかつその下面がインターコネクタCNf,CNf,…のその他の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向負側でかつY軸方向負側の位置に配される。小導電板224は、その上面がインターコネクタCNa,CNa,…のさらにその他の一部と対向しかつその下面がインターコネクタCNf,CNf,…のさらにその他の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向正側でかつY軸方向負側の位置に配される。 The small conductive plate 223 has an upper surface facing the other part of the interconnectors CNa, CNa,... And a lower surface facing the other part of the interconnectors CNf, CNf,. And 20b between the X axis direction negative side and the Y axis direction negative side. The small conductive plate 224 has a top surface facing another part of the interconnectors CNa, CNa,... And a bottom surface facing another part of the interconnectors CNf, CNf,. It is arranged at a position between the cells 20a and 20b on the X axis direction positive side and the Y axis direction negative side.
 燃料電池セル20aに設けられたインターコネクタCNa,CNa,…は、こうして配された小導電板221~224を介して、燃料電池セル20bに設けられたインターコネクタCNf,CNf,…と電気的に接続される。 The interconnectors CNa, CNa,... Provided in the fuel cell 20a are electrically connected to the interconnectors CNf, CNf,... Provided in the fuel cell 20b via the small conductive plates 221 to 224 thus arranged. Connected.
 スペーサ24は、小導電板221~224の厚みと同じ厚みを有して、小導電板221~224が欠落する位置に配される。小導電板221~224が上述のように配されることから、スペーサ24の各々の上面または下面は十字をなす。 The spacer 24 has the same thickness as the small conductive plates 221 to 224, and is disposed at a position where the small conductive plates 221 to 224 are missing. Since the small conductive plates 221 to 224 are arranged as described above, the upper surface or the lower surface of each spacer 24 forms a cross.
 スペーサ24にはまた、マニホールドMFf1,MFf2,MFa1およびMFa2をそれぞれなす4つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなす。ただし、マニホールドMFf1およびMFf2の各々をなす長方形の長辺はY軸に沿って延びる一方、マニホールドMFa1およびMFa2の各々をなす長方形の長辺はX軸に沿って延びる。 The spacer 24 is also formed with four through holes that form the manifolds MFf1, MFf2, MFa1, and MFa2. Each through hole is rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
 マニホールドMFa1およびMFa2を流れた空気極ガスは、空気極ガス流路GRa,GRa,…を経て燃料電池スタック12の外部に排出される。また、マニホールドMFf1およびMFf2を流れた燃料極ガスは、燃料極ガス流路GRf,GRf,…を経て燃料電池スタック12の外部に排出される。 The air electrode gas flowing through the manifolds MFa1 and MFa2 is discharged to the outside of the fuel cell stack 12 through the air electrode gas flow paths GRa, GRa,. Further, the fuel electrode gas flowing through the manifolds MFf1 and MFf2 is discharged to the outside of the fuel cell stack 12 via the fuel electrode gas flow paths GRf, GRf,.
 空気極ガスは、マニホールドMFa12,MFa22および空気極ガス流路GRa,GRa,…を流れるときに、カソードCT1~CT4と接触する。また、燃料極ガスは、マニホールドMFf14,MFf24および燃料極ガス流路GRf,GRf,…を流れるときに、アノードAN1~AN4と接触する。空気極ガスおよび燃料極ガスには化学式1および2に従う化学反応が生じ、この結果、プラス電圧およびマイナス電圧が電解質ELの両面に現れる。
[化1]
1/2O+2e→O2-
[化2]
+O2-→HO+2e
When the air electrode gas flows through the manifolds MFa12, MFa22 and the air electrode gas flow paths GRa, GRa,..., The air electrode gas contacts the cathodes CT1 to CT4. Further, the fuel electrode gas contacts the anodes AN1 to AN4 when flowing through the manifolds MFf14, MFf24 and the fuel electrode gas flow paths GRf, GRf,. The air electrode gas and the fuel electrode gas undergo a chemical reaction according to the chemical formulas 1 and 2, and as a result, a positive voltage and a negative voltage appear on both surfaces of the electrolyte EL.
[Chemical 1]
1 / 2O 2 + 2e → O 2−
[Chemical 2]
H 2 + O 2− → H 2 O + 2e
 空気極ガスおよび燃料極ガスの一部は、化学反応を起こすことなく、燃料電池セル20aおよび20bの外部に排出される。空気極ガスは空気極ガス流路GRa,GRa,…を経て排出され、燃料極ガスは燃料極ガス流路GRf,GRf,…を経て排出される。排出された空気極ガスおよび燃料極ガスは互いに反応して熱を発生し、これによって熱自立が図られる。 A part of the air electrode gas and the fuel electrode gas is discharged outside the fuel cells 20a and 20b without causing a chemical reaction. The air electrode gas is discharged through the air electrode gas flow paths GRa, GRa,..., And the fuel electrode gas is discharged through the fuel electrode gas flow paths GRf, GRf,. The discharged air electrode gas and fuel electrode gas react with each other to generate heat, thereby achieving heat independence.
