JP4508340B2 - Manufacturing method of solid electrolyte fuel cell - Google Patents

Manufacturing method of solid electrolyte fuel cell Download PDF

Info

Publication number
JP4508340B2
JP4508340B2 JP2000046429A JP2000046429A JP4508340B2 JP 4508340 B2 JP4508340 B2 JP 4508340B2 JP 2000046429 A JP2000046429 A JP 2000046429A JP 2000046429 A JP2000046429 A JP 2000046429A JP 4508340 B2 JP4508340 B2 JP 4508340B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
molded body
air electrode
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000046429A
Other languages
Japanese (ja)
Other versions
JP2001236969A (en
Inventor
健一 田島
和博 西薗
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000046429A priority Critical patent/JP4508340B2/en
Publication of JP2001236969A publication Critical patent/JP2001236969A/en
Application granted granted Critical
Publication of JP4508340B2 publication Critical patent/JP4508340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気極の表面に固体電解質、燃料極、集電体順次積層してなる固体電解質燃料電池セルの法に関するものである。
【0002】
【従来技術】
従来より、固体電解質燃料電池はその作動温度が900〜1100℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に固体電解質燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度は高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。両形状の固体電解質燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0004】
円筒型燃料電池の単セルは、例えば、図6に示したように開気孔率30〜40%程度のLaMnO3系材料からなる多孔性の空気極支持管2を形成し、その表面にY23安定化ZrO2からなる固体電解質3を被覆し、さらにこの表面に多孔性のNi−ZrO2の燃料極4を設けて構成されている。
【0005】
燃料電池のモジュールにおいては、各単セルはLaCrO3系の集電体(インターコネクタ)5を介して接続される。発電は、空気極支持管2内部に空気(酸素)6を、外部に燃料(水素)7を流し、900〜1100℃の温度で行われる。また空気極としての機能を合わせ持つ空気極支持管2材料としては、例えば、LaをCaで20原子%又はSrで10〜15原子%置換した固溶体材料が用いられている。
【0006】
近年ではセルの製造工程を簡略化し且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒状の空気極成形体に固体電解質成形体及び集電体成形体をロール状に巻き付けて同時焼成を行い、その後固体電解質表面に燃料極を形成する方法である。またプロセス簡略化のために、固体電解質成形体の表面にさらに燃料極成形体を積層して、空気極、固体電解質、燃料極、集電体を同時焼成する共焼結法も提案されている。
【0007】
この共焼結法は非常に簡単なプロセスで製造工程数も少なく、セルの製造時の歩留まり向上、コスト低減に有利である。このような共焼結法による燃料電池セルでは、Y安定化または部分安定化ZrOからなる固体電解質を用い、この固体電解質に熱膨張係数を合致させる等のため、空気極材料として、LaMnOからなるペロブスカイト型酸化物のLaの一部をYおよびCaで置換したものが用いられている(特開平10−162847号公報等参照)。また、集電体材料として、LaCrO系材料が用いられている。
【0008】
【発明が解決しようとする課題】
しかしながら、上述した共焼結法を用いて円筒型燃料電池セルを作製すると、共焼結の際に、空気極の構成成分であるMn元素が、固体電解質燃料電池セルの周囲の雰囲気中に蒸発し、この蒸発したMnが燃料極内部に拡散し、その結果、燃料極中のMn量が増加し、燃料極サイトの分極値およびセル構成成分の実抵抗値が高くなり、その結果初期における出力密度が低いという問題があった。
【0009】
特に、従来から、LaCrO3系材料は難焼結性であることが知られているが、上述した共焼結法を用いて燃料電池セルを作製する際に、LaCrO3系材料からなる集電体を焼結させるために焼成温度を高くしたり、あるいは長時間焼成すると、空気極中のMnが雰囲気中に拡散し、このMnが燃料極表面から内部へ拡散し易くなり、燃料極サイトの分極値が増大し、初期における出力密度が低いという問題があった。
【0010】
従って、燃料極内部へのMnの拡散を抑制するためには、焼成温度を低下させ、短時間で焼成する必要があるが、このような低温かつ短時間の焼成では、集電体を充分緻密化できず、あるいは固体電解質と空気極界面の密着強度が弱く、固体電解質燃料電池セルが作動する900℃〜1100℃の使用環境では耐久性に劣り、経時的に出力性能が低下し、さらには1000℃から室温まで冷却させると、固体電解質と空気極界面にクラックが発生し、その後に再度発電させた場合には出力性能が著しく低下するという問題があった。
【0011】
従って、コスト低減に優れる共焼結法で作製された燃料電池セルにおいて、発電性能に優れ、同時に耐久性を満足することは非常に困難であり、そのことが固体電解質燃料電池を実用化する上で大きな障害になっていた。
【0012】
本発明は、出力性能に優れるとともに、耐久性を向上できる固体電解質燃料電池セルの法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の固体電解質形燃料電池セルの製法は、La及びMnを含有するペロブスカイト型酸化物からなる空気極の表面に、3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質、燃料極、集電体を順次積層してなり、前記空気極の前記固体電解質側に、前記空気極の他の領域よりも気孔率が小さい低気孔率層を有する固体電解質形燃料電池セルの製法であって、La及びMnを含有するペロブスカイト型酸化物からなる空気極成形体の表面に、3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質成形体を積層した積層成形体を、周波数1〜30GHzのマイクロ波を照射して、1300〜1600℃にて10分〜2時間保持して焼結させる工程を含むものである。
【0014】
このように空気極の固体電解質側に低気孔率層を形成するには、La及びMnを含有するペロブスカイト型酸化物からなる空気極成形体(空気極仮焼体も含む意味である)の表面に、3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質成形体(固体電解質仮焼体も含む意味である)を形成してなる積層成形体を、周波数1〜30GHzのマイクロ波を照射して焼結させることにより得られる。固体電解質成形体の表面に燃料極成形体を形成した積層成形体をマイクロ波焼成しても良い。
【0015】
上記の製法にて作製された固体電解質燃料電池セルでは、空気極の固体電解質側に低気孔率層を有するため、理由は明確ではないが、密着性を向上でき、高い出力性能を維持しつつ耐久性を向上できる。即ち、積層成形体自体を直接加熱させるマイクロ波加熱法を用い、さらに空気極に固体電解質よりマイクロ波吸収特性の小さい材料を使用することで低温かつ短時間で共焼結でき、同時に空気極から燃料極中へのMnの拡散が抑制され、さらに耐久性に優れる、つまり、繰り返し使用しても発電効率に優れる固体電解質燃料電池セルを得ることができる。
【0016】
具体的に説明すると、高い出力性能を維持しつつ耐久性を向上させるためには、まず空気極の固体電解質に接する部分(低気孔率層)が、その他の部分と比べて気孔率が低いことが必要である。
【0017】
ここでの耐久性とは、高温での長時間の出力、例えば1000℃で1000時間の発電中に出力性能が劣化しないこと、また発電後室温まで冷却させた後に、再度発電させても再び高い出力性能が発揮できることを指す。この耐久性が劣化する際にはそのほとんどが空気極と固体電解質との界面のクラックによるものであった。そのため、耐久性を向上させるためには空気極と固体電解質との密着性を高める必要があったが、上記したように、本発明では、空気極の固体電解質側に低気孔率層を形成することにより、空気極と固体電解質との界面におけるクラックの生成を抑制でき、高い密着性を得ることができ、耐久性を向上できる。
【0018】
低気孔率層を有することで耐久性が著しく向上するメカニズムは明確にはわかっていないが、一般にZrO2等の固体電解質の熱膨張係数はLaMnO3系の空気極のそれよりも小さいために、セル自体には空気極周方向(円筒セルの場合)あるいは水平方向(平面セルの場合)に大きな応力が作用しており、この応力によって長時間の使用中、あるいは繰り返しの熱履歴によって空気極と固体電解質の界面にクラックを発生させるものと考えられるが、本発明においては、空気極の気孔率変化によって熱膨張係数の差に起因する応力を緩和し、同時に密着性が高いために界面のクラック生成を抑制しているものと思われる。
【0019】
また、低温かつ短時間で焼結できるため、La及びMnを含有するペロブスカイト型酸化物からなる空気極成形体の表面に、固体電解質成形体、燃料極成形体を順次積層した積層成形体を共焼結しても、空気極中のMnが蒸発し、燃料極中に拡散する量を低減でき、燃料極中の分極値を小さくすることができ、初期における出力密度を向上できる。
【0020】
本発明の固体電解質形燃料電池セルの製法では、前記La及びMnを含有するペロブスカイト型酸化物からなる空気極成形体の表面に積層した前記3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質成形体上に、燃料極成形体と集電体成形体とを順次積層した積層成形体を、周波数1〜30GHzのマイクロ波を照射して、1300〜1600℃にて10分〜2時間保持して焼結させることが、コスト的、工程減少の点から望ましい
【0024】
【発明の実施の形態】
本発明の固体電解質形燃料電池セルの製法により作製される代表的な固体電解質燃料電池セルの形状は、図1に示すように円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成してセル本体34を形成し、空気極32には集電体35(インターコネクタ)が電気的に接続されている。
【0025】
即ち、固体電解質31の一部に切欠部36が形成され、固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37及び切欠部36近傍の固体電解質31の表面が集電体35により被覆され、集電体35が、固体電解質31の両端部表面及び固体電解質31の切欠部36から露出した空気極32の表面に接合されている。
【0026】
空気極32と電気的に接続する集電体35は、セル本体34の外面に形成され、ほぼ段差のない連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。この集電体35は、セル同士間を接続する際に他のセルの燃料極にNiフェルト等を介して電気的に接続され、これにより燃料電池モジュールが構成される。連続同一面39は、固体電解質の両端部と空気極の一部とが連続したほぼ同一面となるまで、固体電解質の両端部間を研磨することにより形成される。
【0027】
固体電解質31は、例えば3〜15モル%のY23を含有した部分安定化あるいは安定化ZrO2が用いられる。このような組成であれば1〜30GHzにおける誘電損率が充分大きく、マイクロ波を効率よく吸収できる。
【0028】
また、空気極32としては、La及びMnを含有するペロブスカイト型酸化物(例えば、LaMnO )からなることにより、固体電解質に比べて充分小さい誘電損率になり、マイクロ波を選択的に固体電解質に吸収させることが可能になる。このとき固体電解質との熱膨張差を小さくするために、例えば、LaMnOのLaをCa又はSrで10〜30原子%、Yで5〜20原子%置換しても良い。集電体35としては、例えば、主としてCrをMgで10〜30原子%置換したLaCrO系磁器が用いられる。
【0029】
燃料極33としては、例えば、50〜80重量%Niを含むZrO2(Y23含有)サーメットが用いられる。これら集電体、燃料極いずれも固体電解質に比べて誘電損率が充分小さいものを使用する必要がある。
【0030】
本発明における誘電損率の大小については、公知にしられる空洞共振器法、円柱誘電体共振器法などによって測定し得られる。あるいは、マイクロ波加熱炉中で一定出力のマイクロ波を同一体積の試料に照射し、平衡に達するときの温度によって簡易的に推測することができる。そのときの温度上昇が大きい材料を近似的に誘電損率が大きいとみなすことができる。
【0031】
そして、本発明の固体電解質形燃料電池セルの製法により作製される固体電解質燃料電池セルでは、空気極32の固体電解質31側に低気孔率層43が形成されている。この低気孔率層43は、空気極32の他の領域45、即ち、空気極32の内面側の部分よりも気孔率が小さい。
【0032】
また、この多孔質の空気極32の気孔率は20〜50%程度であり、燃料電池の性能を高める上では30〜40%が望ましい。低気孔率層43と、他の領域45との気孔率差は、耐久性を高める上では0.1%以上が必要である。特に、密着性を向上し、耐久性を向上するという点から、0.5%以上、さらには0.5〜2.0%であることが望ましい。
【0033】
低気孔率層43の厚みは20μm以上形成することが望ましく、空気極32の厚みの1〜20%であることが望ましい。また、低気孔率層43における気孔率は、空気極32の他の領域45側に向けて次第に大きくなることが、固体電解質と空気極との熱膨張差を小さくするという点から望ましい。さらに、空気極における気孔は、殆どが開気孔とされている。
【0034】
1〜30GHzの室温における空気極の誘電損率は、固体電解質の誘電損率よりも小さく、空気極は、La及びMnを含有するペロブスカイト型酸化物からなる
【0035】
また、本発明では、燃料極中のMn量が0.1重量%以下、特には0.05重%以下であることが、燃料極中の分極値を低下させるという点で望ましい。
【0036】
本発明の固体電解質形燃料電池セルの製法は、La及びMnを含有するペロブスカイト型酸化物からなる空気極成形体の表面に、3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質成形体を具備する積層成形体を、周波数1〜30GHzのマイクロ波を照射して、1300〜1600℃にて10分〜2時間保持して焼結させる工程を含む。
【0037】
具体的には、まず、円筒状の空気極成形体を形成する。この円筒状の空気極成形体は、例えば所定の調合組成に従いLa、Y、CaCO、MnOの素原料を秤量、混合する。この際、空気極成形体を構成するペロブスカイト型酸化物のA/B比は、0.95〜0.99であることが望ましい。
【0038】
この後、例えば、1500℃程度の温度で2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調製する。調製した粉体に、バインダーを混合、混練し押出成形法により円筒状の空気極成形体を作製し、さらに脱バインダー処理し、1200〜1250℃で仮焼を行うことで円筒状の空気極仮焼体を作製する。
【0039】
シート状の第1固体電解質成形体として、3〜15モル%のY23を含有したZrO2粉末にトルエン、バインダー、市販の分散剤を加えてスラリー化したものをドクターブレード等の方法により、例えば、100〜120μmの厚さに成形したものを用い、上記円筒状の空気極仮焼体の表面に固体電解質成形体を貼り付けて仮焼し、空気極仮焼体の表面に第1固体電解質仮焼体を形成する。
【0040】
次に、シート状の燃料極成形体を作製する。まず、例えば、所定比率に調製したNi/YSZ混合粉体にトルエン、バインダーを加えてスラリー化したものを準備する。前記第1固体電解質成形体の作製と同様、成形、乾燥し、例えば、15μmの厚さのシート状の第2固体電解質成形体を形成する。
【0041】
この第2固体電解質成形体上に燃料極層成形体を印刷、乾燥した後、第1固体電解質仮焼体上に、燃料極層成形体が形成された第2固体電解質成形体を、第1固体電解質仮焼体に第2固体電解質成形体が当接するように巻き付け、積層する。
【0042】
燃料極層成形体を構成するNi/YSZ混合粉体は、Ni粉末の平均粒径が0.2〜0.4μm、YSZ粉末の平均粒径が0.4〜0.8μmの原料粉体を用い、所定比率に調合した後分散性を高めるためにZrO2ボールを用いて湿式粉砕混合してスラリー化した。
【0043】
次に、固体電解質成形体の調製同様、CrをMgで10〜30原子%置換したLaCrO3からなり、100〜120μmの厚さに成形した集電体成形体を所定箇所に貼り付ける。
【0044】
この後、円筒状空気極仮焼体の表面に、第1固体電解質仮焼体、第2固体電解質成形体、燃料極成形体および集電体成形体を積層した積層成形体にマイクロ波を照射し加熱焼結させる。マイクロ波源としては、マグネトロン、クライストロン、ジャイロトロンといった数kW程度の出力が得られる発振管を用いる。
【0045】
このときに使用するマイクロ波の周波数は1〜30GHzであれば良いが、装置コスト等から2.45GHzあるいは28GHzのマグネトロンあるいはジャイロトロンを発振管とする加熱炉を用いることが好ましい。周波数としては1〜30GHzが好ましく、これ以上では、出力の制御が困難で、1GHzより低いと試料自体が加熱されにくくなるためである。マイクロ波加熱の機構は、セラミックス等の誘電体中の双極子がマイクロ波によって振動、回転し、そのときの摩擦熱が熱エネルギーに変換されるものであるが、その熱エネルギーは、マイクロ波周波数、電界強度が一定の場合、試料の誘電損率(誘電率と誘電損失の積)に依存する。
【0046】
積層成形体はマイクロ波加熱炉アプリケータ−内に設置されるが、このとき表面からの熱の逃げを抑える観点から、アルミナまたはマグネシアのるつぼを使用するのが好ましい。
【0047】
さらに、るつぼは低熱伝導率のアルミナファイバーの成形体を断熱材として使用する。試料は熱電対にて測定され、焼成条件としては、1300〜1600℃、保持時間は10分〜60分で焼結する。このとき、マイクロ波を照射し続けると燃料極中のMn量が増加しやすくなるために、マイクロ波加熱の条件としては、組成によっても異なるが1300〜1600℃で特に保持時間を2時間以下にすることが望ましく、特に1300〜1500℃で10〜60分が好ましい。このような条件で加熱された空気極は固体電解質近傍から低気孔率層が形成され、その気孔率は傾斜的になり、その結果高い耐久性が得られる。
【0048】
従って、固体電解質に誘電損率の大きいジルコニアを主成分とする材料を使用し、空気極に固体電解質よりも誘電損率の小さい、すなわちマイクロ波による加熱が小さい材料、具体的にはLa及びMnを含むペロブスカイト型酸物を使用することによって、固体電解質が優先的に加熱され、その結果、空気極の固体電解質に接する部分が接していない部分よりも温度が高くなるために高密度化し、密着性を高めることができる。
【0049】
尚、上記例では、円筒状空気極仮焼体の表面に、第1固体電解質仮焼体、第2固体電解質成形体、燃料極成形体および集電体成形体を積層した積層成形体をマイクロ波焼成した例について説明したが、本発明では、空気極成形体の表面に固体電解質成形体、燃料極成形体および集電体成形体を積層した積層成形体をマイクロ波焼成してもよい。
【0050】
また、本発明では、少なくとも空気極成形体の表面に固体電解質成形体を積層した積層成形体をマイクロ波焼成すればよく、燃料極成形体および集電体成形体は必ずしも同時に焼成する必要はないが、コスト的、工程減少という点から、空気極、固体電解質、燃料極、集電体を4層同時に焼成することが望ましい。
【0051】
また、上記例では、円筒型について説明したが、本発明では平板型であってもよい。
【0052】
本発明の固体電解質形燃料電池セルの製法により作製される固体電解質形燃料電池セルを用いてなる燃料電池は、例えば、図2に示すように、反応容器51内に、酸素含有ガス室仕切板53、燃焼室仕切板55、燃料ガス室仕切板57を用いて酸素含有ガス室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。
【0053】
反応容器51内には、上記した複数の有底筒状の固体電解質燃料電池セル59が収容されており、これらの固体電解質燃料電池セル59は、燃焼室仕切板55に形成されたセル挿入孔60に挿入固定されており、その開口部61は燃焼室仕切板55から燃焼室B内に突出しており、その内部には酸素含有ガス室仕切板53に固定された酸素含有ガス導入管63の一端が挿入されている。
【0054】
燃焼室仕切板55には、余剰の未反応燃料ガスを反応室Cから燃焼室Bに排出するために、複数の排気孔64が形成されており、燃料ガス室仕切板57には、燃料ガス室Dから反応室C内に供給するための供給孔が形成されている。
【0055】
また、反応容器51には、例えば水素からなる燃料ガスを導入する燃料ガス導入口65、例えば、空気を導入する酸素含有ガス導入口67、燃焼室B内で燃焼したガスを排出するための排気口69が形成されている。
【0056】
このような燃料電池は、酸素含有ガス室Aからの酸素含有ガス、例えば空気を、酸素含有ガス導入管63を介して固体電解質燃料電池セル59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを複数の固体電解質燃料電池セル59間に供給し、反応室Cにて反応させ発電し、余剰の空気と未反応燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気口69から外部に排出される。
【0057】
尚、本発明の固体電解質形燃料電池セルの製法により作製される固体電解質形燃料電池セルを用いてなる燃料電池は、上記した図2の燃料電池に限定されるものではなく、反応容器内に、上記した燃料電池セルを複数収容していれば良い。
【0058】
【実施例】
円筒状の空気極仮焼体として押出成形により成形し仮焼した(La0.560.14Ca0.30.98MnO3を作製した。固体電解質としてY23を8モル%の割合で含有する安定化ジルコニアを用いてドクターブレード法により、厚さ100μmのシート状の第1固体電解質成形体を、さらに厚さ15μmのシート状の第2固体電解質成形体をそれぞれ作製した。
【0059】
次に、燃料極成形体の作製について説明する。平均粒径が0.4μmのNi粉末に対し、平均粒径が0.6μmのY23を8モル%の割合で含有するZrO2粉末を準備し、Ni/YSZ比率(重量分率)が65/35になるように調合し、粉砕混合処理を行い、スラリー化した。その後、調製したスラリーを第2固体電解質成形体上に、30μmになるように全面に印刷した。
【0060】
次に、市販の純度99.9%以上のLa23、Cr23、MgOを出発原料として、これをLa(Mg0.3Cr0.70.973の組成になるように秤量混合した後1500℃で3時間仮焼粉砕し、この固溶体粉末を用いてスラリーを調製し、ドクターブレード法により厚さ100μmの集電体成形体を作製した。
【0061】
まず、前記空気極仮焼体に前記第1固体電解質成形体を、その両端部が開口するようにロール状に巻き付け1150℃で5時間の条件で仮焼した。仮焼後、第1固体電解質仮焼体の両端部間を空気極仮焼体が露出するように平坦に研磨し、連続した同一面を形成するように加工した。
【0062】
次に、第1固体電解質仮焼体表面に、燃料極成形体が形成された第2固体電解質成形体を、第1固体電解質仮焼体と第2固体電解質成形体が当接するように積層し、乾燥した後、上記連続同一面に集電体成形体を貼り付け積層成形体を作製した。
【0063】
得られた積層成形体をアルミナチューブるつぼ中に入れ、マイクロ波焼成炉(A,B,C)および抵抗加熱炉(R)中に設置し、大気雰囲気にて、表1に示す条件にて焼成した。なおマイクロ波加熱の測温は、白金でシースされたW−Re熱電対を試料に直接接触させて行い、またマイクロ波源として周波数2.45GHz、出力5kWのマグネトロン(A)、6GHz、10kWのクライストロン(B)、28GHz、10kWのジャイロトロン(C)を用い、それぞれ異なる導波管を使用した。
【0064】
加熱に際してあらかじめ第1固体電解質成形体を200枚積層した試料と空気極成形体それぞれのみで周波数28GHzで1.0kWの一定出力で加熱して1000℃まで加熱し、そのときの温度上昇カーブを図3に示す。この図3から固体電解質のジルコニアの誘電損率がLaMnO3の空気極に比べて大きいことがわかる。
【0065】
得られたセルの空気極の厚みは2mmであり、固体電解質の厚み100μmであった。この焼結体の一部を切断し、その断面の走査型電子顕微鏡(SEM)写真を画像解析装置を用いて気孔率を算出した。測定は、空気極の固体電解質側の面から0.1mmまでの部分と、空気極の内面側から0.1〜0.2mmまでの部分について幅0.1mmに渡って算出した。その結果を表1に示した。図4(a)に、表1の試料No.3の空気極の固体電解質側の面から0.1mmの範囲近傍のSEM写真を、図4(b)に、空気極の内面側から0.1〜0.2mmの範囲近傍のSEM写真を示した。
【0066】
また、上記共焼結体を用いて、燃料極中のMn拡散量を評価した。評価は燃料極断面において、X線マイクロアナライザ(EPMA)を用いて、全構成成分の定量を行い、これからMn成分の燃料極全成分に対する含有濃度を算出し、その結果を表1に記載した。
【0067】
さらに、本発明の試料のSEM写真より、空気極の固体電解質側の面から0.1mmピッチで気孔率を測定したところ、低気孔率層の厚みは20μm以上であり、低気孔率層の気孔率は、空気極内面へ向けて次第に大きくなっていた。表1の試料No.12における気孔率を図5に記載した。この図5より、低気孔率層の厚みは0.4mmであり、空気極の厚みの20%であることがわかる。
【0068】
次に、発電用の円筒型セルを作製するため、前記共焼結体片端部に封止部材の接合を行った。封止部材の接合は、以下のような手順で行った。Y23を8モル%の割合で含有する平均粒子径が1μmのZrO2粉末に水を溶媒として加えてスラリーを調製し、このスラリーに前記共焼結体の片端部を浸漬し、厚さ100μmになるように片端部外周面に塗布し乾燥した。封止部材としてのキャップ形状を有する成形体は、前記スラリー組成と同組成の粉末を用いて静水圧成形(ラバープレス)を行い切削加工した。その後、前記スラリーを被覆した前記共焼結体片端部を封止部材用成形体に挿入し、大気中1300℃の温度で1時間焼成を行った。
【0069】
発電は、1000℃でセルの内側に空気を、外側に水素を流し、出力値が安定した際の初期値と1000時間保持後の値でそれぞれの性能を測定評価した。さらに1000時間保持後に出力値が安定した試料はその後室温まで冷却した後、再度発電させて出力密度を測定した。これらの測定結果を表1に示す。
【0070】
【表1】

Figure 0004508340
【0071】
この表1から、抵抗加熱炉を用いた従来の焼成方法では、試料No.1のように1450℃で600分焼成した場合には、集電体の緻密化が不足し、また空気極の緻密化が促進し、再出力値が低下した。
【0072】
また、試料No.2のように1550℃で360分間焼成した場合には、空気極中のMnが燃料極中に0.49重量%と多く拡散し、燃料極の分極値が高くなり、初期性能が低く、経時的にも劣化することが判る。
【0073】
一方、マイクロ波焼成した本発明の試料では、空気極の固体電解質側に、空気極の他の領域よりも気孔率が小さい低気孔率層が形成されており、燃料極中のMn量が0.1重量%以下と非常に少ないため、燃料極の分極値も低く、その結果、初期値において高い出力密度が得られるとともに、1000時間経過後においても、また再発電時にも高い出力密度が得られた。
【0074】
【発明の効果】
本発明の固体電解質燃料電池セルの製法では、マイクロ波加熱法を用い、さらに空気極に固体電解質よりマイクロ波吸収特性の小さい材料を使用することで低温短時間で共焼結でき、空気極の固体電解質側に、空気極の他の領域よりも気孔率が小さい低気孔率層が形成されるとともに、燃料極中に拡散するMn量を低減でき、燃料極の分極値を低くでき、初期性能を向上できるとともに、繰り返し使用しても発電効率に優れる固体電解質燃料電池セルを得ることができる。
【図面の簡単な説明】
【図1】本発明の固体電解質形燃料電池セルの製法により作製された円筒型の固体電解質燃料電池セルを示す断面図である。
【図2】本発明の固体電解質形燃料電池セルの製法により作製された円筒型の固体電解質形燃料電池セルを用いてなる燃料電池を示す概念図である。
【図3】固体電解質と空気極にマイクロ波を一定照射したときの温度上昇を示すグラフである。
【図4】試料No.3のSEM写真を示す。
【図5】試料No.12の空気極の固体電解質側の面から距離に対する気孔率を示す図である。
【図6】従来の円筒型の固体電解質燃料電池セルを示す斜視図である。
【符号の説明】
31・・・固体電解質
32・・・空気極
33・・・燃料極
43・・・低気孔率層
45・・・空気極の他の領域
51・・・反応容器
59・・・固体電解質燃料電池セル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the surface of the air electrode solid electrolyte, fuel electrode, the manufacturing method of the solid electrolyte fuel cell cell Le ing by sequentially stacking a current collector.
[0002]
[Prior art]
Conventionally, the solid electrolyte fuel cell is its operating temperature of 900 to 1100 ° C. and high power generation efficiency because of the high temperature, is expected as a power system of the third generation.
[0003]
Generally the solid electrolyte fuel cell is cylindrical and the flat plate type are known. The flat fuel cell has a feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniform temperature distribution in the cell for practical use. On the other hand, the cylindrical fuel cell has the characteristics that although the power density is low, the cell has high mechanical strength and the temperature in the cell can be kept uniform. Both solid electrolyte fuel cells of the two shapes, has been advanced research and development is actively taking advantage of their characteristics.
[0004]
For example, as shown in FIG. 6, a single cell of a cylindrical fuel cell is formed with a porous air electrode support tube 2 made of a LaMnO 3 material having an open porosity of about 30 to 40%, and Y 2 is formed on the surface thereof. The solid electrolyte 3 made of O 3 stabilized ZrO 2 is covered, and a porous Ni—ZrO 2 fuel electrode 4 is provided on the surface.
[0005]
In the fuel cell module, each single cell is connected via a LaCrO 3 current collector (interconnector) 5. Power generation is performed at a temperature of 900 to 1100 ° C. by flowing air (oxygen) 6 inside the air electrode support tube 2 and flowing fuel (hydrogen) 7 outside. As the air electrode support tube 2 material having the function as an air electrode, for example, a solid solution material in which La is replaced by 20 atomic% with Ca or 10 to 15 atomic% with Sr is used.
[0006]
In recent years, in order to simplify the cell manufacturing process and reduce the manufacturing cost, a so-called co-sintering method in which at least two of the constituent materials are simultaneously fired has been proposed. This co-sintering method is, for example, a method in which a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and fired simultaneously, and then a fuel electrode is formed on the surface of the solid electrolyte. is there. In order to simplify the process, a co-sintering method is also proposed in which a fuel electrode molded body is further laminated on the surface of the solid electrolyte molded body, and the air electrode, solid electrolyte, fuel electrode, and current collector are simultaneously fired. .
[0007]
This co-sintering method is a very simple process and has a small number of manufacturing steps, and is advantageous in improving the yield during manufacturing of cells and reducing costs. In such a fuel cell by the co-sintering method, a solid electrolyte composed of Y 2 O 3 stabilized or partially stabilized ZrO 2 is used, and the thermal expansion coefficient is matched with this solid electrolyte. , which part of La perovskite oxides consisting of LaMnO 3 was replaced with Y and Ca are used (see JP-a-10-162847, etc.). Further, a LaCrO 3 -based material is used as the current collector material.
[0008]
[Problems to be solved by the invention]
However, when making a cylindrical fuel cells using a co-sintering method described above, when the co-sintering, Mn element is a component of the air electrode, the atmosphere around the solid oxide fuel cell As a result, the evaporated Mn diffuses inside the fuel electrode. As a result, the amount of Mn in the fuel electrode increases, and the polarization value of the fuel electrode site and the actual resistance value of the cell components increase. There was a problem that the output density was low.
[0009]
In particular, it has been conventionally known that LaCrO 3 -based materials are difficult to sinter. However, when a fuel cell is produced using the above-described co-sintering method, a current collector made of LaCrO 3 -based materials is used. If the firing temperature is increased to sinter the body, or if the firing is performed for a long time, Mn in the air electrode diffuses into the atmosphere, and this Mn easily diffuses from the surface of the fuel electrode to the inside. There was a problem that the polarization value increased and the power density in the initial stage was low.
[0010]
Therefore, in order to suppress the diffusion of Mn into the fuel electrode, it is necessary to lower the calcination temperature and calcinate in a short time, but in such a low temperature and short time calcination, the current collector is sufficiently dense. reduction can not, or a solid electrolyte and adhesion strength of the air electrode interface is weak, poor durability at 900 ° C. C. to 1100 ° C. using environments solid electrolyte fuel cell is operated over time output performance is lowered, further When cooling from 1000 ° C. to room temperature, cracks occurred at the interface between the solid electrolyte and the air electrode, and when power was generated again after that, there was a problem that the output performance was significantly lowered.
[0011]
Accordingly, the fuel cell manufactured by the co-sintering method which is excellent in cost reduction, excellent power generation performance, it is very difficult to simultaneously satisfy the durability, the it is the practical use of solid electrolyte fuel cell It was a big obstacle on the top.
[0012]
The present invention has excellent output performance, and to provide a manufacturing method of the solid electrolyte fuel cell cell Le capable of improving durability.
[0013]
[Means for Solving the Problems]
The method for producing a solid electrolyte fuel cell according to the present invention comprises the step of partially stabilizing or stabilizing 3 to 15 mol% of Y 2 O 3 on the surface of an air electrode made of a perovskite oxide containing La and Mn. A solid electrolyte comprising a ZrO 2 solid electrolyte, a fuel electrode, and a current collector sequentially stacked, and a solid layer having a low porosity layer on the solid electrolyte side of the air electrode having a lower porosity than other regions of the air electrode A method for producing an electrolyte fuel cell, comprising partially stabilizing or stabilizing 3 to 15 mol% of Y 2 O 3 on the surface of an air electrode molded body made of a perovskite oxide containing La and Mn Including a step of sintering a laminated molded body obtained by laminating a solid electrolyte molded body made of ZrO 2 by irradiating a microwave with a frequency of 1 to 30 GHz and holding at 1300 to 1600 ° C. for 10 minutes to 2 hours. It is.
[0014]
In order to form a low-porosity layer on the solid electrolyte side of the air electrode in this way, the surface of the air electrode molded body (including the air electrode calcined body) made of a perovskite oxide containing La and Mn And a laminated molded body formed by forming a solid electrolyte molded body (which also includes a solid electrolyte calcined body) made of partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% of Y 2 O 3. It is obtained by irradiating with microwaves having a frequency of 1 to 30 GHz and sintering. A laminated molded body in which a fuel electrode molded body is formed on the surface of the solid electrolyte molded body may be subjected to microwave firing.
[0015]
The solid electrolyte fuel cell fabricated by the manufacturing method described above, since having a low porosity layer to the solid electrolyte side of the air electrode, the reason is not clear, it can improve the adhesion, maintaining high output performance Durability can be improved. That is, by using a microwave heating method that directly heats the laminated molded body itself, and using a material having a smaller microwave absorption characteristic than the solid electrolyte for the air electrode, it can be co-sintered at a low temperature and in a short time, and simultaneously from the air electrode. diffusion of Mn into the fuel electrode in is suppressed, further excellent in durability, that is, it can be used repeatedly to obtain a solid electrolyte fuel cell excellent in power generation efficiency.
[0016]
Specifically, in order to improve durability while maintaining high output performance, the portion of the air electrode that contacts the solid electrolyte (low-porosity layer) must have a lower porosity than the other portions. is required.
[0017]
The durability here means that the output performance does not deteriorate during power generation for a long time at a high temperature, for example, 1000 ° C. for 1000 hours, and is high again even if power is generated again after cooling to room temperature after power generation. It means that the output performance can be demonstrated. When the durability deteriorated, most of them were caused by cracks at the interface between the air electrode and the solid electrolyte. Therefore, in order to improve the durability, it is necessary to improve the adhesion between the air electrode and the solid electrolyte. However, as described above, in the present invention, a low porosity layer is formed on the solid electrolyte side of the air electrode. As a result, generation of cracks at the interface between the air electrode and the solid electrolyte can be suppressed, high adhesion can be obtained, and durability can be improved.
[0018]
Although the mechanism by which the durability is remarkably improved by having a low porosity layer is not clearly understood, since the thermal expansion coefficient of a solid electrolyte such as ZrO 2 is generally smaller than that of a LaMnO 3 air electrode, A large stress acts on the cell itself in the circumferential direction of the air electrode (in the case of a cylindrical cell) or in the horizontal direction (in the case of a planar cell). Although it is considered that cracks are generated at the interface of the solid electrolyte, in the present invention, the stress due to the difference in thermal expansion coefficient is relieved by the porosity change of the air electrode, and at the same time, the cracks at the interface are high due to high adhesion. It seems that the generation is suppressed.
[0019]
Further, since sintering can be performed at a low temperature in a short time, a laminated molded body in which a solid electrolyte molded body and a fuel electrode molded body are sequentially laminated on the surface of an air electrode molded body made of a perovskite oxide containing La and Mn is co-located. Even if it sinters, the amount of Mn in the air electrode evaporates and diffuses into the fuel electrode can be reduced, the polarization value in the fuel electrode can be reduced, and the initial output density can be improved.
[0020]
In the method for producing a solid electrolyte fuel cell according to the present invention, the portion containing 3 to 15 mol% of Y 2 O 3 laminated on the surface of an air electrode molded body made of a perovskite oxide containing La and Mn. A laminated molded body obtained by sequentially laminating a fuel electrode molded body and a current collector molded body on a solid electrolyte molded body made of stabilized or stabilized ZrO 2 is irradiated with microwaves having a frequency of 1 to 30 GHz, and 1300 to 300 Holding at 1600 ° C. for 10 minutes to 2 hours for sintering is desirable in terms of cost and process reduction .
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The shape of a typical solid oxide fuel cell that will be produced by the method of the solid electrolyte fuel cells present invention, the air electrode 32 to the inner surface of the cylindrical solid electrolyte 31, as shown in FIG. 1, the fuel to the outer surface A cell body 34 is formed by forming the electrode 33, and a current collector 35 (interconnector) is electrically connected to the air electrode 32.
[0025]
That is, a notch 36 is formed in a part of the solid electrolyte 31, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the solid electrolyte near the exposed surface 37 and the notch 36. The surface of 31 is covered with a current collector 35, and the current collector 35 is joined to the surface of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.
[0026]
The current collector 35 that is electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34 and is formed so as to cover the continuous same surface 39 having almost no step, and is electrically connected to the fuel electrode 33. It has not been. The current collector 35 is electrically connected to the fuel electrode of another cell via a Ni felt or the like when the cells are connected to each other, thereby forming a fuel cell module. The continuous identical surface 39 is formed by polishing between both ends of the solid electrolyte until both ends of the solid electrolyte and a part of the air electrode become substantially the same continuous surface.
[0027]
As the solid electrolyte 31, for example, partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% of Y 2 O 3 is used. With such a composition, the dielectric loss factor at 1 to 30 GHz is sufficiently large, and microwaves can be absorbed efficiently.
[0028]
As the air electrode 32, perovskite oxides containing La and Mn (e.g., LaMnO 3) by Tona Rukoto, becomes sufficiently small dielectric loss factor than the solid electrolyte, selectively solids microwave It can be absorbed by the electrolyte. At this time, in order to reduce the thermal expansion difference from the solid electrolyte, for example, LaMnO 3 La may be substituted with Ca or Sr by 10 to 30 atomic% and Y by 5 to 20 atomic%. As the current collector 35, for example, a LaCrO 3 -based porcelain in which Cr is substituted with 10 to 30 atomic% of Mg is mainly used.
[0029]
As the fuel electrode 33, for example, ZrO 2 (containing Y 2 O 3 ) cermet containing 50 to 80 wt% Ni is used. Both the current collector and the fuel electrode must have a dielectric loss factor sufficiently smaller than that of the solid electrolyte.
[0030]
The magnitude of the dielectric loss factor in the present invention can be measured by a publicly known cavity resonator method, cylindrical dielectric resonator method, or the like. Alternatively, it can be simply estimated by the temperature at which equilibrium is reached by irradiating a sample of the same volume with a microwave having a constant output in a microwave heating furnace. A material having a large temperature rise at that time can be regarded as having a large dielectric loss factor.
[0031]
Then, a solid electrolyte fuel cell fabricated by the method of the solid electrolyte fuel cell of the present invention, low porosity layer 43 is formed on the solid electrolyte 31 side of the air electrode 32. The low porosity layer 43 has a lower porosity than other regions 45 of the air electrode 32, that is, a portion on the inner surface side of the air electrode 32.
[0032]
Further, the porosity of the porous air electrode 32 is about 20 to 50%, and 30 to 40% is desirable for improving the performance of the fuel cell. The porosity difference between the low-porosity layer 43 and the other region 45 needs to be 0.1% or more in order to improve durability. In particular, it is preferably 0.5% or more, and more preferably 0.5 to 2.0% from the viewpoint of improving adhesion and improving durability.
[0033]
The thickness of the low porosity layer 43 is preferably 20 μm or more, and preferably 1 to 20% of the thickness of the air electrode 32. In addition, it is desirable that the porosity in the low porosity layer 43 gradually increases toward the other region 45 side of the air electrode 32 from the viewpoint of reducing the difference in thermal expansion between the solid electrolyte and the air electrode. Furthermore, most of the pores in the air electrode are open pores.
[0034]
The dielectric loss factor of the air electrode at room temperature of 1 to 30 GHz is smaller than that of the solid electrolyte, and the air electrode is made of a perovskite oxide containing La and Mn .
[0035]
In the present invention, it is desirable that the amount of Mn in the fuel electrode is 0.1% by weight or less, particularly 0.05% by weight or less in terms of reducing the polarization value in the fuel electrode.
[0036]
The method for producing a solid electrolyte fuel cell according to the present invention comprises partially stabilizing or containing 3 to 15 mol% of Y 2 O 3 on the surface of an air electrode molded body made of a perovskite oxide containing La and Mn. Including a step of sintering a laminated molded body comprising a solid electrolyte molded body made of stabilized ZrO 2 by irradiating a microwave with a frequency of 1 to 30 GHz and holding at 1300 to 1600 ° C. for 10 minutes to 2 hours. .
[0037]
Specifically, first, a cylindrical air electrode molded body is formed. In this cylindrical air electrode compact, for example, raw materials of La 2 O 3 , Y 2 O 3 , CaCO 3 , and MnO 2 are weighed and mixed according to a predetermined preparation composition. In this case, A / B ratio of the perovskite-type oxides constituting the air electrode molded body is desirably 0.95 to 0.99.
[0038]
Then, for example, it is calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. The prepared powder is mixed and kneaded with a binder to produce a cylindrical air electrode molded body by extrusion molding. Further, the binder is debindered and calcined at 1200 to 1250 ° C. A fired body is produced.
[0039]
As a sheet-like first solid electrolyte molded body, a slurry obtained by adding toluene, a binder, and a commercially available dispersant to ZrO 2 powder containing 3 to 15 mol% Y 2 O 3 by a method such as a doctor blade is used. For example, using a material molded to a thickness of 100 to 120 μm, a solid electrolyte molded body is pasted and calcined on the surface of the cylindrical air electrode calcined body, and the first is formed on the surface of the air electrode calcined body. A solid electrolyte calcined body is formed.
[0040]
Next, a sheet-shaped fuel electrode molded body is produced. First, for example, a slurry obtained by adding toluene and a binder to Ni / YSZ mixed powder prepared at a predetermined ratio is prepared. Similarly to the production of the first solid electrolyte molded body, the molded and dried mold is formed to form a sheet-like second solid electrolyte molded body having a thickness of 15 μm, for example.
[0041]
After the fuel electrode layer molded body is printed and dried on the second solid electrolyte molded body, the second solid electrolyte molded body on which the fuel electrode layer molded body is formed is formed on the first solid electrolyte calcined body. The solid electrolyte calcined body is wound and laminated so that the second solid electrolyte molded body comes into contact therewith.
[0042]
The Ni / YSZ mixed powder constituting the fuel electrode layer molded body is a raw material powder having an average particle diameter of Ni powder of 0.2 to 0.4 μm and an average particle diameter of YSZ powder of 0.4 to 0.8 μm. In order to increase the dispersibility after blending to a predetermined ratio, the mixture was wet pulverized and mixed into a slurry using ZrO 2 balls.
[0043]
Next, as in the preparation of the solid electrolyte molded body, a current collector molded body made of LaCrO 3 in which Cr is replaced by 10 to 30 atomic% and molded to a thickness of 100 to 120 μm is attached to a predetermined location.
[0044]
Thereafter, the microwave is applied to the laminated molded body in which the first solid electrolyte calcined body, the second solid electrolyte molded body, the fuel electrode molded body, and the current collector molded body are laminated on the surface of the cylindrical air electrode calcined body. And heat-sinter. As the microwave source, an oscillating tube such as a magnetron, a klystron, or a gyrotron that can output several kW is used.
[0045]
The frequency of the microwave used at this time may be 1 to 30 GHz, but it is preferable to use a heating furnace having a 2.45 GHz or 28 GHz magnetron or gyrotron as an oscillation tube from the viewpoint of apparatus cost. The frequency is preferably 1 to 30 GHz, and if it is higher than this, it is difficult to control the output, and if it is lower than 1 GHz, the sample itself is difficult to be heated. The mechanism of microwave heating is that a dipole in a dielectric material such as ceramic is vibrated and rotated by microwaves, and the frictional heat at that time is converted into thermal energy. When the electric field strength is constant, it depends on the dielectric loss factor (product of dielectric constant and dielectric loss) of the sample.
[0046]
The laminated molded body is installed in a microwave heating furnace applicator. At this time, it is preferable to use a crucible made of alumina or magnesia from the viewpoint of suppressing escape of heat from the surface.
[0047]
Furthermore, the crucible uses a molded article of alumina fiber having a low thermal conductivity as a heat insulating material. The sample is measured with a thermocouple, and sintering is performed at 1300 to 1600 ° C. and a holding time of 10 to 60 minutes. At this time, if microwave irradiation is continued, the amount of Mn in the fuel electrode tends to increase. Therefore, although the microwave heating conditions vary depending on the composition, the holding time is particularly 1 hour or less at 1300 to 1600 ° C. In particular, it is preferable to perform the treatment at 1300 to 1500 ° C. for 10 to 60 minutes. In the air electrode heated under such conditions, a low porosity layer is formed from the vicinity of the solid electrolyte, and the porosity is inclined, resulting in high durability.
[0048]
Therefore, a material mainly composed of zirconia having a large dielectric loss factor is used for the solid electrolyte, and a material having a dielectric loss factor smaller than that of the solid electrolyte in the air electrode, that is, a material that is less heated by microwaves, specifically , La and by using a perovskite oxidation containing Mn, the solid electrolyte is heated preferentially, resulting in densified to temperature is higher than the portion not in contact portions in contact with the solid electrolyte in the air electrode Adhesion can be improved.
[0049]
In the above example, the laminated molded body in which the first solid electrolyte calcined body, the second solid electrolyte molded body, the fuel electrode molded body, and the current collector molded body are laminated on the surface of the cylindrical air electrode calcined body is microscopic. In the present invention, a laminated molded body in which a solid electrolyte molded body, a fuel electrode molded body, and a current collector molded body are laminated on the surface of the air electrode molded body may be microwave fired.
[0050]
Further, in the present invention, a laminate molded body in which a solid electrolyte molded body is laminated on at least the surface of the air electrode molded body may be subjected to microwave firing, and the fuel electrode molded body and the current collector molded body are not necessarily fired at the same time. However, from the viewpoint of cost and process reduction, it is desirable that the air electrode, the solid electrolyte, the fuel electrode, and the current collector are simultaneously fired in four layers.
[0051]
Moreover, although the cylindrical type was demonstrated in the said example, a flat plate type may be sufficient in this invention.
[0052]
A fuel cell using a solid oxide fuel cell produced by the method for producing a solid electrolyte fuel cell of the present invention includes, for example, an oxygen-containing gas chamber partition plate in a reaction vessel 51 as shown in FIG. 53, the combustion chamber partition plate 55, and the fuel gas chamber partition plate 57 are used to form an oxygen-containing gas chamber A, a combustion chamber B, a reaction chamber C, and a fuel gas chamber D.
[0053]
Cell The reaction vessel 51, a plurality of bottomed tubular solid oxide fuel cell 59 described above is accommodated, these solid electrolyte fuel cell 59, which is formed in the combustion chamber partition plate 55 The opening 61 is inserted and fixed in the insertion hole 60, and the opening 61 protrudes into the combustion chamber B from the combustion chamber partition plate 55, and an oxygen-containing gas introduction pipe fixed to the oxygen-containing gas chamber partition plate 53 is provided therein. One end of 63 is inserted.
[0054]
A plurality of exhaust holes 64 are formed in the combustion chamber partition plate 55 in order to discharge surplus unreacted fuel gas from the reaction chamber C to the combustion chamber B. The fuel gas chamber partition plate 57 includes a fuel gas. A supply hole for supplying the reaction chamber C from the chamber D into the reaction chamber C is formed.
[0055]
In addition, the reaction vessel 51 has, for example, a fuel gas inlet 65 for introducing a fuel gas made of hydrogen, for example, an oxygen-containing gas inlet 67 for introducing air, and an exhaust for discharging gas burned in the combustion chamber B. A mouth 69 is formed.
[0056]
Such fuel cell, an oxygen-containing gas from the oxygen-containing gas chamber A, for example air, via an oxygen-containing gas introduction pipe 63 is supplied to the solid oxide fuel cell 59, and the fuel gas chamber the fuel gas from D supplied between the plurality of solid electrolyte fuel cell 59, is reacted in a reaction chamber C and the generator, it is combusted in the combustion chamber B the excess air and the unreacted fuel gas, combustion gas Is discharged from the exhaust port 69 to the outside.
[0057]
In addition, the fuel cell using the solid oxide fuel cell produced by the method for producing a solid oxide fuel cell of the present invention is not limited to the fuel cell of FIG. It is sufficient that a plurality of the above-described fuel cells are accommodated.
[0058]
【Example】
A cylindrical air electrode calcined body was formed by extrusion molding and calcined (La 0.56 Y 0.14 Ca 0.3 ) 0.98 MnO 3 . Using a stabilized zirconia containing Y 2 O 3 in a proportion of 8 mol% as a solid electrolyte, a first solid electrolyte molded body having a thickness of 100 μm is formed into a sheet-shaped sheet having a thickness of 15 μm by a doctor blade method. Second solid electrolyte molded bodies were respectively produced.
[0059]
Next, production of the fuel electrode molded body will be described. A ZrO 2 powder containing 8 mol% of Y 2 O 3 having an average particle diameter of 0.6 μm with respect to Ni powder having an average particle diameter of 0.4 μm was prepared, and the Ni / YSZ ratio (weight fraction) Was adjusted to 65/35, pulverized and mixed, and slurried. Then, the prepared slurry was printed on the whole surface so that it might become 30 micrometers on the 2nd solid electrolyte molded object.
[0060]
Next, a commercially available purity of 99.9% or higher La 2 O 3, Cr 2 O 3, MgO as the starting material, which La (Mg 0.3 Cr 0.7) 0.97 O 3 after weighed mixed so that the composition After calcining and pulverizing at 1500 ° C. for 3 hours, a slurry was prepared using the solid solution powder, and a current collector molded body having a thickness of 100 μm was prepared by a doctor blade method.
[0061]
First, the first solid electrolyte compact was wound around the air electrode calcined body in a roll shape so that both ends thereof were opened, and calcined at 1150 ° C. for 5 hours. After calcination, the first solid electrolyte calcined body was polished flat so that the air electrode calcined body was exposed and processed so as to form a continuous and identical surface.
[0062]
Next, the second solid electrolyte molded body on which the fuel electrode molded body is formed is laminated on the surface of the first solid electrolyte calcined body so that the first solid electrolyte calcined body and the second solid electrolyte molded body are in contact with each other. After drying, the current collector molded body was attached to the continuous same surface to produce a laminated molded body.
[0063]
The obtained laminated molded body is put in an alumina tube crucible, placed in a microwave firing furnace (A, B, C) and a resistance heating furnace (R), and fired in the air atmosphere under the conditions shown in Table 1. did. Note that microwave heating is performed by directly contacting a W-Re thermocouple sheathed with platinum with a sample. As a microwave source, a magnetron (A) with a frequency of 2.45 GHz and an output of 5 kW, a klystron with 6 GHz and 10 kW. (B) A 28 GHz, 10 kW gyrotron (C) was used, and different waveguides were used.
[0064]
When heating, 200 samples of the first solid electrolyte molded body in advance and the air electrode molded body are heated to a constant output of 1.0 kW at a frequency of 28 GHz and heated to 1000 ° C., and the temperature rise curve at that time is shown in FIG. 3 shows. It can be seen from FIG. 3 that the dielectric loss factor of the solid electrolyte zirconia is larger than that of the LaMnO 3 air electrode.
[0065]
The obtained cell had an air electrode thickness of 2 mm and a solid electrolyte thickness of 100 μm. A portion of this sintered body was cut, and the porosity was calculated using a scanning electron microscope (SEM) photograph of the cross section using an image analyzer. The measurement was performed over a width of 0.1 mm for a portion from the surface on the solid electrolyte side of the air electrode to 0.1 mm and a portion from the inner surface side of the air electrode to 0.1 to 0.2 mm. The results are shown in Table 1. In FIG. 3 shows an SEM photograph in the vicinity of the range of 0.1 mm from the surface of the solid electrolyte side of the air electrode, and FIG. 4B shows an SEM photograph in the vicinity of the range of 0.1 to 0.2 mm from the inner surface side of the air electrode. It was.
[0066]
Moreover, the amount of Mn diffusion in the fuel electrode was evaluated using the co-sintered body. For the evaluation, the X-ray microanalyzer (EPMA) was used to quantitate all components in the cross section of the fuel electrode, and the content concentration of the Mn component with respect to all the fuel electrode components was calculated therefrom.
[0067]
Furthermore, from the SEM photograph of the sample of the present invention, when the porosity was measured at a pitch of 0.1 mm from the surface of the air electrode on the solid electrolyte side, the thickness of the low porosity layer was 20 μm or more, and the porosity of the low porosity layer The rate gradually increased toward the inner surface of the air electrode. Sample No. in Table 1 The porosity at 12 is shown in FIG. As can be seen from FIG. 5, the thickness of the low porosity layer is 0.4 mm, which is 20% of the thickness of the air electrode.
[0068]
Next, in order to produce a cylindrical cell for power generation, a sealing member was joined to one end of the co-sintered body. The sealing member was joined by the following procedure. A slurry is prepared by adding water as a solvent to a ZrO 2 powder containing Y 2 O 3 at a ratio of 8 mol% and having an average particle diameter of 1 μm, and one end of the co-sintered body is immersed in this slurry, The film was applied to the outer peripheral surface of one end so as to have a thickness of 100 μm and dried. The molded body having a cap shape as a sealing member was subjected to isostatic pressing (rubber press) using a powder having the same composition as the slurry composition and cut. Thereafter, the end portion of the co-sintered body coated with the slurry was inserted into a molded body for a sealing member, and baked at a temperature of 1300 ° C. in the atmosphere for 1 hour.
[0069]
For power generation, air was flown inside the cell and hydrogen was flown outside at 1000 ° C., and the performance was measured and evaluated with the initial value when the output value was stabilized and the value after holding for 1000 hours. Further, the sample whose output value was stable after being held for 1000 hours was cooled to room temperature and then generated again to measure the output density. These measurement results are shown in Table 1.
[0070]
[Table 1]
Figure 0004508340
[0071]
From Table 1, in the conventional firing method using the resistance heating furnace, the sample No. When firing at 1450 ° C. for 600 minutes as in No. 1, the current collector was insufficiently densified, the air electrode was further densified, and the re-output value was lowered.
[0072]
Sample No. In the case of firing at 1550 ° C. for 360 minutes as in No. 2, Mn in the air electrode diffuses as much as 0.49% by weight in the fuel electrode, and the polarization value of the fuel electrode increases, the initial performance decreases, and the time It turns out that it deteriorates.
[0073]
On the other hand, in the sample of the present invention that has been subjected to microwave firing, a low porosity layer having a lower porosity than other regions of the air electrode is formed on the solid electrolyte side of the air electrode, and the amount of Mn in the fuel electrode is 0. .1% by weight or less, so the polarization value of the fuel electrode is low. As a result, a high power density is obtained at the initial value, and a high power density is obtained even after 1000 hours and at the time of re-generation. It was.
[0074]
【The invention's effect】
In preparation of the solid electrolyte fuel cell of the present invention, using a microwave heating method, further by using a material with a low microwave absorption characteristics of a solid electrolyte in the air electrode, can co-sintering at a low temperature in a short time, the air On the solid electrolyte side of the electrode, a low porosity layer having a lower porosity than other regions of the air electrode is formed, the amount of Mn diffusing into the fuel electrode can be reduced, and the polarization value of the fuel electrode can be lowered, it is possible to improve the initial performance, it is possible to obtain a solid electrolyte fuel cell even after repeated use is excellent in power generation efficiency.
[Brief description of the drawings]
1 is a cross-sectional view showing a fabricated cylindrical solid electrolyte fuel cells by the method of the solid electrolyte fuel cell of the present invention.
FIG. 2 is a conceptual diagram showing a fuel cell using a cylindrical solid oxide fuel cell produced by the method for producing a solid electrolyte fuel cell of the present invention.
FIG. 3 is a graph showing a temperature rise when microwaves are irradiated to a solid electrolyte and an air electrode at a constant rate.
FIG. The SEM photograph of 3 is shown.
FIG. It is a figure which shows the porosity with respect to distance from the surface by the side of the solid electrolyte of 12 air electrodes.
6 is a perspective view showing a conventional cylindrical solid electrolyte fuel cells.
[Explanation of symbols]
31 ... solid electrolyte 32 ... air electrode 33 ... fuel electrode 43 ... low porosity layer 45 ... other areas 51 ... reactor 59 ... Solid electrolyte fuel of the air electrode Battery cell

Claims (2)

La及びMnを含有するペロブスカイト型酸化物からなる空気極の表面に、3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質、燃料極、集電体を順次積層してなり、前記空気極の前記固体電解質側に、前記空気極の他の領域よりも気孔率が小さい低気孔率層を有する固体電解質形燃料電池セルの製法であって、La及びMnを含有するペロブスカイト型酸化物からなる空気極成形体の表面に、3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質成形体を積層した積層成形体を、周波数1〜30GHzのマイクロ波を照射して、1300〜1600℃にて10分〜2時間保持して焼結させる工程を含むことを特徴とする固体電解質形燃料電池セルの製法。Solid electrolyte, fuel electrode, current collector comprising partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% of Y 2 O 3 on the surface of an air electrode made of perovskite oxide containing La and Mn A solid electrolyte fuel cell having a low porosity layer on the solid electrolyte side of the air electrode having a lower porosity than other regions of the air electrode, wherein La and Laminate molding in which a solid electrolyte molded body made of partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% Y 2 O 3 is laminated on the surface of an air electrode molded body made of perovskite type oxide containing Mn A process for producing a solid oxide fuel cell, comprising a step of irradiating a body with microwaves having a frequency of 1 to 30 GHz and sintering the body at 1300 to 1600 ° C. for 10 minutes to 2 hours. . 前記La及びMnを含有するペロブスカイト型酸化物からなる空気極成形体の表面に積層した前記3〜15モル%のYを含有する部分安定化あるいは安定化ZrOからなる固体電解質成形体上に、燃料極成形体と集電体成形体とを順次積層した積層成形体を、周波数1〜30GHzのマイクロ波を照射して、1300〜1600℃にて10分〜2時間保持して焼結させることを特徴とする請求項1に記載の固体電解質形燃料電池セルの製法。Solid electrolyte molded body comprising partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% of Y 2 O 3 laminated on the surface of an air electrode molded body comprising a perovskite oxide containing La and Mn A laminated molded body in which a fuel electrode molded body and a current collector molded body are sequentially laminated is irradiated with microwaves having a frequency of 1 to 30 GHz, and held at 1300 to 1600 ° C. for 10 minutes to 2 hours. The method for producing a solid oxide fuel cell according to claim 1, wherein
JP2000046429A 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell Expired - Fee Related JP4508340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046429A JP4508340B2 (en) 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046429A JP4508340B2 (en) 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2001236969A JP2001236969A (en) 2001-08-31
JP4508340B2 true JP4508340B2 (en) 2010-07-21

Family

ID=18568838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046429A Expired - Fee Related JP4508340B2 (en) 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4508340B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2553074A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP5041193B2 (en) * 2005-09-21 2012-10-03 大日本印刷株式会社 Solid oxide fuel cell
JP5228458B2 (en) * 2007-11-30 2013-07-03 大日本印刷株式会社 Method for producing solid oxide fuel cell
JP5517096B2 (en) * 2009-03-31 2014-06-11 Toto株式会社 Solid oxide fuel cell
KR102613897B1 (en) * 2020-12-04 2023-12-15 한국과학기술원 Method of manufacturing protonic ceramic fuel cell and protonic ceramic fuel cell manufactured thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030728A (en) * 1998-07-09 2000-01-28 Toto Ltd Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL98709A (en) * 1990-09-11 1995-08-31 Allied Signal Inc Apparatus and method of fabricating a monolithic solid oxide fuel cell
JPH0748378B2 (en) * 1991-03-28 1995-05-24 日本碍子株式会社 Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
JPH0562688A (en) * 1991-09-04 1993-03-12 Murata Mfg Co Ltd Solid electrolyte type fuel cell
JPH05190183A (en) * 1992-01-13 1993-07-30 Ngk Insulators Ltd Solid electrolyte type fuel cell
JPH0950812A (en) * 1995-08-07 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> Electrode substrate for solid electrolytic fuel cell and its production
JPH1021935A (en) * 1996-07-05 1998-01-23 Toto Ltd Solid electrolyte fuel cell
JPH1074528A (en) * 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell and its manufacture
JP3455054B2 (en) * 1997-03-31 2003-10-06 京セラ株式会社 Manufacturing method of cylindrical solid oxide fuel cell
JP3652106B2 (en) * 1998-03-19 2005-05-25 京セラ株式会社 Solid oxide fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030728A (en) * 1998-07-09 2000-01-28 Toto Ltd Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method

Also Published As

Publication number Publication date
JP2001236969A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP4383092B2 (en) Electrochemical element
WO2019240297A1 (en) Cell, cell stack device, module, and module storage device
JP4462727B2 (en) Solid electrolyte fuel cell
JP4508340B2 (en) Manufacturing method of solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JPH0997621A (en) Cell of cylindrical fuel cell
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP6818960B1 (en) Cells, cell stack devices, modules and module containment devices
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JP3595215B2 (en) Solid oxide fuel cell
JP3580724B2 (en) Solid oxide fuel cell
JP3677404B2 (en) Cylindrical solid electrolyte fuel cell
KR100707117B1 (en) Anode-supported solid oxide fuel cells using the same, and fabricating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees