JP3580724B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3580724B2
JP3580724B2 JP12038799A JP12038799A JP3580724B2 JP 3580724 B2 JP3580724 B2 JP 3580724B2 JP 12038799 A JP12038799 A JP 12038799A JP 12038799 A JP12038799 A JP 12038799A JP 3580724 B2 JP3580724 B2 JP 3580724B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
current collector
perovskite
crystal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12038799A
Other languages
Japanese (ja)
Other versions
JP2000311697A (en
Inventor
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12038799A priority Critical patent/JP3580724B2/en
Publication of JP2000311697A publication Critical patent/JP2000311697A/en
Application granted granted Critical
Publication of JP3580724B2 publication Critical patent/JP3580724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状の空気極の外面に、部分安定化または安定化ZrOからなる固体電解質、燃料極が順次形成され、集電体を固体電解質および切欠部から露出した空気極に接合してなる固体電解質型燃料電池セルに関するものである。
【0002】
【従来技術】
固体電解質型燃料電池セルはその作動温度が900〜1050℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に固体電解質型燃料電池セルには、円筒型と平板型が知られている。平板型の固体電界質型燃料電池セルは、発電の単位体積当たり出力密度が高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型の固体電解質型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。両形状の固体電解質型燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0004】
円筒型の固体電解質型燃料電池セルは、図2に示すように開気孔率30〜40%程度のLaMnO系材料からなる多孔性の空気極1を形成し、その表面にY含有のZrOからなる固体電解質2を被覆し、さらにこの表面に多孔性のNi−ジルコニアの燃料極3が設けられている。燃料電池のモジュールにおいては、各単セルはLaCrO系の集電体(インターコネクタ)4を介して接続される。発電は、空気極1内部に空気6(酸素)を、外部に燃料7(水素)を流し、1000〜1050℃の温度で行われる。
【0005】
上記のような円筒型の固体電解質型燃料電池セルを製造する方法としては、近年、製造工程を簡略化し、且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒型の空気極成形体に、固体電解質成形体および集電体成形体をロール状に巻き付けて同時焼成を行い、その後、固体電解質表面に燃料極を形成する方法である。
【0006】
例えば、特開平9−129245号公報には、円筒型の空気極成形体の表面に固体電解質のシート状成形体を巻き付けた後、固体電解質のシート状成形体の端部が開口した部分(切欠部)を研摩して平坦状となした後、集電体のシート状成形体を積層圧着し、焼成し、この後、金属を含有するスラリーを固体電解質表面に塗布して燃料極を形成した円筒型の固体電解質型燃料電池セルが開示されている。
【0007】
この円筒型の固体電解質型燃料電池セルにおける空気極は、Laの15〜20原子%をCa、Sr、Baなどのアルカリ土類金属により置換したLaMnO系組成物からなり、固体電解質は、ZrOに対してY、Ybなどの安定化材を3〜15モル%の割合で固溶させた部分安定化ZrOあるいは安定化ZrOからなり、集電体はCa、Mg、Srを固溶したLaCrOから構成されている。
【0008】
そして、集電体の表面は、セルの外部に供給される水素に晒されるとともに、セル内部の酸素に、多孔質の空気極を介して晒されることになる。このため、集電体は酸化・還元の両雰囲気に対して化学的に安定で、かつ、両雰囲気を遮断するために緻密であることが要求される。金属を用いた場合は酸化雰囲気に晒される部分が酸化されてしまうため、導電性を有するセラミックスが用いられる。
【0009】
また、酸化・還元の両雰囲気は、緻密体である集電体と固体電解質によって遮断されているが、集電体と固体電解質の境界部分も隙間なく密着されている必要がある。
【0010】
ところが、集電体に用いられるLaCrO系ペロブスカイト材料は、Y含有の安定化または部分安定化ZrOとの接合が困難であるため、LaCrOからなるぺロブスカイト型結晶のCrの一部をMgで置換して、集電体と固体電解質とを良好に接合することが行われている。また、Mgによる置換により、焼結性および導電性も向上する。
【0011】
【発明が解決しようとする課題】
しかしながら、集電体の固体電解質への接合を良好なものにするためには、LaCrOからなるぺロブスカイト型結晶のMgによる置換量が多いほど望ましいが、一方で、Mgによる置換量が多くなる程、水素等の還元雰囲気に晒されると体積膨張が大きくなり、このため、セル作製の際や発電中に温度サイクルが印加されると、セルが破損するという問題があった。
【0012】
一方、LaCrOからなるぺロブスカイト型結晶のMgによる置換量が少なくなると、還元雰囲気に晒されても体積膨張は小さくなるものの、集電体の固体電解質側部分もMgによる置換量が少なくなるため、集電体の固体電解質への接合が不良となるという問題があった。
【0013】
即ち、LaCrO系材料はペロブスカイト型結晶を有し、300℃付近で斜方晶系から菱面体晶系への相変態が存在し、また、還元雰囲気では酸素イオンの脱離に伴い残された陽イオンの反発による体積の増大が起こることが知られている。
【0014】
この体積膨張はペロブスカイト型結晶中のMgの置換量が全金属に対して1〜9原子%の範囲では小さな値を示すが、これら置換量の範囲では、実用の量産化の観点から前述したようにLaCrOが難焼結性であり、また、集電体の固体電解質への接合状況が思わしくなく、集電体と固体電解質との間から、ガスが漏出するという問題があった。
【0015】
【課題を解決するための手段】
本発明者は上記問題を解決するため、上記LaCrO系材料の焼結性を改善し、さらに還元雰囲気中におけるLaCrO系材料の体積の増大を抑制し、導電率を向上・安定化させ、さらに、固体電解質との接合性を向上する方法について検討を重ねた結果、集電体を、LaCrO系材料の焼結性を高めるため少量のMgで置換したLaCrO結晶を主結晶とし、集電体の固体電解質と接する部分付近のペロブスカイト型結晶中のMgの置換量を、その他の部分よりも多くすることにより、還元雰囲気中におけるLaCrO系材料の体積膨張を抑制するとともに、集電体の固体電解質との接合を良好にできることを見出し、本発明に至った。
【0016】
即ち、本発明は、円筒状の空気極の外面に、部分安定化または安定化ZrOからなる固体電解質、燃料極が順次形成され、且つ前記固体電解質に設けられた切欠部を被覆する集電体を、前記固体電解質および前記切欠部から露出した前記空気極に接合してなる固体電解質型燃料電池セルにおいて、前記集電体が、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型結晶を主結晶とし、かつ、前記集電体の固体電解質と接する部分に、前記ぺロブスカイト型結晶のMg置換量が他の領域よりも多い高Mg置換結晶領域が存在するものである。
【0017】
ここで、高Mg置換結晶領域におけるぺロブスカイト型結晶のMg置換量が、前記ぺロブスカイト型結晶の全金属元素のうち10原子%以上であることが望ましい。また、集電体にはMgO結晶を含有することが望ましい。
【0018】
【作用】
本発明の固体電解質型燃料電池セルでは、少なくとも、空気極、部分安定化または安定化ZrOからなる固体電解質、および集電体を同時焼成するタイプのセルにおいて、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型結晶を主結晶とする集電体の固体電解質と接する部分に、他の領域よりもぺロブスカイト型結晶のMg置換量が多い高Mg置換結晶領域を存在せしめたので、集電体の固体電解質と接する部分では、ぺロブスカイト型結晶中のMg置換量が多いため、集電体の固体電解質への接合状態が良好となり、一方、その他の部分、例えば、固体電解質と反対側の集電体ではぺロブスカイト型結晶中のMg置換量が少ないため、集電体が還元雰囲気に晒されても体積膨張が小さくなる。
【0019】
また、本発明の固体電解質型燃料電池セルでは、高Mg置換結晶領域におけるぺロブスカイト型結晶のMg置換量を、ぺロブスカイト型結晶の全金属元素のうち10原子%以上とすることにより、上記集電体の固体電解質への接合状態をさらに良好とできる。
【0020】
さらに、本発明の固体電解質型燃料電池セルでは、集電体にMgO結晶を含有せしめることにより、集電体の熱膨張係数を高くすることができ、固体電解質や空気極のそれと一致させることができる。
【0021】
即ち、固体電解質型燃料電池セルの集電体として用いる場合、セル製造中や発電中における破損を防止するため、集電体以外の部材、すなわち固体電解質や空気極などと熱膨張係数を一致させる必要がある。そのためには、LaCrOより大きな熱膨張係数を有するMgO結晶をLaCrO結晶とともに存在させることにより、本来、固体電解質や空気極よりも熱膨張係数が低い集電体の熱膨張係数を高くすることができ、固体電解質や空気極の熱膨張係数と一致させることができる。
【0022】
【発明の実施の形態】
本発明における固体電解質型燃料電池セルは、図1に示すように、円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成してセル本体34が構成されており、このセル本体34の外面に、空気極32と電気的に接続する集電体35が形成されている。
【0023】
即ち、固体電解質31の一部に切欠部36が形成され、固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37および切欠部36近傍の固体電解質31の両端部表面が集電体35により被覆され、集電体35が、固体電解質31の両端部表面、および固体電解質31の切欠部36から露出した空気極32の表面に接合されている。
【0024】
空気極32と電気的に接続する集電体35はセル本体34の外面に形成され、ほぼ段差のない連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。この集電体35は、セル同士を接続する際に、他のセルの燃料極にNiフェルトを介して電気的に接続され、これにより燃料電池モジュールが構成される。連続同一面39は、固体電解質成形体の両端部と空気極成形体の一部とが連続したほぼ同一面となるまで、固体電解質成形体の両端部間を研摩することにより形成される。
【0025】
固体電解質31は、例えば3〜20モル%のYあるいはYbを含有した部分安定化あるいは安定化ZrOが用いられ、空気極32は、例えば、LaおよびMnを含有するペロブスカイト型複合酸化物を主成分とするもので、Caを酸化物換算で8〜10重量%、希土類元素のうち少なくとも一種を酸化物換算で10〜20重量%含有しても良い。希土類元素としては、Y、Nd、Dy、Er、Yb等があり、このうちでもYが望ましい。燃料極33としては、例えば、50〜80重量%Niを含むZrO(Y含有)サーメットが用いられる。
【0026】
集電体35は、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型結晶を主結晶とするものであり、希土類元素やアルカリ土類金属元素を含有するものであっても良い。集電体35には、さらにMgO結晶を含有することが、集電体35の熱膨張係数を高くして、固体電解質31や空気極32のそれと一致させることができるため望ましい。
【0027】
固体電解質31、空気極32、燃料極33としては、上記例に限定されるものではなく、公知材料を用いても良い。上記材料からなる固体電解質31の熱膨張係数は、ほぼ10.5×10−6/℃である。
【0028】
そして、本発明の固体電解質型燃料電池セルでは、集電体35の固体電解質31と接する部分に、ぺロブスカイト型結晶のMg置換量が他の領域Bよりも多い高Mg置換結晶領域Aが存在することを特徴とする。
【0029】
ここで、他の領域Bとは、例えば、切欠部36近傍の集電体部分、外部に露出する集電体表面付近をいう。ぺロブスカイト型結晶のMg置換量とは、集電体のぺロブスカイト型結晶をLa1.0 Mg2xCr1.0−2xと表した時のxの値である。
【0030】
高Mg置換結晶領域Aにおけるぺロブスカイト型結晶のMg置換量は、ぺロブスカイト型結晶の全金属元素のうち10原子%以上、特には10〜13原子%(0.1≦x≦0.13)であることが望ましい。これは、10原子%以上の場合には、還元雰囲気に晒された場合の体積膨張を低く抑制しつつ、集電体35の固体電解質31への接合状態をさらに良好とできるからである。一方、13原子%よりも多くなると、還元雰囲気での体積膨張が大きくなり、集電体35と固体電解質31とが剥離を生じる可能性があるからである
また、他の領域Bでは、ぺロブスカイト型結晶のMg置換量は、ぺロブスカイト型結晶の全金属元素のうち1〜9原子%であることが、還元雰囲気に晒された場合の体積膨張を抑制できるという点から望ましい。
【0031】
さらに、高Mg置換結晶領域Aは、集電体の固体電解質側表面から50μmであることが、高Mg置換結晶領域Aと他の領域Bとによる内部応力を緩和する点から望ましい。
【0032】
本発明の固体電解質型燃料電池セルでは、集電体35の固体電解質31側に、他の領域Bよりもぺロブスカイト型結晶のMg置換量が多い高Mg置換結晶領域Aが存在するため、集電体35の固体電解質31側では、ぺロブスカイト型結晶中のMg置換量が多いため、集電体35の固体電解質31との接合状態が良好となり、一方、その他の部分では、ぺロブスカイト型結晶中のMg置換量が少ないため、集電体35が還元雰囲気に晒されても体積膨張が小さくなり、集電体35と固体電解質31との間からのガスの漏出を防止でき、また、集電体の体積膨張によるセルの破損を防止できる。
【0033】
本発明の固体電解質型燃料電池セルは、例えば、円筒状の空気極成形体(または空気極仮焼体)の外表面に、ドクターブレード法により作製した固体電解質シートを、その両端が離間するように(開口部が形成されるように)貼り付け、仮焼した後、固体電解質シートの両端間が同一平面となるまで研摩し、この部分に集電体シートを貼り付け、さらに固体電解質シートの表面に燃料極シートを貼り付け、その後1400〜1600℃の温度で2〜10時間大気中で焼成して作製される。この場合、燃料極の形成はスラリーを塗布して、共焼結時に焼成しても良いし、共焼結後に焼成しても良い。スラリーを塗布しただけでも良い。この場合には、発電中に焼成されることになる。
【0034】
集電体シートの作製方法について説明する。先ず、LaCO、CrおよびMgO粉末をジルコニアボールなどを用いて回転ミルなどの周知の方法で混合した後、1000〜1500℃の温度で1〜10時間熱処理して、例えば、ぺロブスカイト型結晶のMg置換量が、全金属元素のうち10〜13原子%のLaCrO系ペロブスカイト原料粉末Aと、Mg置換量が、全金属元素のうち1〜9原子%のLaCrO系ペロブスカイト原料粉末Bの2種類の粉末A、Bを作製し、これを粉砕して0.5〜5μmとする。
【0035】
この後、上記原料粉末A、Bを用いて、ドクターブレードのような周知の方法によりシート成形し、シートA、Bを作製する。
【0036】
そして、空気極成形体の外表面に、固体電解質シートを、その両端が離間するように貼り付け、仮焼した後、固体電解質シートの両端間が同一平面となるまで研摩し、この後、固体電解質シートの両端部にシートAをそれぞれ貼り付け、このシートAを被覆するようにシートBでを貼り付け、これを焼成することにより得られる。
【0037】
尚、固体電解質の両端間の間隔、即ち、切欠部幅だけ間隔を置いて、シートAを配置し、これらのシートAの上にシートBを配置し、これをプレス成形して、集電体シートを作製し、この集電体シートのシートAが固体電解質シートの両端部に当接するように集電体シートを貼り付け、これを焼成しても良い。
【0038】
【実施例】
市販の純度99.9%以上、平均結晶粒径1〜2μmのLaCO、Cr、MgOの粉末を調合し、ジルコニアボールを用いた回転ミルにて10時間混合後、1200℃で2時間仮焼し、2種類のLaMgCrO系のペロブスカイト型結晶粉末を作製し、これらの仮焼粉末100重量部に対して、MgO粉末をそれぞれ表1に示す量だけ添加し、原料粉末A、Bを得た。
【0039】
この後、原料粉末A、Bに対して有機系粘結剤を混合し、ドクターブレード法によって厚み75μmのグリーンシートA、Bを作製した。
【0040】
空気極を形成する粉末として、市販の平均結晶粒子径8μmのLa0.8 Sr0.2 MnO粉末を用い、焼結時の収縮率を制御するためにポア形成剤であるアビセル(商品名)を添加し、押出成形により外径18mm、内径12mmの中空の円筒状空気極成形体を作製した。
【0041】
一方、固体電解質として市販の平均粒径が0.6μmの10モル%Y/90モル%ZrO組成の粉末に有機系粘結剤を混合し、ドクターブレード法によって厚み130μmのグリーンシートを作製した。
【0042】
この後、空気極材料からなる円筒状成形体表面に固体電解質シートを巻き付け、固体電解質シートの両端部にそれぞれグリーンシートAを貼り付け、これらのグリーンシートAを被覆するように、グリーンシートBをグリーンシートAおよび空気極の露出面に貼り付け、1500℃で3時間焼成した。
【0043】
そして、80重量%NiO/20重量%Y含有する部分安定化ZrOの混合粉体を、固体電解質表面に50μmの厚みに塗布し、1400℃大気中1時間の熱処理を行い、図1に示す固体電解質型燃料電池セルを作製した。
【0044】
作製した固体電解質型燃料電池セルは、空気極が外径18mm、内径12mm、固体電解質の厚みが100μm、集電体の厚みが100μm(高Mg置換結晶領域の厚みが50μm)であった。
【0045】
得られた固体電解質型燃料電池セルについて、集電体の固体電解質側面から20μm地点(高Mg置換結晶領域)と、70μm地点(他の領域)について、ペロブスカイト型結晶のMg置換量をEPMA分析より求めた。
【0046】
次に、セルの内側に1kgf/cmの気圧をかけ、水中に没し、初期状態のガスリークの有無について調べた。
【0047】
この後、セルの内側に空気を、外側に水素を流しながら室温から1000℃まで5時間で昇温し、1000℃で1時間保持した後、室温まで5時間で冷却した。この熱サイクルを20回繰り返し、その際のセルのガスリークの有無を調べた。また、1000℃で1時間保持した後に出力密度を測定した。これらの結果を表2に示す
【0048】
【表1】

Figure 0003580724
【0049】
【表2】
Figure 0003580724
【0050】
これらの表1、2から、集電体の固体電解質と接する部分に高Mg置換結晶領域が存在する本発明の試料では、出力密度が0.32W/cm以上で、初期状態のガスリークもなく、熱サイクル後のガスリークも無かった。
【0051】
一方、高Mg置換結晶領域が存在しない試料No.1では、ペロブスカイト型結晶中のMg置換量が5原子%と一定であるため、Mg置換量が少なく、作製時において固体電解質と集電体との接合が不良となり、初期状態でガスリークが生じていることが判る。また、高Mg置換結晶領域が存在しない試料No.10では、ペロブスカイト型結晶中のMg置換量が12原子%と一定であるため、作製時において固体電解質と集電体との接合が良好であるが、集電体が還元雰囲気に晒されることによる体積膨張が大きく、内部応力が発生し、熱サイクル試験後においてガスリークが発生するようになることが判る。
【0052】
【発明の効果】
本発明の固体電解質型燃料電池セルでは、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型結晶を主結晶とする集電体の固体電解質と接する部分に、他の領域よりもぺロブスカイト型結晶のMg置換量が多い高Mg置換結晶領域が存在するので、集電体の固体電解質側では、ぺロブスカイト型結晶中のMg置換量が多くなり、集電体の固体電解質への接合状態が良好となり、一方、その他の部分、例えば、固体電解質と反対側の集電体の部分ではぺロブスカイト型結晶中のMg置換量が少なくなり、集電体が還元雰囲気に晒されても体積膨張が小さくなり、集電体と固体電解質を一体化させ、かつ、大気−還元雰囲気間での磁器の体積変化を抑制して、各部材間の応力の発生を抑制し、破損を防止することができる。
【図面の簡単な説明】
【図1】本発明の円筒状の固体電解質型燃料電池セルを示す断面図である。
【図2】従来の円筒状の固体電解質型燃料電池セルを示す斜視図である。
【符号の説明】
32・・・空気極
31・・・固体電解質
33・・・燃料極
35・・・集電体
36・・・切欠部
A・・・高Mg置換結晶領域
B・・・他の領域[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, a solid electrolyte composed of partially stabilized or stabilized ZrO 2 and a fuel electrode are sequentially formed on the outer surface of a cylindrical air electrode, and a current collector is joined to the solid electrolyte and the air electrode exposed from the notch. The present invention relates to a solid oxide fuel cell comprising:
[0002]
[Prior art]
Since the solid oxide fuel cell has an operating temperature as high as 900 to 1050 ° C., it has high power generation efficiency and is expected as a third generation power generation system.
[0003]
In general, a solid electrolyte type fuel cell is known to be a cylindrical type or a flat type. Flat solid electrolyte fuel cells have the characteristic of high power density per unit volume of power generation.However, there are problems such as imperfect gas seals and non-uniformity of temperature distribution in the cells in practical use. is there. On the other hand, a cylindrical solid oxide fuel cell has the features that although the output density is low, the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.
[0004]
As shown in FIG. 2, the cylindrical solid oxide fuel cell forms a porous air electrode 1 made of a LaMnO 3 -based material having an open porosity of about 30 to 40%, and contains Y 2 O 3 on its surface. the solid electrolyte 2 consisting of ZrO 2 coated, more fuel electrode 3 of the porous Ni- zirconia on the surface are provided for. In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 4. Power generation is performed at a temperature of 1000 to 1050 ° C. by flowing air 6 (oxygen) inside the air electrode 1 and fuel 7 (hydrogen) outside.
[0005]
As a method for manufacturing a cylindrical solid oxide fuel cell as described above, in recent years, in order to simplify the manufacturing process and reduce the manufacturing cost, at least two of the constituent materials are simultaneously fired, A so-called co-sintering method has been proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape to perform simultaneous firing, and thereafter, a fuel electrode is formed on the surface of the solid electrolyte. Is the way.
[0006]
For example, in Japanese Patent Application Laid-Open No. 9-129245, after a sheet-shaped body of solid electrolyte is wound around the surface of a cylindrical air electrode formed body, a portion (notch) where the end of the sheet-shaped body of solid electrolyte is opened Part) was polished to a flat shape, and then a sheet-like formed body of the current collector was laminated and pressed, baked, and then a slurry containing metal was applied to the surface of the solid electrolyte to form a fuel electrode. A cylindrical solid oxide fuel cell is disclosed.
[0007]
The air electrode in this cylindrical solid electrolyte fuel cell is made of a LaMnO 3 -based composition in which 15 to 20 atomic% of La is replaced by an alkaline earth metal such as Ca, Sr, or Ba, and the solid electrolyte is ZrO. 2 with respect consists Y 2 O 3, Yb 2 O 3 stabilized material was dissolved in a proportion of 3 to 15 mol% portion of such stabilized ZrO 2 or stabilized ZrO 2, the current collector Ca, It is composed of LaCrO 3 in which Mg and Sr are dissolved.
[0008]
Then, the surface of the current collector is exposed to hydrogen supplied to the outside of the cell, and is also exposed to oxygen inside the cell via a porous air electrode. For this reason, the current collector is required to be chemically stable to both the oxidizing and reducing atmospheres and to be dense in order to shut off both the atmospheres. When a metal is used, a portion exposed to an oxidizing atmosphere is oxidized, and thus a ceramic having conductivity is used.
[0009]
Further, both the oxidation and reduction atmospheres are shut off by the dense current collector and the solid electrolyte, but it is necessary that the boundary between the current collector and the solid electrolyte be in close contact with no gap.
[0010]
However, the LaCrO 3 perovskite material used for the current collector, Y 2 O 3 for joining the stabilized or partially stabilized ZrO 2 containing it is difficult, one Cr perovskite type crystal consisting of LaCrO 3 The current collector and the solid electrolyte are satisfactorily joined by replacing the portion with Mg. In addition, sinterability and conductivity are also improved by substitution with Mg.
[0011]
[Problems to be solved by the invention]
However, in order to improve the bonding of the current collector to the solid electrolyte, the perovskite-type crystal composed of LaCrO 3 is desirably more substituted by Mg, but is more desirably replaced by Mg. As a result, when exposed to a reducing atmosphere such as hydrogen, the volume expansion increases, and therefore, there is a problem that the cell is damaged when a temperature cycle is applied during cell production or during power generation.
[0012]
On the other hand, when the perovskite-type crystal composed of LaCrO 3 is reduced in the amount of substitution with Mg, the volume expansion is reduced even when exposed to a reducing atmosphere, but the substitution amount of Mg in the solid electrolyte side of the current collector is also decreased. In addition, there has been a problem that joining of the current collector to the solid electrolyte becomes poor.
[0013]
That is, the LaCrO 3 -based material has a perovskite-type crystal, has a phase transformation from an orthorhombic system to a rhombohedral system at around 300 ° C., and is left with the desorption of oxygen ions in a reducing atmosphere. It is known that cation repulsion causes an increase in volume.
[0014]
This volume expansion shows a small value when the substitution amount of Mg in the perovskite-type crystal is in the range of 1 to 9 atomic% with respect to all metals, but in the range of these substitution amounts, as described above from the viewpoint of practical mass production. In addition, LaCrO 3 is difficult to sinter, and the state of joining of the current collector to the solid electrolyte is not good, so that there is a problem that gas leaks from between the current collector and the solid electrolyte.
[0015]
[Means for Solving the Problems]
In order to solve the above problem, the present inventors have improved the sinterability of the LaCrO 3 -based material, further suppressed an increase in the volume of the LaCrO 3 -based material in a reducing atmosphere, and improved and stabilized electrical conductivity. Furthermore, as a result of repeated investigations on a method for improving the bonding property with the solid electrolyte, a LaCrO 3 crystal in which the current collector was replaced with a small amount of Mg in order to enhance the sinterability of the LaCrO 3 -based material was used as a main crystal. By increasing the substitution amount of Mg in the perovskite-type crystal in the vicinity of a portion of the current collector in contact with the solid electrolyte as compared with other portions, the volume expansion of the LaCrO 3 -based material in the reducing atmosphere is suppressed, and the current collector is reduced. Of the present invention can be favorably bonded to a solid electrolyte, and the present invention has been achieved.
[0016]
That is, according to the present invention, there is provided a current collector in which a solid electrolyte composed of partially stabilized or stabilized ZrO 2 and a fuel electrode are sequentially formed on the outer surface of a cylindrical air electrode, and the cutout provided in the solid electrolyte is covered. A solid electrolyte fuel cell unit comprising a body joined to the solid electrolyte and the air electrode exposed from the notch, wherein the current collector comprises a perovskite crystal containing La, Cr and Mg as metal elements. Is a main crystal, and a high Mg-substituted crystal region in which the perovskite-type crystal has a larger amount of Mg substitution than other regions exists in a portion in contact with the solid electrolyte of the current collector.
[0017]
Here, it is desirable that the perovskite-type crystal in the high-Mg-substituted crystal region has an Mg substitution amount of at least 10 atomic% of all the metal elements of the perovskite-type crystal. It is desirable that the current collector contains MgO crystals.
[0018]
[Action]
In the solid oxide fuel cell according to the present invention, at least a solid electrolyte composed of an air electrode, a partially stabilized or stabilized ZrO 2 , and a current collector type co-fired cell, wherein La, Cr and Mg are used as metal elements. A high Mg-substituted crystal region in which the perovskite-type crystal has a larger amount of Mg substitution than the other regions was present in a portion of the current collector having a perovskite-type crystal containing the main crystal, which is in contact with the solid electrolyte. In the portion of the current collector that is in contact with the solid electrolyte, the amount of Mg substitution in the perovskite-type crystal is large, so that the current collector has a good bonding state to the solid electrolyte, while other portions, for example, on the side opposite to the solid electrolyte In the current collector, the amount of Mg substitution in the perovskite-type crystal is small, so that the volume expansion is reduced even when the current collector is exposed to a reducing atmosphere.
[0019]
In the solid oxide fuel cell according to the present invention, the perovskite-type crystal in the high Mg-substituted crystal region has a Mg substitution amount of 10 atomic% or more of all metal elements of the perovskite-type crystal, whereby The bonding state of the electric body to the solid electrolyte can be further improved.
[0020]
Furthermore, in the solid oxide fuel cell of the present invention, by including MgO crystals in the current collector, the thermal expansion coefficient of the current collector can be increased, and the current expansion coefficient can be matched with that of the solid electrolyte or the air electrode. it can.
[0021]
That is, when used as a current collector of a solid oxide fuel cell, the coefficient of thermal expansion is matched with members other than the current collector, that is, a solid electrolyte or an air electrode, in order to prevent damage during cell production or power generation. There is a need. To this end, the MgO crystal having a larger thermal expansion coefficient than LaCrO 3 is present together with the LaCrO 3 crystal, so that the current expansion coefficient of the current collector, which is originally lower than that of the solid electrolyte or the air electrode, is increased. And the thermal expansion coefficient of the solid electrolyte or the air electrode can be matched.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the solid oxide fuel cell according to the present invention includes a cylindrical solid electrolyte 31 having an air electrode 32 formed on an inner surface and a fuel electrode 33 formed on an outer surface to form a cell body 34. A current collector 35 electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34.
[0023]
That is, the notch 36 is formed in a part of the solid electrolyte 31, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the solid electrolyte near the exposed surface 37 and the notch 36 is exposed. The surfaces of both ends of 31 are covered with a current collector 35, and the current collector 35 is joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the cutout portion 36 of the solid electrolyte 31.
[0024]
A current collector 35 electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34 and is formed so as to cover the continuous same surface 39 with almost no step, and is electrically connected to the fuel electrode 33. Not. When connecting the cells, the current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt, thereby forming a fuel cell module. The continuous same surface 39 is formed by polishing the both ends of the solid electrolyte molded body until both ends of the solid electrolyte molded body and a part of the air electrode molded body become substantially the same continuous surface.
[0025]
For the solid electrolyte 31, partially stabilized or stabilized ZrO 2 containing, for example, 3 to 20 mol% of Y 2 O 3 or Yb 2 O 3 is used, and the air electrode 32 is made of, for example, a perovskite containing La and Mn. It is mainly composed of a type composite oxide, and may contain 8 to 10% by weight of Ca in terms of oxide and 10 to 20% by weight of at least one of rare earth elements in terms of oxide. Rare earth elements include Y, Nd, Dy, Er, Yb and the like, and among them, Y is desirable. The fuel electrode 33, for example, ZrO 2 (Y 2 O 3 content) cermet containing 50-80 wt% Ni are used.
[0026]
The current collector 35 has a perovskite type crystal containing La, Cr and Mg as metal elements as a main crystal, and may contain a rare earth element or an alkaline earth metal element. It is desirable that the current collector 35 further contain MgO crystals since the thermal expansion coefficient of the current collector 35 can be increased to match that of the solid electrolyte 31 and the air electrode 32.
[0027]
The solid electrolyte 31, the air electrode 32, and the fuel electrode 33 are not limited to the above examples, and may be made of known materials. The thermal expansion coefficient of the solid electrolyte 31 made of the above material is approximately 10.5 × 10 −6 / ° C.
[0028]
In the solid oxide fuel cell of the present invention, a high Mg-substituted crystal region A in which the perovskite crystal has a larger Mg substitution amount than the other region B exists in a portion of the current collector 35 in contact with the solid electrolyte 31. It is characterized by doing.
[0029]
Here, the other region B refers to, for example, a current collector portion near the cutout portion 36 and near the current collector surface exposed to the outside. The Mg substitution amount of perovskite type crystals, the value of x when representing the perovskite-type crystal of the current collector and La 1.0 Mg 2x Cr 1.0-2x O 3 .
[0030]
The Mg substitution amount of the perovskite-type crystal in the high Mg-substituted crystal region A is 10 atomic% or more, particularly 10 to 13 atomic% (0.1 ≦ x ≦ 0.13) of all metal elements of the perovskite crystal. It is desirable that This is because when the content is 10 atomic% or more, the bonding state of the current collector 35 to the solid electrolyte 31 can be further improved while suppressing the volume expansion when exposed to a reducing atmosphere. On the other hand, if the content exceeds 13 atomic%, the volume expansion in a reducing atmosphere increases, and the current collector 35 and the solid electrolyte 31 may be separated from each other. The substitution amount of Mg in the type crystal is preferably 1 to 9 atomic% of all the metal elements of the perovskite type crystal in that the volume expansion when exposed to a reducing atmosphere can be suppressed.
[0031]
Further, the high Mg-substituted crystal region A is desirably 50 μm from the solid electrolyte side surface of the current collector from the viewpoint of alleviating the internal stress caused by the high Mg-substituted crystal region A and the other region B.
[0032]
In the solid oxide fuel cell of the present invention, a high Mg-substituted crystal region A having a larger perovskite-type Mg substitution amount than the other region B exists on the solid electrolyte 31 side of the current collector 35, On the solid electrolyte 31 side of the current collector 35, the perovskite-type crystal has a large amount of Mg substitution, so that the junction state of the current collector 35 with the solid electrolyte 31 is improved. On the other hand, in the other portions, the perovskite-type crystal Since the amount of substituted Mg in the inside is small, even if the current collector 35 is exposed to a reducing atmosphere, the volume expansion is small, and leakage of gas from between the current collector 35 and the solid electrolyte 31 can be prevented. Cell breakage due to volume expansion of the electric body can be prevented.
[0033]
The solid oxide fuel cell of the present invention is, for example, a solid electrolyte sheet produced by a doctor blade method on an outer surface of a cylindrical air electrode molded body (or an air electrode calcined body) such that both ends are separated. (So that an opening is formed), calcined, and polished until both ends of the solid electrolyte sheet are flush with each other. A current collector sheet is attached to this portion. The fuel electrode sheet is attached to the surface, and then fired in the atmosphere at a temperature of 1400 to 1600 ° C. for 2 to 10 hours to produce a fuel electrode sheet. In this case, the fuel electrode may be formed by applying a slurry and firing at the time of co-sintering, or firing after co-sintering. The slurry may be simply applied. In this case, firing is performed during power generation.
[0034]
A method for manufacturing the current collector sheet will be described. First, LaCO 3 , Cr 2 O 3 and MgO powder are mixed by a known method such as a rotary mill using a zirconia ball or the like, and then heat-treated at a temperature of 1000 to 1500 ° C. for 1 to 10 hours, for example, perovskite. Mg substitution of type crystals, and LaCrO 3 perovskite material powder a of 10 to 13 atomic% of all metal elements, Mg substitution amount, 1-9 atomic% of LaCrO 3 perovskite material powder of the total metal elements Two kinds of powders A and B of B are prepared and pulverized to 0.5 to 5 μm.
[0035]
Thereafter, using the raw material powders A and B, sheets are formed by a well-known method such as a doctor blade, and sheets A and B are produced.
[0036]
Then, a solid electrolyte sheet is attached to the outer surface of the air electrode molded body so that both ends are separated from each other, calcined, and polished until both ends of the solid electrolyte sheet are flush with each other. A sheet A is attached to each end of the electrolyte sheet, a sheet B is attached so as to cover the sheet A, and the sheet is fired.
[0037]
In addition, the sheet A is disposed at intervals between both ends of the solid electrolyte, that is, at intervals corresponding to the notch width, the sheet B is disposed on these sheets A, and this is press-formed to form a current collector. A sheet may be prepared, and the current collector sheet may be attached and baked so that the sheet A of the current collector sheet contacts both ends of the solid electrolyte sheet.
[0038]
【Example】
A commercially available powder of La 2 CO 3 , Cr 2 O 3 , and MgO having a purity of 99.9% or more and an average crystal grain size of 1 to 2 μm is prepared, mixed for 10 hours by a rotary mill using zirconia balls, and then 1200 ° C. For 2 hours to produce two types of LaMgCrO 3 -based perovskite-type crystal powders. To 100 parts by weight of these calcined powders, MgO powders were added in amounts shown in Table 1 to obtain raw material powder A. , B were obtained.
[0039]
Thereafter, an organic binder was mixed with the raw material powders A and B, and green sheets A and B having a thickness of 75 μm were produced by a doctor blade method.
[0040]
As a powder for forming the air electrode, a commercially available La 0.8 Sr 0.2 MnO 3 powder having an average crystal particle diameter of 8 μm is used, and Avicel (trade name) which is a pore-forming agent for controlling shrinkage during sintering is used. ) Was added, and a hollow cylindrical air electrode molded body having an outer diameter of 18 mm and an inner diameter of 12 mm was produced by extrusion molding.
[0041]
On the other hand, a commercially available average particle diameter as a solid electrolyte by mixing an organic binder to powder of 10 mol% Y 2 O 3/90 mol% ZrO 2 composition of 0.6 .mu.m, a 130μm thick by a doctor blade method green sheet Was prepared.
[0042]
Thereafter, the solid electrolyte sheet is wrapped around the surface of the cylindrical molded body made of the air electrode material, green sheets A are attached to both ends of the solid electrolyte sheet, and the green sheet B is coated so as to cover these green sheets A. It was attached to the green sheet A and the exposed surface of the air electrode, and was baked at 1500 ° C. for 3 hours.
[0043]
Then, a mixed powder of partially stabilized ZrO 2 containing 80% by weight of NiO / 20% by weight of Y 2 O 3 was applied to the surface of the solid electrolyte to a thickness of 50 μm, and heat-treated at 1400 ° C. for 1 hour in the atmosphere. The solid oxide fuel cell shown in FIG.
[0044]
The manufactured solid electrolyte fuel cell had an air electrode having an outer diameter of 18 mm, an inner diameter of 12 mm, a thickness of the solid electrolyte of 100 μm, and a thickness of the current collector of 100 μm (the thickness of the high Mg substitution crystal region was 50 μm).
[0045]
From the obtained solid oxide fuel cell, the amount of Mg substitution of the perovskite crystal at 20 μm point (high Mg substitution crystal region) and 70 μm point (other region) from the solid electrolyte side surface of the current collector was determined by EPMA analysis. I asked.
[0046]
Next, a pressure of 1 kgf / cm 2 was applied to the inside of the cell, the cell was immersed in water, and the presence or absence of gas leak in the initial state was examined.
[0047]
Thereafter, the temperature was raised from room temperature to 1000 ° C. for 5 hours while flowing air inside the cell and hydrogen outside, and the temperature was maintained at 1000 ° C. for 1 hour, followed by cooling to room temperature for 5 hours. This thermal cycle was repeated 20 times, and the presence or absence of gas leak in the cell at that time was examined. After holding at 1000 ° C. for 1 hour, the output density was measured. The results are shown in Table 2.
[Table 1]
Figure 0003580724
[0049]
[Table 2]
Figure 0003580724
[0050]
From Tables 1 and 2, from the sample of the present invention in which the high Mg-substituted crystal region exists in the portion of the current collector in contact with the solid electrolyte, the output density is 0.32 W / cm 2 or more, and there is no gas leak in the initial state. There was no gas leak after the heat cycle.
[0051]
On the other hand, Sample No. having no high Mg-substituted crystal region exists. In No. 1, since the substitution amount of Mg in the perovskite-type crystal is constant at 5 atomic%, the substitution amount of Mg is small, and the bonding between the solid electrolyte and the current collector becomes poor during fabrication, and gas leakage occurs in the initial state. It turns out that there is. Sample No. having no high Mg-substituted crystal region exists. In No. 10, since the substitution amount of Mg in the perovskite-type crystal is constant at 12 atomic%, the bonding between the solid electrolyte and the current collector is good at the time of fabrication, but the current collector is exposed to a reducing atmosphere. It can be seen that the volume expansion is large, an internal stress is generated, and a gas leak occurs after the heat cycle test.
[0052]
【The invention's effect】
In the solid oxide fuel cell according to the present invention, the portion of the current collector mainly containing a perovskite crystal containing La, Cr, and Mg as metal elements is in contact with the solid electrolyte, and the perovskite crystal is more than other regions. Since there is a high Mg-substituted crystal region where the amount of Mg substitution in the crystal is large, the amount of Mg substitution in the perovskite-type crystal increases on the solid electrolyte side of the current collector, and the bonding state of the current collector to the solid electrolyte increases. On the other hand, in other portions, for example, the portion of the current collector opposite to the solid electrolyte, the amount of Mg substitution in the perovskite-type crystal is reduced, and the volume expansion is increased even when the current collector is exposed to a reducing atmosphere. It becomes smaller, the current collector and the solid electrolyte are integrated, and the volume change of the porcelain between the atmosphere and the reducing atmosphere is suppressed, thereby suppressing the generation of stress between the members and preventing breakage. .
[Brief description of the drawings]
FIG. 1 is a sectional view showing a cylindrical solid oxide fuel cell according to the present invention.
FIG. 2 is a perspective view showing a conventional cylindrical solid oxide fuel cell.
[Explanation of symbols]
32 ... air electrode 31 ... solid electrolyte 33 ... fuel electrode 35 ... current collector 36 ... notch A ... high Mg substitution crystal area B ... other areas

Claims (2)

円筒状の空気極の外面に、部分安定化または安定化ZrOからなる固体電解質、燃料極が順次形成され、且つ前記固体電解質に設けられた切欠部を被覆する集電体を、前記固体電解質および前記切欠部から露出した前記空気極に接合してなる固体電解質型燃料電池セルにおいて、前記集電体が、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型結晶を主結晶とし、かつ、前記集電体の固体電解質と接する部分に、前記ぺロブスカイト型結晶のMg置換量が他の領域よりも多い高Mg置換結晶領域が存在することを特徴とする固体電解質型燃料電池セル。A solid electrolyte composed of partially stabilized or stabilized ZrO 2 and a fuel electrode are sequentially formed on the outer surface of a cylindrical air electrode, and a current collector covering a cutout provided in the solid electrolyte is formed by the solid electrolyte. And a solid oxide fuel cell unit joined to the air electrode exposed from the notch, wherein the current collector has a perovskite crystal containing La, Cr and Mg as metal elements as a main crystal, and A solid oxide fuel cell unit characterized in that a high Mg-substituted crystal region in which the perovskite crystal has a larger amount of Mg substitution than other regions is present in a portion of the current collector in contact with the solid electrolyte. 高Mg置換結晶領域におけるぺロブスカイト型結晶のMg置換量が、前記ぺロブスカイト型結晶の全金属元素のうち10原子%以上であることを特徴とする請求項1記載の固体電解質型燃料電池セル。2. The solid oxide fuel cell according to claim 1, wherein the Mg content of the perovskite-type crystal in the high Mg-substituted crystal region is at least 10 atomic% of all metal elements of the perovskite-type crystal.
JP12038799A 1999-04-27 1999-04-27 Solid oxide fuel cell Expired - Fee Related JP3580724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12038799A JP3580724B2 (en) 1999-04-27 1999-04-27 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12038799A JP3580724B2 (en) 1999-04-27 1999-04-27 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2000311697A JP2000311697A (en) 2000-11-07
JP3580724B2 true JP3580724B2 (en) 2004-10-27

Family

ID=14784959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12038799A Expired - Fee Related JP3580724B2 (en) 1999-04-27 1999-04-27 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3580724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748971B2 (en) * 2004-11-15 2011-08-17 京セラ株式会社 Fuel cell and fuel cell

Also Published As

Publication number Publication date
JP2000311697A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
US7351487B2 (en) Fuel cell
EP1768208A2 (en) High performance anode-supported solid oxide fuel cell
JP5171159B2 (en) Fuel cell and fuel cell stack, and fuel cell
JP5247051B2 (en) Fuel cell and fuel cell stack, and fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP5281950B2 (en) Horizontally-striped fuel cell stack, manufacturing method thereof, and fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP2004152585A (en) Cell of fuel cell and fuel cell
JP2005216760A (en) Fuel cell and its manufacturing method
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH09180731A (en) Solid electrolyte fuel cell
JP3580724B2 (en) Solid oxide fuel cell
JP3730774B2 (en) Solid oxide fuel cell
JP4544874B2 (en) Fuel cell and fuel cell
JP4721500B2 (en) Solid oxide fuel cell and method for producing the same
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3342541B2 (en) Solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP2005100816A (en) Manufacturing method of cell of fuel cell
JP4683830B2 (en) Support for fuel cell, fuel cell and fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP2006155919A (en) Fuel battery cell and fuel battery
JP3740342B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees