JP2001185159A - Solid electrolyte fuel cell and its manufacture - Google Patents

Solid electrolyte fuel cell and its manufacture

Info

Publication number
JP2001185159A
JP2001185159A JP36668399A JP36668399A JP2001185159A JP 2001185159 A JP2001185159 A JP 2001185159A JP 36668399 A JP36668399 A JP 36668399A JP 36668399 A JP36668399 A JP 36668399A JP 2001185159 A JP2001185159 A JP 2001185159A
Authority
JP
Japan
Prior art keywords
solid electrolyte
molded body
fuel electrode
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36668399A
Other languages
Japanese (ja)
Other versions
JP3638488B2 (en
Inventor
Masahito Nishihara
雅人 西原
Takashi Shigehisa
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36668399A priority Critical patent/JP3638488B2/en
Publication of JP2001185159A publication Critical patent/JP2001185159A/en
Application granted granted Critical
Publication of JP3638488B2 publication Critical patent/JP3638488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell for obtaining initial high output density and maintaining high output density for a long period, and its manufacturing method. SOLUTION: The solid electrolyte fuel cell comprises a solid electrolyte 31 and a fuel pole 33 laminated in sequence on the surface of an air pole 32 formed of perovskite composite oxide containing at least La and Mn, wherein the amount of Mn in the fuel pole 33 is 0.35% by weight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気極の表面に、
固体電解質、金属粒子を含有する燃料極を順次積層して
なる固体電解質型燃料電池セルおよびその製法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to a solid electrolyte type fuel cell in which a solid electrolyte and a fuel electrode containing metal particles are sequentially laminated, and a method for producing the same.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, since a solid oxide fuel cell has a high operating temperature of 900 to 1050 ° C., it has a high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルには、円
筒型と平板型が知られている。平板型燃料電池セルは、
発電の単位体積当たり出力密度は高いという特徴を有す
るが、実用化に関してはガスシール不完全性やセル内の
温度分布の不均一性などの問題がある。それに対して、
円筒型燃料電池セルでは、出力密度は低いものの、セル
の機械的強度が高く、またセル内の温度の均一性が保て
るという特徴がある。両形状の固体電解質型燃料電池セ
ルとも、それぞれの特徴を生かして積極的に研究開発が
進められている。
[0003] In general, a cylindrical type and a flat type are known as solid oxide fuel cells. Flat fuel cells are
Although it has the feature that the power density per unit volume of power generation is high, there are problems such as incomplete gas sealing and non-uniformity of temperature distribution in the cell in practical use. On the other hand,
Cylindrical fuel cells are characterized by low mechanical strength of the cells, while maintaining a uniform temperature within the cells, although the output density is low. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.

【0004】円筒型燃料電池の単セルは、図3に示した
ように開気孔率30〜40%程度のLaMnO3 系材料
からなる多孔性の空気極支持管2を形成し、その表面に
23 安定化ZrO2 からなる固体電解質3を被覆
し、さらにこの表面に多孔性のNi−ジルコニアの燃料
極4を設けて構成されている。
As shown in FIG. 3, a single cell of a cylindrical fuel cell has a porous air electrode support tube 2 made of a LaMnO 3 -based material having an open porosity of about 30 to 40%, and Y is formed on the surface thereof. A solid electrolyte 3 composed of 2 O 3 stabilized ZrO 2 is coated, and a porous Ni-zirconia fuel electrode 4 is provided on the surface thereof.

【0005】燃料電池のモジュールにおいては、各単セ
ルはLaCrO3 系の集電体(インターコネクタ)5を
介して接続される。発電は、空気極支持管2内部に空気
(酸素)6を、外部に燃料(水素)7を流し、1000
〜1050℃の温度で行われる。また空気極としての機
能を合わせ持つ支持管材料としては、LaをCaで20
原子%又はSrで10〜15原子%置換した固溶体材料
が用いられている。
In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 5. For power generation, air (oxygen) 6 flows inside the cathode support tube 2 and fuel (hydrogen) 7 flows outside, and 1000
It is performed at a temperature of 1050 ° C. In addition, as a support tube material having the function of an air electrode, La is made of Ca by 20%.
A solid solution material substituted by 10% to 15% by atom or Sr is used.

【0006】上記のような燃料電池セルを製造する方法
としては、例えばCaO安定化ZrO2 からなる絶縁粉
末を押出成形法などにより円筒状に成形後、これを焼成
して円筒状支持体を作製し、この支持体の外周面に空気
極、固体電解質、燃料極、集電体のスラリーを塗布して
これを順次焼成して積層するか、あるいは円筒状支持体
の表面に電気化学的蒸着法(EVD法)やプラズマ溶射
法などにより空気極、固体電解質、燃料極、集電体を順
次形成することも行われている。
As a method of manufacturing the above-described fuel cell, for example, an insulating powder made of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion method or the like, and then fired to form a cylindrical support. Then, a slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the support, and the slurry is sequentially fired and laminated, or an electrochemical vapor deposition method is applied to the surface of the cylindrical support. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed by (EVD method), a plasma spraying method, or the like.

【0007】近年ではセルの製造工程を簡略化し且つ製
造コストを低減するために、各構成材料のうち少なくと
も2つを同時焼成する、いわゆる共焼結法が提案されて
いる。この共焼結法は、例えば、円筒状の空気極成形体
に固体電解質成形体及び集電体成形体をロール状に巻き
付けて同時焼成を行い、その後固体電解質層表面に燃料
極層を形成する方法である。またプロセス簡略化のため
に、固体電解質成形体の表面にさらに燃料極成形体を積
層して、同時焼成する共焼結法も提案されている。
In recent years, a so-called co-sintering method has been proposed in which at least two of the constituent materials are simultaneously fired in order to simplify the manufacturing process of the cell and reduce the manufacturing cost. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound in a roll shape around a cylindrical air electrode molded body, and simultaneously fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte layer. Is the way. Further, for simplification of the process, a co-sintering method has been proposed in which a fuel electrode compact is further laminated on the surface of the solid electrolyte compact and fired simultaneously.

【0008】この共焼結法は非常に簡単なプロセスで製
造工程数も少なく、セルの製造時の歩留まり向上、コス
ト低減に有利である。このような共焼結法による燃料電
池セルでは、Y2 3 安定化または部分安定化ZrO2
からなる固体電解質を用い、この固体電解質に熱膨張係
数を合致させる等のため、空気極材料として、LaMn
3 からなるペロブスカイト型複合酸化物のLaの一部
をYおよびCaで置換したものが用いられている(特開
平10−162847号公報等参照)。
[0008] This co-sintering method is a very simple process with a small number of manufacturing steps, and is advantageous in improving the yield and cost reduction in manufacturing cells. In such a fuel cell by the co-sintering method, Y 2 O 3 stabilized or partially stabilized ZrO 2 is used.
LaMn is used as an air electrode material in order to match the coefficient of thermal expansion with the solid electrolyte.
A perovskite-type composite oxide composed of O 3 in which a part of La is substituted with Y and Ca is used (see Japanese Patent Application Laid-Open No. 10-162847).

【0009】[0009]

【発明が解決しようとする課題】上述した共焼結法を用
いて円筒型燃料電池セルを作製すると、共焼結の際に、
空気極の構成成分であるMn元素が、固体電解質型燃料
電池セルの周囲の雰囲気中に蒸発し、この蒸発したMn
が燃料極内部に拡散し、その結果、燃料極中のMn量が
増加し、燃料極サイトの分極値およびセル構成成分の実
抵抗値が高く、その結果、初期における出力密度が低い
という問題があった。
When a cylindrical fuel cell is manufactured by using the co-sintering method described above,
The Mn element, which is a component of the air electrode, evaporates into the atmosphere around the solid oxide fuel cell, and the evaporated Mn
Diffuses into the anode, as a result, the amount of Mn in the anode increases, the polarization value of the anode site and the actual resistance of the cell components are high, and as a result, the initial power density is low. there were.

【0010】本発明は、初期において高い出力密度を得
ることができるとともに、長期に亘って高い出力密度を
維持できる固体電解質型燃料電池セルおよびその製法を
提供することを目的とする。
An object of the present invention is to provide a solid oxide fuel cell capable of obtaining a high output density at an initial stage and maintaining a high output density for a long period of time, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者等は、拡散によ
り生じた燃料極内部のMn量と発電性能は大きな相関が
あり、燃料極内部のMn量が少ないほど燃料極サイトの
分極値およびセル構成成分の実抵抗値を低くでき、これ
により、出力密度を高くできることを見いだし、本発明
に至った。
The present inventors have found that there is a strong correlation between the Mn content inside the fuel electrode caused by diffusion and the power generation performance. As the Mn content inside the fuel electrode decreases, the polarization value of the fuel electrode site and the power generation performance decrease. The present inventors have found that the actual resistance value of the cell components can be reduced, and thereby the output density can be increased, leading to the present invention.

【0012】さらに、本発明者等は、燃料極内部に拡散
するMn量は、空気極を構成するLaMnO3 系ペロブ
スカイト型複合酸化物(ABO3 )のLa/Mn比、す
なわちAサイトとBサイトの比率(A/B比)に大きく
依存しており、A/B比を制御することにより、燃料極
内部に拡散するMn量を減少できることを見いだし、本
発明に至った。
Further, the present inventors have found that the amount of Mn diffused into the fuel electrode depends on the La / Mn ratio of the LaMnO 3 -based perovskite-type composite oxide (ABO 3 ) constituting the air electrode, that is, the A site and the B site. (A / B ratio), and it was found that controlling the A / B ratio could reduce the amount of Mn diffused into the fuel electrode, leading to the present invention.

【0013】即ち、本発明の固体電解質型燃料電池セル
は、少なくともLaおよびMnを含有するペロブスカイ
ト型複合酸化物からなる空気極の表面に、固体電解質、
燃料極を順次積層してなる固体電解質型燃料電池セルに
おいて、前記燃料極中のMn量が0.35重量%以下で
あることを特徴とする。
That is, the solid oxide fuel cell of the present invention has a solid electrolyte, a solid electrolyte, on the surface of an air electrode made of a perovskite-type composite oxide containing at least La and Mn.
In a solid oxide fuel cell unit in which fuel electrodes are sequentially stacked, the amount of Mn in the fuel electrode is 0.35% by weight or less.

【0014】このように燃料極中のMn量を0.35重
量%以下に制御することにより、燃料極サイトの分極値
およびセル構成成分の実抵抗値を低くでき、これによ
り、出力密度を高くできるとともに、高い出力密度を長
期間に亘って維持できる。
By controlling the amount of Mn in the fuel electrode to 0.35% by weight or less in this manner, the polarization value of the fuel electrode site and the actual resistance value of the cell components can be reduced, thereby increasing the power density. And high power density can be maintained over a long period of time.

【0015】これは、燃料極中に存在するMn量が多い
場合には、燃料極の焼結性を過剰に促進し、燃料極中の
金属粒子の粒成長が過剰となり、金属粒子と固体電解質
との接触面積が低下し、燃料極サイトの分極値が大きく
なるからであり、さらに金属粒子間にMnが析出するた
め導電性が低下し、セル構成成分の実抵抗値が高くなる
からである。
This is because, when the amount of Mn present in the fuel electrode is large, the sinterability of the fuel electrode is excessively promoted, the grain growth of the metal particles in the fuel electrode becomes excessive, and the metal particles and the solid electrolyte This is because the contact area with the anode decreases, and the polarization value of the fuel electrode site increases. Further, since Mn is precipitated between the metal particles, the conductivity decreases, and the actual resistance value of the cell component increases. .

【0016】燃料極の膜厚は5〜20μmであることが
望ましい。これにより、空気極成形体、固体電解質成形
体、燃料極成形体を順次積層し、同時焼成したとして
も、各成形体に発生する焼成収縮差に伴う応力を緩和で
きるため、固体電解質からの燃料極の剥離を防止できる
とともに、燃料極と固体電解質との焼成収縮差を小さく
できる。
The thickness of the fuel electrode is preferably 5 to 20 μm. With this, even if the air electrode molded body, the solid electrolyte molded body, and the fuel electrode molded body are sequentially laminated and fired at the same time, the stress caused by the difference in firing shrinkage generated in each molded body can be relaxed. The separation of the electrodes can be prevented, and the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced.