 セパレータSP1~SP2,SP4~SP5の各々の材料は、たとえば、添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)、或いは添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)である。 The material of each of the separators SP1 to SP2 and SP4 to SP5 is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) added in an amount of 3 mol%, or added. Zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ) stabilized with an amount of 12 mol% ceria (CeO 2 ).
 また、カソードCT1~CT4の各々は導電性セラミックからなり、より具体的には、ABOまたはA2BO(但し、Aは、Ca,Sr,Ba,La,PrおよびYの少なくとも1つであり、Bは、Ni,Ti,V,Cr,Mn,Fe,Co,Mo,Ru,Rh,PdおよびReの少なくとも1つ)で表されるペロブスカイト型酸化物を材料とする。 Each of the cathodes CT1 to CT4 is made of a conductive ceramic, more specifically, ABO 3 or A2BO 4 (where A is at least one of Ca, Sr, Ba, La, Pr and Y, B is made of a perovskite oxide represented by at least one of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re).
 さらに、アノードAN1~AN4の各々は多孔質のサーメットからなり、より具体的には、酸化ニッケル,Niを含む酸化イットリウム安定化ジルコニア,Niを含む酸化カルシウム安定化ジルコニア,Niを含む酸化スカンジウム安定化ジルコニア,Niを含む酸化セリウム安定化ジルコニア,Niを含む酸化チタン,Niを含むアルミナ,Niを含むマグネシア,Niを含むイットリア,Niを含む酸化ニオブ,Niを含む酸化タンタルを材料とする。 Further, each of the anodes AN1 to AN4 is composed of a porous cermet, and more specifically, nickel oxide, yttrium oxide stabilized zirconia containing Ni, calcium oxide stabilized zirconia containing Ni, and scandium oxide stabilized with Ni. The materials are zirconia, cerium oxide stabilized zirconia containing Ni, titanium oxide containing Ni, alumina containing Ni, magnesia containing Ni, yttria containing Ni, niobium oxide containing Ni, and tantalum oxide containing Ni.
 これを踏まえて、図6に示すように、空気極側導体層121に設けられたインターコネクタCNa,CNa,…の各々は、Z軸方向に積層されたコネクタ層CL1aおよびCL2aによって形成される。このうち、コネクタ層CL1aは導電性セラミックスからなり、コネクタ層CL2aは金属からなる。また、コネクタ層CL2aは、コネクタ層CL1aよりもカソードCT1~CT4側の位置に配される。より詳しくは、コネクタ層CL2aの上面はカソードCT1~CT4のいずれか1つの下面に面接触し、コネクタ層CL2aの下面はコネクタ層CL1aの上面に面接触する。 Based on this, as shown in FIG. 6, each of the interconnectors CNa, CNa,... Provided in the air electrode side conductor layer 121 is formed by connector layers CL1a and CL2a stacked in the Z-axis direction. Of these, the connector layer CL1a is made of conductive ceramics, and the connector layer CL2a is made of metal. The connector layer CL2a is disposed at a position closer to the cathodes CT1 to CT4 than the connector layer CL1a. More specifically, the upper surface of the connector layer CL2a is in surface contact with the lower surface of any one of the cathodes CT1 to CT4, and the lower surface of the connector layer CL2a is in surface contact with the upper surface of the connector layer CL1a.
 これに対して、燃料極側導体層125に設けられたインターコネクタCNf,CNf,…の各々は、Z軸方向に積層されたコネクタ層CL0f,CL1fおよびCL2fによって形成される。このうち、コネクタ層CL0fは金属からなり、コネクタ層CL1fは導電性セラミックスからなり、コネクタ層CL2fは金属からなる。また、コネクタ層CL2fはコネクタ層CL1fよりもアノードAN1~AN4側の位置に配され、コネクタ層CL1fはコネクタ層CL0fよりもアノードAN1~AN4側の位置に配される。 In contrast, each of the interconnectors CNf, CNf,... Provided in the fuel electrode side conductor layer 125 is formed by connector layers CL0f, CL1f, and CL2f stacked in the Z-axis direction. Among these, the connector layer CL0f is made of metal, the connector layer CL1f is made of conductive ceramics, and the connector layer CL2f is made of metal. The connector layer CL2f is arranged at a position closer to the anodes AN1 to AN4 than the connector layer CL1f, and the connector layer CL1f is arranged at a position closer to the anodes AN1 to AN4 than the connector layer CL0f.
 より詳しくは、コネクタ層CL2fの下面はアノードAN1~AN4のいずれか1つの上面に面接触し、コネクタ層CL1fの下面はコネクタ層CL2fの上面に面接触し、コネクタ層CL0fの下面はコネクタ層CL1fの上面に面接触する。 More specifically, the lower surface of connector layer CL2f is in surface contact with the upper surface of any one of anodes AN1-AN4, the lower surface of connector layer CL1f is in surface contact with the upper surface of connector layer CL2f, and the lower surface of connector layer CL0f is the connector layer CL1f. Surface contact with the top surface of
 セパレータSP1は、厳密には、空気極ガス流路GRa,GRa,…が存在しない平坦な部分セパレータSP1aと、空気極ガス流路GRa,GRa,…によって短冊状に分割された部分セパレータSP1bとによって形成される。コネクタ層CL1aは部分セパレータSP1aおよびSP1bを跨いて配され、コネクタ層CL2aは部分セパレータSP1bに配される。 Strictly speaking, the separator SP1 is composed of a flat partial separator SP1a without the air electrode gas flow paths GRa, GRa,... And a partial separator SP1b divided into strips by the air electrode gas flow paths GRa, GRa,. It is formed. The connector layer CL1a is disposed across the partial separators SP1a and SP1b, and the connector layer CL2a is disposed on the partial separator SP1b.
 同様に、セパレータSP5は、厳密には、燃料極ガス流路GRf,GRf,…が存在しない平坦な部分セパレータSP5aと、燃料極ガス流路GRf,GRf,…によって短冊状に分割された部分セパレータSP5bとによって形成される。コネクタ層CL0fは部分セパレータSP5aおよびSP5bを跨いて配され、コネクタ層CL1fおよびCL2fは部分セパレータSP5bに配される。 Similarly, strictly speaking, the separator SP5 includes a flat partial separator SP5a in which the fuel electrode gas flow paths GRf, GRf,... Do not exist, and a partial separator divided into strips by the fuel electrode gas flow paths GRf, GRf,. And SP5b. The connector layer CL0f is disposed across the partial separators SP5a and SP5b, and the connector layers CL1f and CL2f are disposed on the partial separator SP5b.
 コネクタ層CL1aおよびCL1fの各々をなす導電性セラミックスは、より具体的には、ABOまたはABO(ただし、Aは、Ca,Sr,Ba,La,PrおよびYの少なくとも1つであり、Bは、Ni,Ti,V,Cr,Mn,Fe,Co,Mo,Ru,Rh,PdおよびReの少なくとも1つ)で表されるペロブスカイト型酸化物を材料とする。ただし、コネクタ層CL1aをなす導電性セラミックスの種類は、カソードCT1~CT4をなす導電性セラミックスの種類と異なる(異種材料の意味については後述)。 More specifically, the conductive ceramic forming each of the connector layers CL1a and CL1f is ABO 3 or A 2 BO 4 (where A is at least one of Ca, Sr, Ba, La, Pr and Y) , B is made of a perovskite oxide represented by Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re). However, the type of conductive ceramic forming the connector layer CL1a is different from the type of conductive ceramic forming the cathodes CT1 to CT4 (the meaning of different materials will be described later).
 また、コネクタ層CL2fおよびCL2aの各々の厚みは30μm以下であり、コネクタ層CL2fおよびCL2aの各々をなす金属はAg,Pd,Pt,Fe,Cr,Co,Cu,Ru,Rh,ReおよびAuの少なくとも1つを含む。コネクタ層CL0fをなす金属もまた、Ag,Pd,Pt,Fe,Cr,Co,Cu,Ru,Rh,ReおよびAuの少なくとも1つを含む。 The thickness of each of the connector layers CL2f and CL2a is 30 μm or less, and the metal forming each of the connector layers CL2f and CL2a is Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au. Including at least one. The metal forming the connector layer CL0f also includes at least one of Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au.
 このように、カソードCT1~CT4側に注目すると、コネクタ層CL1aをなす導電性セラミックスの種類は、カソードCT1~CT4をなす導電性セラミックスの種類と異なる。これを踏まえて、異種の導電性セラミックスの間に、金属からなるコネクタ層CL2aが配される。これによって、異種の導電性セラミックス間での元素拡散が抑制され、ひいては導電性ないし触媒活性の低下が抑制される。 Thus, paying attention to the cathodes CT1 to CT4, the type of conductive ceramics forming the connector layer CL1a is different from the type of conductive ceramics forming the cathodes CT1 to CT4. Based on this, a connector layer CL2a made of metal is disposed between different kinds of conductive ceramics. Thereby, element diffusion between different kinds of conductive ceramics is suppressed, and as a result, a decrease in conductivity or catalytic activity is suppressed.
 また、アノードAN1~AN4側に注目すると、導電性セラミックスからなるコネクタ層CL1fと多孔質サーメットからなるアノードAN1~AN4との間に、金属からなるコネクタ層CL2fが配される。これによって、コネクタ層CL1fをなす導電性セラミックスが発電時に還元雰囲気に晒される懸念が軽減され、導電性セラミックスの還元分解に起因するセル特性の劣化を抑制することができる。 Further, paying attention to the anodes AN1 to AN4, a connector layer CL2f made of metal is arranged between the connector layer CL1f made of conductive ceramics and the anode AN1 to AN4 made of porous cermet. As a result, the concern that the conductive ceramics forming the connector layer CL1f are exposed to a reducing atmosphere during power generation is reduced, and deterioration of cell characteristics due to reductive decomposition of the conductive ceramics can be suppressed.
 さらに、コネクタ層CL2aおよびCL2fの各々の厚みを30μm以下とすることで、コネクタ層CL2a,CL2fの熱膨張量とセパレータSP1,SP5の熱膨張量との相違による応力が抑制される。これによって、クラックやデラミネーションに起因してヒートサイクル時にセルが物理的に破壊される懸念が軽減される。 Further, by setting the thickness of each of the connector layers CL2a and CL2f to 30 μm or less, the stress due to the difference between the thermal expansion amounts of the connector layers CL2a and CL2f and the thermal expansion amounts of the separators SP1 and SP5 is suppressed. This reduces the concern that the cell is physically destroyed during the heat cycle due to cracks and delamination.
 参考までに、実験によって得られたビア厚み(=コネクタ層CL2aおよびCL2fの各々の厚み)とクラックの発生率との関係を、表1に示す。表1によれば、ヒートサイクル時のクラック発生率は、200μmのビア厚みに対して98%を示し、120μmのビア厚みに対して90%を示し、60μmのビア厚みに対して40%を示した。これに対して、ビア厚みを30μm以下にすると、ヒートサイクル時のクラック発生率は0%であった。これより、ビア厚みは30μm以下とするのが好ましいことが分かる。
Figure JPOXMLDOC01-appb-T000001
For reference, Table 1 shows the relationship between the via thickness (= the thickness of each of the connector layers CL2a and CL2f) obtained by the experiment and the occurrence rate of cracks. According to Table 1, the crack generation rate during the heat cycle is 98% for a via thickness of 200 μm, 90% for a via thickness of 120 μm, and 40% for a via thickness of 60 μm. It was. On the other hand, when the via thickness was 30 μm or less, the crack occurrence rate during the heat cycle was 0%. This shows that the via thickness is preferably 30 μm or less.
Figure JPOXMLDOC01-appb-T000001
 また、コネクタ層CL2aをなす金属は、Ag,Pd,Pt,Fe,Cr,Co,Cu,Ru,Rh,ReおよびAuの少なくとも1つを含むため、異種の導電性セラミックス間での元素拡散が抑制され、ひいては導電性ないし活性の低下が抑制される。 Further, since the metal forming the connector layer CL2a includes at least one of Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au, element diffusion between different types of conductive ceramics can be achieved. It is suppressed, and as a result, a decrease in conductivity or activity is suppressed.
 さらに、セパレータSP1およびSP5の各々の材料は、たとえば、添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)、或いは添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)である。 Furthermore, the material of each of the separators SP1 and SP5 is, for example, zirconia (ZrO 2 ) (yttria stabilized zirconia: YSZ) stabilized with yttria (Y 2 O 3 ) with an addition amount of 3 mol%, or an addition amount of 12 Zirconia (ZrO 2 ) stabilized with mol% ceria (CeO 2 ) (ceria stabilized zirconia: CeSZ).
 これを踏まえて、サーメットおよび導電性セラミックスの材料を上述のものとすることで、サーメットまたは導電性セラミックスとセパレータとの間で熱膨張係数が近くなる。この結果、熱膨張差によるクラックやデラミネーションの発生が抑制され、ひいては出力特性の低下が抑制される。 Based on this, by making the materials of the cermet and the conductive ceramic as described above, the thermal expansion coefficient becomes close between the cermet or the conductive ceramic and the separator. As a result, the occurrence of cracks and delamination due to the difference in thermal expansion is suppressed, and consequently the deterioration of the output characteristics is suppressed.
 コネクタ層CL1aをなす導電性セラミックスの材料の種類はカソードCT1~CT4をなす導電性セラミックスの材料の種類と異なるところ、この“異種材料”の意味は以下のとおりである。 The type of the conductive ceramic material forming the connector layer CL1a is different from the type of the conductive ceramic material forming the cathodes CT1 to CT4, and the meaning of the “foreign material” is as follows.
 コネクタ層CL1aまたはカソードCT1~CT4をなす導電性セラミックスは、さらに具体的には、LaSrCoO,LaSrCoFeO,MnCoO,SmSrCoO,LaCaMnO,LaCaCoO,LaCaCoFeO,LaNiFeO,(LaSr)NiOなどを基本材料とする。 Conductive ceramic constituting the connector layer CL1a or cathode CT1 ~ CT4 is, more specifically, LaSrCoO 3, LaSrCoFeO 3, MnCoO 3, SmSrCoO 3, LaCaMnO 3, LaCaCoO 3, LaCaCoFeO 3, LaNiFeO 3, (LaSr) 2 NiO 4 is the basic material.
 ただし、化学式(=ABOまたはABO)をなすAサイトおよびBサイトの少なくとも一方が異なる材料が接触した状態で高温になると、Aサイト同士,Bサイト同士,またはAサイトおよびBサイトを跨いで相互に拡散が起こる。この際に、所定の組成で作製された結晶の組成ズレにより、導電性の低下及び触媒活性の低下による出力特性の低下が起こる。 However, if at least one of the A site and B site forming the chemical formula (= ABO 3 or A 2 BO 4 ) comes into contact with different materials, the A site, the B sites, or the A site and the B site are changed. Spreading between each other across the bridge. At this time, due to the composition deviation of the crystal produced with a predetermined composition, the output characteristics are lowered due to the decrease in conductivity and the decrease in catalyst activity.
 金属からなるコネクタ層CL2aをカソードCT1~CT4とコネクタ層CL1aとの間に配するのは、このような触媒活性の低下を抑制するためである。したがって、AサイトおよびBサイトの少なくとも一方が異なる材料が“異種材料”となる。 The reason why the connector layer CL2a made of metal is disposed between the cathodes CT1 to CT4 and the connector layer CL1a is to suppress such a decrease in catalytic activity. Therefore, a material in which at least one of the A site and the B site is different is a “different material”.
 コネクタ層CL1aをなす導電性セラミックスの材料としては、たとえばアルカリ土類金属を添加したランタンクロマイト(LaCrO),ランタンフェレート(LaFeO),ランタンストロンチウムマンガナイト((LaSr)MnO)が採用される。また、カソードCT1~CT4の材料としては、たとえばPrCoO系酸化物,LaCoO系酸化物,LaMnO系酸化物が採用される。LaMnO系酸化物の具体例としては、たとえば、La0.8Sr0.2MnO(通称:LSM)や、La0.6Ca0.4MnO(通称:LCM)が挙げられる。
[変形例]
As a material for the conductive ceramic forming the connector layer CL1a, for example, lanthanum chromite (LaCrO 3 ), lanthanum ferrate (LaFeO 3 ), or lanthanum strontium manganite ((LaSr) MnO 3 ) added with an alkaline earth metal is employed. The As materials for the cathodes CT1 to CT4, for example, PrCoO 3 -based oxides, LaCoO 3 -based oxides, LaMnO 3 -based oxides are employed. Specific examples of the LaMnO 3 -based oxide include La 0.8 Sr 0.2 MnO 3 (common name: LSM) and La 0.6 Ca 0.4 MnO 3 (common name: LCM).
[Modification]
 なお、上述の実施例では、Z軸方向から眺めたとき、コネクタ層CL2fの外径はコネクタ層CL1fの外径と一致し、コネクタ層CL2aの外径はコネクタ層CL1aの外径と一致する。 In the above-described embodiment, when viewed from the Z-axis direction, the outer diameter of the connector layer CL2f matches the outer diameter of the connector layer CL1f, and the outer diameter of the connector layer CL2a matches the outer diameter of the connector layer CL1a.
 しかし、コネクタ層CL2fの外径は、図7に示すようにコネクタ層CL0fおよびCL1fの各々の外径よりも大きくてもよく、図8に示すようにコネクタ層CL0fおよびCL1fの各々の外径よりも小さくてもよい。同様に、コネクタ層CL2aの外径は、図9に示すようにコネクタ層CL1aの外径よりも大きくてもよく、図10に示すようにコネクタ層CL1aの外径よりも小さくてもよい。 However, the outer diameter of the connector layer CL2f may be larger than the outer diameter of each of the connector layers CL0f and CL1f as shown in FIG. 7, and the outer diameter of each of the connector layers CL0f and CL1f as shown in FIG. May be small. Similarly, the outer diameter of the connector layer CL2a may be larger than the outer diameter of the connector layer CL1a as shown in FIG. 9, or may be smaller than the outer diameter of the connector layer CL1a as shown in FIG.
 さらに、上述の実施例では、コネクタ層CL2fの下面がアノードAN1~AN4の上面に面接触され、コネクタ層CL2aの上面がカソードCT1~CT4の下面に面接触される。 Furthermore, in the above-described embodiment, the lower surface of the connector layer CL2f is in surface contact with the upper surfaces of the anodes AN1 to AN4, and the upper surface of the connector layer CL2a is in surface contact with the lower surfaces of the cathodes CT1 to CT4.
 しかし、図11に示すように、アノードAN1~AN4の材料と同じ材料からなるコネクタ層CL3fをインターコネクタCNfに追加し、コネクタ層CL2fをコネクタ層CL3fを介してアノードAN1~AN4に接続するようにしてもよい。 However, as shown in FIG. 11, a connector layer CL3f made of the same material as the anodes AN1 to AN4 is added to the interconnector CNf, and the connector layer CL2f is connected to the anodes AN1 to AN4 via the connector layer CL3f. May be.
 同様に、図12に示すように、カソードCT1~CT4の材料と同じ材料からなるコネクタ層CL3aをインターコネクタCNaに追加し、コネクタ層CL2aをコネクタ層CL3aを介してカソードCT1~CT4に接続するようにしてもよい。 Similarly, as shown in FIG. 12, a connector layer CL3a made of the same material as the cathodes CT1 to CT4 is added to the interconnector CNa, and the connector layer CL2a is connected to the cathodes CT1 to CT4 via the connector layer CL3a. It may be.
 図11の場合、コネクタ層CL3fの上面がコネクタ層CL2fの下面に面接触し、コネクタ層CL3fの下面がアノードAN1~AN4の上面に面接触する。図12の場合、コネクタ層CL3aの下面がコネクタ層CL2aの上面に面接触し、コネクタ層CL3aの上面がカソードCT1~CT4の下面に面接触する。コネクタ層CL2fの配置の自由度はコネクタ層CL3fを追加することで向上し、コネクタ層CL2aの配置の自由度はコネクタ層CL3aを追加することで向上する。 In the case of FIG. 11, the upper surface of the connector layer CL3f is in surface contact with the lower surface of the connector layer CL2f, and the lower surface of the connector layer CL3f is in surface contact with the upper surfaces of the anodes AN1 to AN4. In the case of FIG. 12, the lower surface of the connector layer CL3a is in surface contact with the upper surface of the connector layer CL2a, and the upper surface of the connector layer CL3a is in surface contact with the lower surfaces of the cathodes CT1 to CT4. The degree of freedom of arrangement of the connector layer CL2f is improved by adding the connector layer CL3f, and the degree of freedom of arrangement of the connector layer CL2a is improved by adding the connector layer CL3a.
 なお、図11および図12においても、Z軸方向から眺めたときの外径は、コネクタ層CLf0~CLf3の間で一致し、コネクタ層CLa1~CLa3の間で一致する。しかし、Z軸方向から眺めたときの外径は、コネクタ層CLf0~CLf3の間で異なり、或いはコネクタ層CLa1~CLa3の間で異なってもよい。 11 and 12, the outer diameters when viewed from the Z-axis direction match between the connector layers CLf0 to CLf3 and match between the connector layers CLa1 to CLa3. However, the outer diameter when viewed from the Z-axis direction may be different between the connector layers CLf0 to CLf3, or may be different between the connector layers CLa1 to CLa3.
 なお、上述した複数の変形例の構成は、矛盾しない範囲で適宜組み合わせることができることは言うまでもない。 Needless to say, the configurations of the plurality of modifications described above can be appropriately combined within a consistent range.
 10 …燃料電池ユニット
 12 …燃料電池スタック
 16a,16b …集電層
 20a,20b …燃料電池セル
 22 …導電層
 121 …空気極側導体層
 122 …空気極層
 123 …電解質層
 124 …燃料極層
 125 …燃料極側導体層
 SP1~SP2,SP4~SP5 …セパレータ
 AN1~AN4 …アノード(空気極,第1電極)
 CT1~CT4 …カソード(空気極,第2電極)
 VHa,VFf …ビアホール
 CNa,CNf …インターコネクタ
 CL1a,CL1f …コネクタ層(第1コネクタ層)
 CL2a,CL2f …コネクタ層(第2コネクタ層)
 CL3a,CL3f …コネクタ層(第3コネクタ層)
 MFa1,MFa2,MFf1,MFf2 …マニホールド
DESCRIPTION OF SYMBOLS 10 ... Fuel cell unit 12 ... Fuel cell stack 16a, 16b ... Current collection layer 20a, 20b ... Fuel cell 22 ... Conductive layer 121 ... Air electrode side conductor layer 122 ... Air electrode layer 123 ... Electrolyte layer 124 ... Fuel electrode layer 125 ... Fuel electrode side conductor layer SP1 to SP2, SP4 to SP5 ... Separator AN1 to AN4 ... Anode (air electrode, first electrode)
CT1 to CT4 ... Cathode (air electrode, second electrode)
VHa, VFf ... via hole CNa, CNf ... interconnector CL1a, CL1f ... connector layer (first connector layer)
CL2a, CL2f ... Connector layer (second connector layer)
CL3a, CL3f ... Connector layer (third connector layer)
MFa1, MFa2, MFf1, MFf2 ... manifold

Claims (8)

  1.  電解質層と、
     前記電解質層の一方主面側の位置に配され、導電性セラミックスからなる第1電極と、
     前記電解質層の他方主面側の位置に配された第2電極と、
     前記電解質層とともに前記第1電極を挟む位置に配され、前記第1電極に達するビアホールを有するセパレータと、
     前記ビアホールに設けられて前記第1電極に接続されたインターコネクタと、
    を有し、
     前記インターコネクタは、前記第1電極をなす導電性セラミックスの種類と異なる種類の導電性セラミックスからなる第1コネクタ層と、金属からなり前記第1コネクタ層よりも前記第1電極側の位置に配された第2コネクタ層とを含む、固体酸化物形燃料電池。
    An electrolyte layer;
    A first electrode made of conductive ceramics, disposed at a position on one main surface side of the electrolyte layer;
    A second electrode disposed at a position on the other main surface side of the electrolyte layer;
    A separator that is disposed at a position sandwiching the first electrode together with the electrolyte layer and has a via hole reaching the first electrode;
    An interconnector provided in the via hole and connected to the first electrode;
    Have
    The interconnector includes a first connector layer made of a conductive ceramic of a type different from that of the conductive ceramic forming the first electrode, and a metal made of metal and disposed at a position closer to the first electrode than the first connector layer. A solid oxide fuel cell comprising a second connector layer formed.
  2.  前記インターコネクタは、前記第1電極をなす導電性セラミックの種類と同じ種類の導電性セラミックスからなり、前記第2コネクタ層よりも前記第1電極側の位置に配された第3コネクタ層をさらに含む、請求項1記載の固体酸化物形燃料電池。 The interconnector is made of the same type of conductive ceramic as that of the conductive ceramic forming the first electrode, and further includes a third connector layer disposed at a position closer to the first electrode than the second connector layer. The solid oxide fuel cell according to claim 1, comprising:
  3.  電解質層と、
     前記電解質層の一方主面側の位置に配され、サーメットからなる燃料極と、
     前記電解質層の他方主面側の位置に配された空気極と、
     前記電解質層と協働して前記燃料極を挟む位置に配され、前記燃料極に達するビアホールを有するセパレータと、
     前記ビアホールに設けられて前記燃料極に接続されたインターコネクタと、
    を有し、
     前記インターコネクタは、導電性セラミックスからなる第1コネクタ層と、金属からなり前記第1コネクタ層よりも前記燃料極側の位置に配された第2コネクタ層とを含む、固体酸化物形燃料電池。
    An electrolyte layer;
    A fuel electrode made of cermet, arranged at a position on one main surface side of the electrolyte layer;
    An air electrode disposed at a position on the other main surface side of the electrolyte layer;
    A separator having a via hole that is disposed at a position sandwiching the fuel electrode in cooperation with the electrolyte layer and reaches the fuel electrode;
    An interconnector provided in the via hole and connected to the fuel electrode;
    Have
    The interconnector includes a first connector layer made of conductive ceramics and a second connector layer made of metal and disposed at a position closer to the fuel electrode than the first connector layer. .
  4.  前記インターコネクタは、前記燃料極をなすサーメットと同じ種類のサーメットからなり、前記第2コネクタ層よりも前記燃料極側の位置に配された第3コネクタ層をさらに含む、請求項3記載の固体酸化物形燃料電池。 The solid interconnect according to claim 3, wherein the interconnector includes a cermet of the same type as the cermet forming the fuel electrode, and further includes a third connector layer disposed at a position closer to the fuel electrode than the second connector layer. Oxide fuel cell.
  5.  前記サーメットの材料は、酸化ニッケル、Niを含む酸化イットリウム安定化ジルコニア、前記Niを含む酸化カルシウム安定化ジルコニア、前記Niを含む酸化スカンジウム安定化ジルコニア、前記Niを含む酸化セリウム安定化ジルコニア、前記Niを含む酸化チタン、前記Niを含むアルミナ、前記Niを含むマグネシア、前記Niを含むイットリア、前記Niを含む酸化ニオブ、または前記Niを含む酸化タンタルである、請求項3または4記載の固体酸化物形燃料電池。 The cermet material is nickel oxide, yttrium oxide stabilized zirconia containing Ni, calcium oxide stabilized zirconia containing Ni, scandium oxide stabilized zirconia containing Ni, cerium oxide stabilized zirconia containing Ni, Ni 5. The solid oxide according to claim 3, which is titanium oxide containing Ni, alumina containing Ni, magnesia containing Ni, yttria containing Ni, niobium oxide containing Ni, or tantalum oxide containing Ni. Fuel cell.
  6.  前記第2コネクタ層の厚みは30μm以下である、請求項1ないし5のいずれかに記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to any one of claims 1 to 5, wherein the thickness of the second connector layer is 30 µm or less.
  7.  前記第2コネクタ層をなす金属は、Ag,Pd,Pt,Fe,Cr,Co,Cu,Ru,Rh,ReおよびAuの少なくとも1つを含む、請求項1ないし6のいずれかに記載の固体酸化物形燃料電池。 7. The solid according to claim 1, wherein the metal forming the second connector layer includes at least one of Ag, Pd, Pt, Fe, Cr, Co, Cu, Ru, Rh, Re, and Au. Oxide fuel cell.
  8.  前記導電性セラミックスの材料は、ABO3(但し、Aは、Ca,Sr,Ba,La,PrおよびYの少なくとも1つであり、Bは、Ni,Ti,V,Cr,Mn,Fe,Co,Mo,Ru,Rh,PdおよびReの少なくとも1つ)で表されるペロブスカイト型酸化物である、請求項1ないし7のいずれかに記載の固体酸化物形燃料電池。 The conductive ceramic material is ABO3 (where A is at least one of Ca, Sr, Ba, La, Pr and Y, and B is Ni, Ti, V, Cr, Mn, Fe, Co, The solid oxide fuel cell according to any one of claims 1 to 7, which is a perovskite oxide represented by at least one of Mo, Ru, Rh, Pd, and Re.
PCT/JP2016/067582 2015-06-22 2016-06-13 Solid oxide fuel cell WO2016208449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017525227A JP6369633B2 (en) 2015-06-22 2016-06-13 Solid oxide fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-124956 2015-06-22
JP2015124956 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016208449A1 true WO2016208449A1 (en) 2016-12-29

Family

ID=57585442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067582 WO2016208449A1 (en) 2015-06-22 2016-06-13 Solid oxide fuel cell

Country Status (2)

Country Link
JP (1) JP6369633B2 (en)
WO (1) WO2016208449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023096A (en) * 2017-12-07 2018-05-11 北京理工大学 The preparation method of solid oxide fuel cell densification double-layer ceramic connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133293A (en) * 1998-09-16 2000-05-12 Sof Co Connecting hole filling type connector for solid oxide fuel cell
JP2003132914A (en) * 2001-10-19 2003-05-09 Mcdermott Technol Inc Interconnect of high performance ceramic fuel cell having integrated flowpath and making method for the same
JP2008053044A (en) * 2006-08-24 2008-03-06 Ngk Spark Plug Co Ltd Solid oxide fuel cell and its manufacturing method
WO2012132893A1 (en) * 2011-03-30 2012-10-04 株式会社村田製作所 Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133293A (en) * 1998-09-16 2000-05-12 Sof Co Connecting hole filling type connector for solid oxide fuel cell
JP2003132914A (en) * 2001-10-19 2003-05-09 Mcdermott Technol Inc Interconnect of high performance ceramic fuel cell having integrated flowpath and making method for the same
JP2008053044A (en) * 2006-08-24 2008-03-06 Ngk Spark Plug Co Ltd Solid oxide fuel cell and its manufacturing method
WO2012132893A1 (en) * 2011-03-30 2012-10-04 株式会社村田製作所 Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023096A (en) * 2017-12-07 2018-05-11 北京理工大学 The preparation method of solid oxide fuel cell densification double-layer ceramic connector

Also Published As

Publication number Publication date
JP6369633B2 (en) 2018-08-08
JPWO2016208449A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP5767297B2 (en) Stack structure for stacked solid oxide fuel cell, stacked solid oxide fuel cell, and manufacturing method thereof
US20030175573A1 (en) Single cell and stack structure for solid oxide fuel cell stacks
JP5652545B2 (en) Fuel cell
US9653739B2 (en) Electrical connection material for solid oxide fuel cell, solid oxide fuel cell, solid oxide fuel cell module, and method for manufacturing solid oxide fuel cell
WO2002035628A1 (en) Fuel cells
US8304136B2 (en) Solid oxide fuel cell and solid oxide fuel cell bundle
US8252366B2 (en) Method for making toughened electrode-supported ceramic fuel cells
JP5079991B2 (en) Fuel cell and fuel cell
JP6389133B2 (en) Fuel cell stack
JP5026017B2 (en) Flat type solid oxide fuel cell separator
US9722259B2 (en) Ceramic substrate for electrochemical element, manufacturing method therefore, fuel cell, and fuel cell stack
JP6369633B2 (en) Solid oxide fuel cell
WO2012132894A1 (en) Fuel cell
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JP6335267B2 (en) Fuel cell stack
CN111244498A (en) Fuel cell and fuel cell stack
JP7121083B2 (en) Cathode materials, electrochemical reaction single cells and electrochemical reaction cell stacks
JP7132982B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP2005166562A (en) Solid oxide fuel cell
WO2012132893A1 (en) Fuel cell
JPH11329462A (en) Solid electrolytic fuel cell
JP5256598B2 (en) Single-chamber solid oxide fuel cell and its stack structure
JPH0945337A (en) Solid electrolyte fuel cell element
JP2016024951A (en) Solid-state oxide fuel battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814220

Country of ref document: EP

Kind code of ref document: A1