【0017】このように、燃料極と固体電解質との焼成
収縮差を小さくできるため、固体電解質と燃料極の界面
から固体電解質内部に生成するクラック(亀裂)を阻止
することが可能となる。その結果、燃料極と固体電解質
間の分極値の増大、また固体電解質成分の実抵抗値の増
大を防止でき、これに伴い初期の高い出力密度を長期的
に亘って維持できる。
As described above, since the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced, it is possible to prevent cracks generated in the solid electrolyte from the interface between the solid electrolyte and the fuel electrode. As a result, an increase in the polarization value between the fuel electrode and the solid electrolyte and an increase in the actual resistance value of the solid electrolyte component can be prevented, and accordingly, an initial high power density can be maintained for a long period of time.

【0018】本発明の固体電解質型燃料電池セルの製法
は、少なくともLaおよびMnを含有するペロブスカイ
ト型複合酸化物からなる空気極成形体(空気極仮焼体を
包含する意味である)の表面に、固体電解質成形体(固
体電解質仮焼体を包含する意味である)、燃料極成形体
を順次積層してなる積層成形体を焼成する固体電解質型
燃料電池セルの製法であって、前記空気極成形体を構成
するペロブスカイト型複合酸化物が、少なくともLaを
含有するAサイト、少なくともMnを含有するBサイト
で表され、かつ、前記Aサイトと前記Bサイトの比率
(A/B比)が0.95〜0.99であることを特徴と
する。
The method for producing a solid oxide fuel cell according to the present invention is characterized in that the surface of an air electrode molded body (which includes an air electrode calcined body) comprising a perovskite-type composite oxide containing at least La and Mn. A method for producing a solid electrolyte fuel cell, which comprises firing a laminated molded body formed by sequentially laminating a solid electrolyte molded body (including a calcined solid electrolyte body) and a fuel electrode molded body, The perovskite-type composite oxide constituting the compact is represented by an A site containing at least La and a B site containing at least Mn, and the ratio of the A site to the B site (A / B ratio) is 0. .95 to 0.99.

【0019】例えば、La、Ca、Y及びMnを含有す
るペロブスカイト型複合酸化物からなる円筒状の空気極
材料を用いてセルを共焼結すると、共焼結時に空気極を
構成するそれぞれの成分元素の中でもMn元素の拡散
(蒸発及び固相内での拡散)がとりわけ速い。そのた
め、Mn元素の拡散を低減するためには、フリーのMn
O系酸化物(第二相)が存在しない組成領域、つまりペ
ロブスカイト(LaMnO3 )相が単一相として安定な
定比組成(A/B比が1)側の材料を用いることが良
い。Mnリッチな不定比組成側、すなわちA/Bサイト
比率の小さい材料を用いると、ペロブスカイト相に加え
第二相としてのMnO系酸化物が生成し、この組成領域
では、Mn元素の拡散量が前者に比べると異常に高くな
る。
For example, when a cell is co-sintered using a cylindrical air electrode material made of a perovskite-type composite oxide containing La, Ca, Y and Mn, each component constituting the air electrode during co-sintering is obtained. Among the elements, the diffusion (evaporation and diffusion in the solid phase) of the Mn element is particularly fast. Therefore, in order to reduce the diffusion of the Mn element, free Mn
It is preferable to use a material in a composition region where an O-based oxide (second phase) does not exist, that is, a material having a stable stoichiometric composition (A / B ratio is 1) in which a perovskite (LaMnO 3 ) phase is a single phase. When a material having a Mn-rich nonstoichiometric composition, that is, a material having a small A / B site ratio, is used, a MnO-based oxide is generated as a second phase in addition to a perovskite phase. Abnormally higher than.

【0020】一方、定比組成(A/B比が1)側の空気
極材料を使用すると、共焼結時に、空気極と固体電解質
との間にCaZrO3 、Y2 3 の反応生成物及び分解
物を生成し、その結果、上記界面の剥離が経時的に進行
し、性能においても急激な出力劣化を伴うことになる。
これらのことを踏まえ、AサイトとBサイトの比率調製
は十分注意して行う必要がある。
On the other hand, when an air electrode material having a stoichiometric composition (A / B ratio is 1) is used, a reaction product of CaZrO 3 and Y 2 O 3 is formed between the air electrode and the solid electrolyte during co-sintering. As a result, delamination of the interface progresses with time, resulting in a sharp output deterioration in performance.
Based on these facts, it is necessary to carefully control the ratio between the A site and the B site.

【0021】本発明の固体電解質型燃料電池セルでは、
予め空気極材料として、上記反応生成物及び分解物を伴
わない定比組成側よりも若干Mnリッチのペロブスカイ
ト型複合酸化物を使用する。即ち、空気極を構成するL
aMnO3 系複合酸化物のA/Bサイト比率を1よりも
若干小さくし、空気極成形体のA/B比を0.95〜
0.99とし、定比組成側に近づけることによって、フ
リーのMnO系酸化物(第二相)の含量が少なくなり、
Mnの拡散を低減できるとともに、空気極と固体電解質
との界面に分極抵抗増大となるような反応及び分解物を
生成させない。一方、Mnの拡散は1400℃以上の高
温領域では比較的顕著に起きるため、共焼結時の温度を
低下させ、焼成時の保持時間を可能な限り低減すること
により、さらに燃料極中のMn量を減少できる。さら
に、焼成時に空気極から発生するガスを燃料極側に近づ
けないようにすることも有効な手段である。
In the solid oxide fuel cell according to the present invention,
As the air electrode material, a perovskite-type composite oxide slightly free of Mn richer than the stoichiometric composition side without the above-mentioned reaction products and decomposition products is used. That is, L constituting the air electrode
The A / B site ratio of the aMnO 3 -based composite oxide is slightly smaller than 1, and the A / B ratio of the air electrode compact is 0.95 to 0.95.
By setting it to 0.99 and approaching the stoichiometric composition side, the content of free MnO-based oxide (second phase) decreases,
The diffusion of Mn can be reduced, and a reaction or a decomposition product that increases polarization resistance at the interface between the air electrode and the solid electrolyte is not generated. On the other hand, since the diffusion of Mn occurs relatively remarkably in a high-temperature region of 1400 ° C. or higher, the temperature during co-sintering is lowered, and the holding time during firing is reduced as much as possible, so that Mn in the fuel electrode is further reduced. The amount can be reduced. Further, it is also an effective means to keep the gas generated from the air electrode during firing from approaching the fuel electrode side.

【0022】[0022]

【発明の実施の形態】本発明における固体電解質型燃料
電池セルは、図1に示すように円筒状の固体電解質31
の内面に空気極32、外面に燃料極33が形成してセル
本体34を形成し、空気極32には集電体35(インタ
ーコネクタ)が電気的に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid oxide fuel cell according to the present invention has a cylindrical solid electrolyte 31 as shown in FIG.
An air electrode 32 is formed on the inner surface and a fuel electrode 33 is formed on the outer surface to form a cell body 34. A current collector 35 (interconnector) is electrically connected to the air electrode 32.

【0023】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37及び切
欠部36近傍の固体電解質31の表面が集電体35によ
り被覆され、集電体35が、固体電解質31の両端部表
面及び固体電解質31の切欠部36から露出した空気極
32の表面に接合されている。 空気極32と電気的に接
続する集電体35は、セル本体34の外面に形成され、
ほぼ段差のない連続同一面39を覆うように形成されて
おり、 燃料極33とは電気的に接続されていない。 この
集電体35は、セル同士間を接続する際に他のセルの燃
料極にNiフェルトを介して電気的に接続され、これに
より燃料電池モジュールが構成される。 連続同一面39
は、固体電解質の両端部と空気極の一部とが連続したほ
ぼ同一面となるまで、固体電解質の両端部間を研磨する
ことにより形成される。固体電解質31は、例えば3〜
15モル%のY2 3 含有した部分安定化あるいは安定
化ZrO2 が用いられる。また、空気極32としては、
例えば、主としてLaをCa又はSrで10〜30原子
%、Yで5〜20原子%置換したLaMnO3 が用いら
れ、集電体35としては、例えば、主としてCrをMg
で10〜30原子%置換したLaCrO3 が用いられ
る。 燃料極33としては、50〜80重量%Niを含む
ZrO2 (Y2 3 含有)サーメットが用いられる。 固
体電解質31、 集電体35、 燃料極33としては、上記
例に限定されるものではなく、公知材料を用いても良
い。 ま、空気極32としては、少なくともLaおよびM
nを含有するペロブスカイト型複合酸化物からなるもの
であれば良い。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the surface of the solid electrolyte 31 near the exposed surface 37 and the notch 36 is covered with the current collector 35, Current collectors 35 are joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31. A current collector 35 electrically connected to the air electrode 32 is formed on an outer surface of the cell body 34,
It is formed so as to cover the continuous same surface 39 having almost no level difference, and is not electrically connected to the fuel electrode 33. This current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt when connecting the cells, thereby forming a fuel cell module. Continuous same surface 39
Is formed by polishing between both ends of the solid electrolyte until both ends of the solid electrolyte and a part of the air electrode are continuous and substantially flush with each other. The solid electrolyte 31 is, for example, 3 to
Partially stabilized or stabilized ZrO 2 containing 15 mol% of Y 2 O 3 is used. In addition, as the air electrode 32,
For example, LaMnO 3 in which La or Ca is replaced with Ca or Sr by 10 to 30 at% and Y by 5 to 20 at% is used. As the current collector 35, for example, Cr is mainly made of Mg.
Used is LaCrO 3 substituted by 10 to 30 atomic%. The fuel electrode 33, is used ZrO 2 (Y 2 O 3 content) cermet containing 50-80 wt% Ni. The solid electrolyte 31, the current collector 35, and the fuel electrode 33 are not limited to the above examples, and may be made of known materials. In addition, at least La and M
What is necessary is just to consist of a perovskite type complex oxide containing n.

【0024】そして、本発明の固体電解質型燃料電池セ
ルでは、燃料極33中におけるMn量が0. 35重量%
以下であることを特徴とする。ここで、Mn拡散量を上
記範囲に定めたのは、燃料極33中におけるMn量が
0. 35重量%よりも多くなると初期段階から出力密度
が低く、しかも時間と共に出力密度が低下していくから
である。尚、燃料極33内部におけるMn量は、少なく
ともLaおよびMnを含有する空気極32と、固体電解
質31、燃料極33を同時焼成(共焼結)する限り、M
nは必然的に燃料極33中に拡散するが、上記理由から
0. 25重量%以下が望ましい。
In the solid oxide fuel cell of the present invention, the Mn content in the fuel electrode 33 is 0.35% by weight.
It is characterized by the following. Here, the reason why the amount of Mn diffusion is set in the above range is that when the amount of Mn in the fuel electrode 33 exceeds 0.35% by weight, the output density is low from the initial stage, and the output density decreases with time. Because. The amount of Mn in the fuel electrode 33 can be set as long as the air electrode 32 containing at least La and Mn, the solid electrolyte 31, and the fuel electrode 33 are simultaneously fired (co-sintered).
Although n is inevitably diffused into the fuel electrode 33, 0.25% by weight or less is desirable for the above reason.

【0025】また、燃料極33の膜厚に関しては、5〜
20μmの範囲に制御することが望ましい。これは、こ
の範囲内ならば、各成形体に発生する焼成収縮差に伴う
応力を緩和できるため、固体電解質からの燃料極の剥離
を防止できるとともに、燃料極と固体電解質との焼成収
縮差を小さくでき、固体電解質と燃料極の界面から固体
電解質内部に生成するクラック(亀裂)を阻止すること
ができ、これにより、燃料極と固体電解質間の分極値の
増大、また固体電解質成分の実抵抗値の増大を防止で
き、初期の高い出力密度を長期的に亘って維持できるか
らである。
The thickness of the fuel electrode 33 is 5 to 5.
It is desirable to control to a range of 20 μm. This is because, within this range, the stress caused by the difference in firing shrinkage generated in each compact can be alleviated, so that separation of the fuel electrode from the solid electrolyte can be prevented and the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced. It is possible to reduce the size and to prevent cracks (cracks) generated inside the solid electrolyte from the interface between the solid electrolyte and the fuel electrode, thereby increasing the polarization value between the fuel electrode and the solid electrolyte and real resistance of the solid electrolyte component. This is because the value can be prevented from increasing and the initial high power density can be maintained for a long period of time.

【0026】一方、膜厚が20μmよりも大きくなる
と、共焼結後に燃料極膜自体が固体電解質との界面から
熱膨張差を伴って剥離し易くなり、逆に5μmよりも小
さくなると、界面に平行方向でのNi粒子間において粒
成長が顕著に起こり、共焼結の段階で固体電解質との界
面で焼成収縮差が大きくなり、界面から固体電解質内部
へ亀裂の進展が起こり易くなり、実抵抗値の増大を引き
起こし、出力密度が時間と共に低下するからである。燃
料極33の膜厚は、上記理由から、10〜15μmの範
囲が望ましい。
On the other hand, when the film thickness is larger than 20 μm, the fuel electrode film itself tends to peel off from the interface with the solid electrolyte with a difference in thermal expansion after co-sintering. Grain growth occurs remarkably between Ni particles in the parallel direction, the difference in firing shrinkage at the interface with the solid electrolyte increases at the co-sintering stage, cracks easily propagate from the interface to the inside of the solid electrolyte, and the actual resistance increases. This causes the value to increase and the power density decreases with time. For the above reason, the thickness of the fuel electrode 33 is preferably in the range of 10 to 15 μm.

【0027】以上のように構成された固体電解質型燃料
電池セルの製法は、まず、円筒状の空気極成形体を形成
する。この円筒状の空気極成形体は、例えば所定の調合
組成に従いLa2 3 、Y2 3 、CaCO3 、MnO
2 の素原料を秤量、混合する。この際に、空気極成形体
を構成するペロブスカイト型複合酸化物のA/B比が
0.95〜0.99を満足するように、秤量する必要が
ある。
In the method for producing the solid oxide fuel cell constructed as described above, first, a cylindrical air electrode molded body is formed. The cylindrical air electrode molded body is made of, for example, La 2 O 3 , Y 2 O 3 , CaCO 3 , MnO according to a predetermined composition.
Weigh and mix the two raw materials. At this time, it is necessary to weigh the perovskite-type composite oxide constituting the air electrode molded body so that the A / B ratio satisfies 0.95 to 0.99.

【0028】A/B比か0.95よりも小さい場合、M
n拡散抑制効果がなく、共焼結後に燃料極中に0.35
重量%以上含有することになり、0.99よりも大きい
場合には空気極と固体電解質との間にCaZrO3 、Y
2 3 の反応生成物が発生し、出力密度が低下するから
である。
When the A / B ratio is smaller than 0.95, M
There is no n-diffusion suppression effect, and 0.35
% Or more, and if it is more than 0.99, CaZrO 3 , Y is placed between the air electrode and the solid electrolyte.
This is because a reaction product of 2 O 3 is generated and the output density is reduced.

【0029】この後、例えば、1500℃程度の温度で
2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調
製する。調製した粉体に、バインダーを混合、混練し押
出成形法により円筒状の空気極成形体を作製し、さらに
脱バインダー処理し、1200〜1250℃で仮焼を行
うことで円筒状の空気極仮焼体を作製する。尚、Mnの
拡散は1400℃以上で顕著であるため、上記空気極成
形体の仮焼温度ではMnは殆ど拡散しない。
Thereafter, for example, the mixture is calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. A binder is mixed and kneaded with the prepared powder to produce a cylindrical air electrode molded body by an extrusion molding method, further debindered, and calcined at 1200 to 1250 ° C. to form a cylindrical air electrode temporary body. Prepare a fired body. Since the diffusion of Mn is remarkable at 1400 ° C. or higher, Mn hardly diffuses at the calcining temperature of the air electrode compact.

【0030】シート状の第1固体電解質成形体として、
所定粉末にトルエン、バインダー、市販の分散剤を加え
てスラリー化したものをドクターブレード等の方法によ
り、例えば、100〜120μmの厚さに成形したもの
を用い、円筒状の空気極仮焼体の表面に第1固体電解質
成形体を貼り付けて仮焼し、空気極仮焼体の表面に第1
固体電解質仮焼体を形成する。
As a sheet-like first solid electrolyte molded body,
Toluene, a binder, a slurry obtained by adding a commercially available dispersant to a predetermined powder, by a method such as a doctor blade, for example, using a molded thing to a thickness of 100 ~ 120μm, the cylindrical air electrode calcined body The first solid electrolyte molded body is adhered to the surface and calcined, and the first electrode is calcined on the surface of the air electrode calcined body.
A solid electrolyte calcined body is formed.

【0031】次に、シート状の燃料極成形体を作製す
る。まず、例えば、所定比率に調製したNi/YSZ混
合粉体にトルエン、バインダーを加えてスラリー化した
ものを準備する。前記第1固体電解質成形体の作製と同
様、成形、乾燥し、例えば、15μmの厚さのシート状
の第2固体電解質成形体を形成する。
Next, a sheet-shaped fuel electrode molded body is manufactured. First, for example, a slurry prepared by adding toluene and a binder to a Ni / YSZ mixed powder prepared at a predetermined ratio is prepared. Similarly to the production of the first solid electrolyte molded body, the molded body is dried and formed into a sheet-shaped second solid electrolyte molded body having a thickness of, for example, 15 μm.

【0032】この第2固体電解質成形体上に燃料極層成
形体を印刷、乾燥した後、第1固体電解質仮焼体上に、
燃料極層成形体が形成された第2固体電解質成形体を、
第1固体電解質仮焼体に第2固体電解質成形体が当接す
るように巻き付け、積層する。
After printing and drying the fuel electrode layer molded body on the second solid electrolyte molded body, the first solid electrolyte calcined body is
The second solid electrolyte molded body on which the fuel electrode layer molded body is formed,
The first solid electrolyte calcined body is wound and laminated so that the second solid electrolyte molded body is in contact with the first solid electrolyte calcined body.

【0033】燃料極層成形体を構成するNi/YSZ混
合粉体は、Ni粉末の平均粒径が0.2〜0.4μm、
YSZ粉末の平均粒径が0.4〜0.8μmの原料粉体
を用い、所定比率に調合した後分散性を高めるためにZ
rO2 ボールを用いて湿式粉砕混合を行う。燃料極を構
成するYSZ粉末の粒子径が0.8μmよりも大きくな
ると、焼成収縮差という点では問題無いが、Ni粒子の
支持がミクロレベルで十分でないために局所的にNi粒
成長を伴う。
The Ni / YSZ mixed powder constituting the fuel electrode layer compact has an average particle diameter of the Ni powder of 0.2 to 0.4 μm,
The raw material powder having an average particle size of YSZ powder of 0.4 to 0.8 μm is used.
Wet pulverization and mixing are performed using rO 2 balls. If the particle diameter of the YSZ powder constituting the fuel electrode is larger than 0.8 μm, there is no problem in terms of the difference in firing shrinkage, but Ni particles are locally supported because Ni particles are not sufficiently supported on a micro level.

【0034】YSZ粉末が0.8μm以上の粒径になる
と焼成時の収縮差という観点では問題無いが、Ni粒子
の粒成長を抑制できずに、その結果反応サイト数の減少
に因る燃料極サイトの分極増大を伴って出力性能が低下
する。
If the YSZ powder has a particle size of 0.8 μm or more, there is no problem in terms of the difference in shrinkage during firing, but the growth of Ni particles cannot be suppressed, and as a result, the fuel electrode The output performance decreases as the polarization of the site increases.

【0035】その結果、反応サイト数という観点におい
てNi/YSZ間の接点数が減少し、そのために燃料極
サイトの分極値が極めて増大し出力性能が低下する。ま
た、Ni含有比率が80%より高くなると、固体電解質
膜との熱膨張率の不整合を生じ易く剥離が生じ易い。
As a result, the number of contacts between Ni and YSZ is reduced in terms of the number of reaction sites, and as a result, the polarization value of the fuel electrode site is extremely increased, and the output performance is reduced. On the other hand, if the Ni content ratio is higher than 80%, the thermal expansion coefficient of the solid electrolyte membrane tends to be inconsistent, and the separation tends to occur.

【0036】次に、固体電解質成形体の調製同様、10
0〜120μmの厚さに成形した集電体成形体を所定箇
所に貼り付ける。
Next, as in the preparation of the solid electrolyte compact, 10
A current collector molded body having a thickness of 0 to 120 μm is attached to a predetermined location.

【0037】この後、円筒状空気極仮焼体、第1固体電
解質仮焼体、第2固体電解質成形体、燃料極成形体およ
び集電体成形体の積層体は、例えば、大気中1400〜
1550℃の温度で、4層同時に共焼成される。
Thereafter, the laminated body of the cylindrical air electrode calcined body, the first solid electrolyte calcined body, the second solid electrolyte molded body, the fuel electrode molded body, and the current collector molded body is, for example, 1400-1000 in the atmosphere.
At a temperature of 1550 ° C., four layers are co-fired simultaneously.

【0038】Mnの拡散は、焼成温度、保持時間にも影
響するため、焼成温度をできるだけ低下させ、焼成時間
をできるだけ短くすることにより、さらにMn量を減少
できる。
Since the diffusion of Mn also affects the firing temperature and the holding time, the Mn content can be further reduced by lowering the firing temperature as much as possible and shortening the firing time as much as possible.

【0039】尚、燃料極層成形体の厚みは9〜60μm
の厚みとされている。燃料極層成形体の厚みが9μmよ
りも薄くなると、Ni粒成長に伴い焼成収縮差が助長さ
れ、一方60μmよりも厚くなると、固体電解質間との
熱膨張率の不整合を伴って燃料極が剥離し易くなる。こ
のような点から、燃料極成形体の厚みは特に25〜40
μmが望ましい。
The thickness of the fuel electrode layer molded body is 9 to 60 μm.
And the thickness. When the thickness of the fuel electrode layer molded body is thinner than 9 μm, the difference in firing shrinkage is promoted with the growth of Ni grains, while when the thickness is larger than 60 μm, the fuel electrode is inconsistent with the coefficient of thermal expansion between the solid electrolytes. It is easy to peel off. From such a point, the thickness of the fuel electrode compact is particularly preferably 25 to 40.
μm is desirable.

【0040】このような製法では、空気極成形体のA/
B比を0.95〜0.99とし、定比組成側に近づける
ことによって、フリーのMnO系酸化物(第二相)の含
量が少なくなり、Mnの蒸発による燃料極への拡散を低
減して、燃料極中のMn量を0.35重量%以下に制御
でき、これにより、出力密度を高くできるとともに、高
い出力密度を長期間に亘って維持できる。
In such a production method, the A / A
By setting the B ratio to 0.95 to 0.99 and approaching the stoichiometric composition side, the content of free MnO-based oxide (second phase) is reduced, and the diffusion of Mn to the fuel electrode by evaporation is reduced. Thus, the amount of Mn in the fuel electrode can be controlled to 0.35% by weight or less, whereby the power density can be increased and the high power density can be maintained for a long time.

【0041】また、空気極成形体のA/B比が1よりも
小さいため、空気極と固体電解質との界面に分極抵抗増
大となるような反応及び分解物を生成させず、界面での
剥離が発生せず、高い出力密度を長期的に維持できる。
Further, since the A / B ratio of the air electrode molded body is smaller than 1, no reaction or decomposition product is generated at the interface between the air electrode and the solid electrolyte, which increases polarization resistance. Does not occur, and high power density can be maintained for a long period of time.

【0042】尚、上記例では円筒状の固体電解質型燃料
電池セルについて説明したが、本発明は上記例に限定さ
れるものではなく、平板型形状の燃料電池セルにおいて
も適用できる。
In the above example, a cylindrical solid electrolyte fuel cell is described. However, the present invention is not limited to the above example, and may be applied to a flat fuel cell.

【0043】また、円筒状の固体電解質型燃料電池セル
においても、固体電解質の片面に空気極、他面に燃料極
が形成されていればよく、その構造は図1に限定される
ものではない。
Also, in a cylindrical solid electrolyte fuel cell, it is sufficient that the solid electrolyte has an air electrode formed on one surface and a fuel electrode formed on the other surface, and the structure is not limited to FIG. .

【0044】さらに、上記例では、空気極仮焼体、第1
固体電解質仮焼体を形成した例について説明したが、こ
れらが、空気極成形体、第1固体電解質成形体であって
も良い。
Further, in the above example, the air electrode calcined body, the first
Although the example in which the solid electrolyte calcined body is formed has been described, these may be an air electrode molded body or a first solid electrolyte molded body.

【0045】[0045]

【実施例】円筒状固体電解質型燃料電池セルを共焼結法
により作製するため、まず円筒状の空気極仮焼体を以下
の手順で作製した。市販の純度99.9%以上のLa2
3 、Y2 3 、CaCO3 、Mn2 3 を出発原料と
して、(La0.560.14Ca0.3 )xMnO3 のxが、
即ち、A/B比が表1に示す値となるように秤量し、こ
れを用いて、押出成形後、1250℃の条件で脱バイ・
仮焼し、空気極仮焼体を作製した。
EXAMPLE In order to produce a cylindrical solid oxide fuel cell by the co-sintering method, first, a cylindrical air electrode calcined body was produced by the following procedure. La 2 with a purity of 99.9% or more commercially available
O 3, Y 2 O 3, CaCO 3, the Mn 2 O 3 as starting material, (La 0.56 Y 0.14 Ca 0.3 ) xMnO 3 of x,
That is, after weighing so that the A / B ratio becomes the value shown in Table 1, using this, after extrusion molding, de-bubbling was performed at 1250 ° C.
Calcination was performed to prepare an air electrode calcined body.

【0046】次に、Y2 3 を8モル%の割合で含有す
る平均粒径が1〜2μmのZrO2粉末を用いてスラリ
ーを調製し、ドクターブレード法により厚さ100μm
と厚さ15μmの第1及び2固体電解質成形体としての
シートを作製した。
Next, a slurry was prepared using ZrO 2 powder containing Y 2 O 3 at a ratio of 8 mol% and having an average particle size of 1 to 2 μm, and the thickness was 100 μm by a doctor blade method.
Then, sheets as first and second solid electrolyte molded bodies having a thickness of 15 μm were prepared.

【0047】次に、燃料極成形体の作製について説明す
る。平均粒径が0.4μmのNi粉末に対し、平均粒径
が0.6μmのY2 3 を8モル%の割合で含有するZ
rO2 粉末を準備し、Ni/YSZ比率(重量分率)が
65/35になるように調合し、粉砕混合処理を行い、
スラリー化した。
Next, the fabrication of the fuel electrode compact will be described. Z containing 8 mol% of Y 2 O 3 having an average particle diameter of 0.6 μm with respect to Ni powder having an average particle diameter of 0.4 μm.
An rO 2 powder is prepared, mixed so that the Ni / YSZ ratio (weight fraction) is 65/35, and pulverized and mixed.
A slurry was formed.

【0048】その後、調製したスラリーを第2固体電解
質成形体上に、表1に示す厚さで、全面に印刷した。燃
料極成形体のシート厚と焼成後の膜厚を表1に示す。
Thereafter, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body at the thickness shown in Table 1. Table 1 shows the sheet thickness and the fired film thickness of the fuel electrode compact.

【0049】次に、市販の純度99.9%以上のLa2
3 、Cr2 3 、MgOを出発原料として、これをL
a(Mg0.3 Cr0.7 0.973 の組成になるように秤
量混合した後1500℃で3時間仮焼粉砕し、この固溶
体粉末を用いてスラリーを調製し、ドクターブレード法
により厚さ100μmの集電体成形体を作製した。
Next, commercially available La 2 having a purity of 99.9% or more was used.
Starting from O 3 , Cr 2 O 3 and MgO, this is
a (Mg 0.3 Cr 0.7 ) 0.97 O 3 After weighing and mixing to obtain a composition of 0.73, the mixture was calcined and pulverized at 1500 ° C. for 3 hours to prepare a slurry using the solid solution powder. An electric molded body was produced.

【0050】まず、前記空気極仮焼体に前記第1固体電
解質成形体を、その両端部が開口するようにロール状に
巻き付け1150℃で5時間の条件で仮焼した。仮焼
後、第1固体電解質仮焼体の両端部間を空気極仮焼体を
露出させるように平坦に研磨し、連続した同一面を形成
するように加工した。
First, the first solid electrolyte molded body was wound around the air electrode calcined body in a roll shape so that both ends thereof were opened, and calcined at 1150 ° C. for 5 hours. After calcining, the first solid electrolyte calcined body was polished flat so as to expose the air electrode calcined body, and worked so as to form the same continuous surface.

【0051】次に、第1固体電解質仮焼体表面に、燃料
極成形体が形成された第2固体電解質成形体を、第1固
体電解質仮焼体と第2固体電解質成形体が当接するよう
に積層し、乾燥した後、上記連続同一面に集電体成形体
を貼り付け、この後、大気中1500℃で6時間の条件
で共焼結を行い、共焼結体を作製した。
Next, the second solid electrolyte molded body having the fuel electrode molded body formed thereon is placed on the surface of the first solid electrolyte calcined body so that the first solid electrolyte calcined body and the second solid electrolyte molded body come into contact with each other. After drying, a current collector molded body was adhered to the same continuous surface, and then co-sintered at 1500 ° C. for 6 hours in the atmosphere to produce a co-sintered body.

【0052】次に、上記共焼結体を用いて、燃料極内部
のMn拡散量を評価する試料を作製した。まず、長さ1
0mm程度に切り出した試料の断面の燃料極内部におい
て、X線マイクロアナライザ(EPMA)を用い全構成
成分の定量を行った。それから、Mn成分の燃料極全成
分に対する含有濃度を算出した。その結果を、表1に示
す。
Next, using the co-sintered body, a sample for evaluating the amount of Mn diffusion inside the fuel electrode was prepared. First, length 1
Inside the fuel electrode of the cross section of the sample cut out to about 0 mm, all the constituent components were quantified using an X-ray microanalyzer (EPMA). Then, the concentration of the Mn component with respect to all components of the fuel electrode was calculated. Table 1 shows the results.

【0053】次に、発電用の円筒型セルを作製するた
め、前記共焼結体片端部に封止部材の接合を行った。封
止部材の接合は、以下のような手順で行った。Y2 3
を8モル%の割合で含有する平均粒子径が1μmのZr
2 粉末に水を溶媒として加えてスラリーを調製し、こ
のスラリーに前記共焼結体の片端部を浸漬し、厚さ10
0μmになるように片端部外周面に塗布し乾燥した。封
止部材としてのキャップ形状を有する成形体は、前記ス
ラリー組成と同組成の粉末を用いて静水圧成形(ラバー
プレス)を行い切削加工した。その後、前記スラリーを
被覆した前記共焼結体片端部を封止部材用成形体に挿入
し、大気中1300℃の温度で1時間焼成を行った。
Next, in order to produce a cylindrical cell for power generation, a sealing member was joined to one end of the co-sintered body. The joining of the sealing member was performed in the following procedure. Y 2 O 3
Having an average particle size of 1 μm containing 8 mol% of
A slurry is prepared by adding water as a solvent to the O 2 powder, and one end of the co-sintered body is immersed in the slurry to a thickness of 10%.
It was applied to one end of the outer peripheral surface so as to have a thickness of 0 μm and dried. A molded body having a cap shape as a sealing member was subjected to isostatic pressing (rubber pressing) using a powder having the same composition as the slurry composition, and was cut. Thereafter, one end of the co-sintered body coated with the slurry was inserted into a molding for a sealing member, and baked at a temperature of 1300 ° C. for 1 hour in the atmosphere.

【0054】発電は、1000℃でセルの内側に空気
を、外側に水素を流し、出力値が安定した際の初期値と
1000時間保持後の値でそれぞれの性能を測定評価し
た。上記Mn量の結果と併せて、これらの測定結果を表
1に示す。
For power generation, air was flowed inside the cell and hydrogen was flown outside at 1000 ° C., and the performance was measured and evaluated based on the initial value when the output value was stabilized and the value after holding for 1000 hours. These measurement results are shown in Table 1 together with the results of the Mn amount.

【0055】[0055]

【表1】 [Table 1]

【0056】表1より、Mn量の極めて多い本発明範囲
外の試料No.1、2は、いずれも初期段階から出力密
度が低く、しかも1000時間経過後には出力密度が劣
化していることが確認できた。発電後の試料を観察する
と、燃料極の固体電解質界面との間における付着が弱く
なっており、発電性能において燃料極側の分極および実
抵抗成分が高くなっていることが示唆できた。一方、本
発明品である試料No.3〜11 は、初期から0.33
W/cm2 を上回り、1000時間経過後も出力密度が
ほぼ安定しているか若しくは高くなっていく傾向がみら
れた。図2に、各試料のMn量と出力密度との関係を示
したグラフを記載する。
From Table 1, it can be seen that Sample No. which has an extremely large Mn content and is out of the range of the present invention. In each of Examples 1 and 2, the output density was low from the initial stage, and it was confirmed that the output density was deteriorated after 1000 hours. Observation of the sample after power generation suggested that the adhesion between the fuel electrode and the solid electrolyte interface was weak, and that the polarization and the actual resistance component on the fuel electrode side in power generation performance were high. On the other hand, the sample No. 3-11 is 0.33 from the beginning
The output density was more than W / cm 2 , and the output density tended to be almost stable or increased after 1000 hours. FIG. 2 is a graph showing the relationship between the Mn content and the output density of each sample.

【0057】[0057]

【発明の効果】以上詳述したように、本発明の円筒型燃
料電池セルでは、共焼結時に空気極側から燃料極内部に
向かって拡散してくるMn量を0.35重量%以下に低
減制御することで、出力密度を向上でき、また経時的な
変化も小さくできるため、初期の高い出力密度を長期間
にわたり維持できる。
As described above in detail, in the cylindrical fuel cell of the present invention, the amount of Mn diffused from the air electrode side toward the inside of the fuel electrode during co-sintering is reduced to 0.35% by weight or less. By performing the reduction control, the output density can be improved and the change over time can be reduced, so that the initial high output density can be maintained for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状固体電解質型燃料電池セルを示
す断面図である。
FIG. 1 is a sectional view showing a cylindrical solid oxide fuel cell according to the present invention.

【図2】Mn量と出力密度との関係を示したグラフであ
る。
FIG. 2 is a graph showing the relationship between the amount of Mn and the output density.

【図3】従来の円筒状固体電解質型燃料電池セルを示す
斜視図である。
FIG. 3 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 35・・・集電体 36・・・切欠部 31 ... solid electrolyte 32 ... air electrode 33 ... fuel electrode 35 ... current collector 36 ... notch

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA03 AA04 AA08 AA09 AA19 AA39 BA03 CA01 CA08 5H018 AA06 AS02 AS03 EE02 EE13 HH03 HH05 5H026 AA06 BB00 CV02 EE13 HH03 HH05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G031 AA03 AA04 AA08 AA09 AA19 AA39 BA03 CA01 CA08 5H018 AA06 AS02 AS03 EE02 EE13 HH03 HH05 5H026 AA06 BB00 CV02 EE13 HH03 HH05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくともLaおよびMnを含有するペロ
ブスカイト型複合酸化物からなる空気極の表面に、固体
電解質、燃料極を順次積層してなる固体電解質型燃料電
池セルにおいて、前記燃料極中のMn量が0.35重量
%以下であることを特徴とする固体電解質型燃料電池セ
ル。
A solid electrolyte fuel cell in which a solid electrolyte and a fuel electrode are sequentially laminated on the surface of an air electrode made of a perovskite-type composite oxide containing at least La and Mn. A solid oxide fuel cell having an amount of 0.35% by weight or less.
【請求項2】燃料極の膜厚が5〜20μmであることを
特徴とする請求項1記載の固体電解質型燃料電池セル。
2. The solid oxide fuel cell according to claim 1, wherein the thickness of the fuel electrode is 5 to 20 μm.
【請求項3】少なくともLaおよびMnを含有するペロ
ブスカイト型複合酸化物からなる空気極成形体の表面
に、固体電解質成形体、燃料極成形体を順次積層してな
る積層成形体を焼成する固体電解質型燃料電池セルの製
法であって、前記空気極成形体を構成するペロブスカイ
ト型複合酸化物が、少なくともLaを含有するAサイ
ト、少なくともMnを含有するBサイトで表され、か
つ、前記Aサイトと前記Bサイトの比率(A/B比)が
0.95〜0.99であることを特徴とする固体電解質
型燃料電池セルの製法。
3. A solid electrolyte obtained by firing a laminate formed by sequentially laminating a solid electrolyte molded body and a fuel electrode molded body on the surface of an air electrode molded body composed of a perovskite-type composite oxide containing at least La and Mn. A method for producing a fuel cell, wherein the perovskite-type composite oxide constituting the air electrode molded body is represented by an A site containing at least La, a B site containing at least Mn, and the A site A method for producing a solid oxide fuel cell, wherein the ratio of the B site (A / B ratio) is 0.95 to 0.99.
JP36668399A 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same Expired - Fee Related JP3638488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36668399A JP3638488B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36668399A JP3638488B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001185159A true JP2001185159A (en) 2001-07-06
JP3638488B2 JP3638488B2 (en) 2005-04-13

Family

ID=18487396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36668399A Expired - Fee Related JP3638488B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP3638488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell

Also Published As

Publication number Publication date
JP3638488B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JP4383092B2 (en) Electrochemical element
JP4462727B2 (en) Solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3347561B2 (en) Solid oxide fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP4743949B2 (en) Solid electrolyte fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3342610B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JPH0997621A (en) Cell of cylindrical fuel cell
JP3595223B2 (en) Solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP2000077082A (en) Solid electrolyte fuel cell
JP3595215B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees