JPH09180736A - Alkaline manganese battery - Google Patents

Alkaline manganese battery

Info

Publication number
JPH09180736A
JPH09180736A JP33913295A JP33913295A JPH09180736A JP H09180736 A JPH09180736 A JP H09180736A JP 33913295 A JP33913295 A JP 33913295A JP 33913295 A JP33913295 A JP 33913295A JP H09180736 A JPH09180736 A JP H09180736A
Authority
JP
Japan
Prior art keywords
positive electrode
potassium hydroxide
negative electrode
electrolytic solution
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33913295A
Other languages
Japanese (ja)
Other versions
JP3022758B2 (en
Inventor
Kiyohide Tsutsui
清英 筒井
Hideji Murakami
秀二 村上
Shusuke Tsuzuki
秀典 都築
Kuniyoshi Nishida
国良 西田
Akihide Izumi
彰英 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP33913295A priority Critical patent/JP3022758B2/en
Publication of JPH09180736A publication Critical patent/JPH09180736A/en
Application granted granted Critical
Publication of JP3022758B2 publication Critical patent/JP3022758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery which exhibits excellent discharging characteristics when a super heavy load is applied. SOLUTION: This battery is provided with a positive electrode impregnating positive electrode synthetic agent solids content containing 3-10wt% graphite whose average grain diameter is 10-20μm, acting as a conductive agent blended with manganese dioxide as positive electrode active material, with 40wt.% positive electrode potassium hydroxide electrolytic solution, and is also provided with a gel negative electrode blending 40wt.% negative electrode potassium hydroxide electrolytic solution containing 4wt.% zinc oxide with zinc powder, gelling agent and high water absorbing polymer. In this case, an electric capacity ratio of the positive electrode to the negative electrode ranges from 100:105 to 100:125, and a volume ratio of the positive electrode synthetic agent solids content to the positive electrode potassium hydroxide electrolytic solution ranges from 100:25 to 100:35.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルカリマンガン電
池に関する。
TECHNICAL FIELD The present invention relates to an alkaline manganese battery.

【0002】[0002]

【従来の技術】従来のアルカリマンガン電池にあって
は、図1のLR6形電池の断面図に示すように、電池ケ
ースを兼ねる有底円筒形の正極缶1内に、二酸化マンガ
ン(電解二酸化マンガン:EMD)と黒鉛等を混合して
円筒状に成形した2つの正極2,2が同心に積み重ねら
れた状態で装填されている。この正極2,2の中空部内
にはビニロンやパルプ繊維等の不織布からなる筒状のセ
パレータ3が配設され、これには水酸化カリウム(KO
H)のアルカリ電解液が含浸されている。さらにセパレ
ータ3内にはゲル状負極4が充填されており、この負極
4は、酸化亜鉛(ZnO)を含む水酸化カリウム電解液
に対して亜鉛粉末を主体としてゲル化剤および高吸水性
ポリマーを適量混合した構成となっている。
2. Description of the Related Art In a conventional alkaline manganese battery, a manganese dioxide (electrolytic manganese dioxide) is placed in a bottomed cylindrical positive electrode can 1 which also serves as a battery case, as shown in the sectional view of the LR6 battery in FIG. : EMD) and graphite or the like are mixed to form two cylindrical positive electrodes 2 and 2 that are concentrically stacked. A cylindrical separator 3 made of non-woven fabric such as vinylon or pulp fiber is disposed in the hollow portion of the positive electrodes 2 and 2, and potassium hydroxide (KO
H) is impregnated with the alkaline electrolyte. Further, a gelled negative electrode 4 is filled in the separator 3, and the negative electrode 4 is mainly composed of zinc powder in a potassium hydroxide electrolytic solution containing zinc oxide (ZnO) and contains a gelling agent and a superabsorbent polymer. It has a composition in which an appropriate amount is mixed.

【0003】この負極4の中央には集電棒5が挿入さ
れ、セパレータ3の下端開口部は、ホットメルト樹脂等
からなる絶縁材6によって閉塞され、これによって負極
4と正極缶1の内底面とが互いに絶縁している。そし
て、正極缶1の上端開口部に封口ガスケット7を介して
負極端子板8が嵌合され、正極缶1の開口端縁を内側へ
カール成形することによって密封されている。
A collector rod 5 is inserted in the center of the negative electrode 4, and an opening at the lower end of the separator 3 is closed by an insulating material 6 made of hot melt resin or the like, whereby the negative electrode 4 and the inner bottom surface of the positive electrode can 1 are formed. Are insulated from each other. Then, the negative electrode terminal plate 8 is fitted into the upper end opening of the positive electrode can 1 through the sealing gasket 7, and the opening end edge of the positive electrode can 1 is curled inward to be sealed.

【0004】このようなアルカリマンガン電池におい
て、その放電容量を大きくできるものが特公平5−12
824号公報に示されており、同公報に示された電池に
あっては正極の配合比率を工夫することにより放電容量
の増大を図っている。
Among such alkaline manganese batteries, the one which can increase the discharge capacity is disclosed in JP-B-5-12.
In the battery disclosed in Japanese Patent No. 824, the discharge capacity is increased by devising the compounding ratio of the positive electrode.

【0005】具体的に説明すると、正極としては、活物
質としての二酸化マンガンと導電剤としての黒鉛とを、
重量比で9/1〜32/1の範囲で混合した合剤が用い
られる。つまり、黒鉛の含有率を正極2の合剤固形分に
対して3〜10重量%の範囲としている。
Specifically, for the positive electrode, manganese dioxide as an active material and graphite as a conductive agent are used.
A mixture mixed in a weight ratio of 9/1 to 32/1 is used. That is, the content of graphite is set within the range of 3 to 10% by weight based on the solid mixture content of the positive electrode 2.

【0006】即ち、黒鉛の含有率を10%以上にする
と、二酸化マンガンの容量減少が顕著となり、放電容量
の大きな低下を招くので好ましくない。また、黒鉛の含
有率を3%以下にすると正極2中の導電性が低くなりす
ぎるため、内部抵抗の増加、短絡電流の減少が顕著にな
り、やはり好ましくない。
That is, if the content of graphite is 10% or more, the capacity of manganese dioxide decreases remarkably and the discharge capacity decreases significantly, which is not preferable. Further, if the graphite content is 3% or less, the conductivity in the positive electrode 2 becomes too low, so that the internal resistance increases and the short-circuit current decreases remarkably, which is also not preferable.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
たように正極合剤の配合比率を工夫しただけでは、例え
ば1500mA程度の極めて大きな放電電流を必要とす
る超高負荷に対しては対応できないといった問題があっ
た。
However, it is not possible to cope with an ultra-high load requiring an extremely large discharge current of, for example, about 1500 mA simply by devising the mixing ratio of the positive electrode mixture as described above. was there.

【0008】例えばノート型パソコン等の超高負荷に対
してその動作電力を供給するための電源としてアルカリ
マンガン電池を用いようとすると、ノート型パソコンの
フロッピーディスク駆動装置の動作時に1500mA程
度の極めて大きな放電電流が必要とされる。ところが、
前述したような従来のアルカリマンガン電池にあっては
このような超高負荷に対して満足な放電容量を得ること
ができなかった。
For example, when an alkaline manganese battery is used as a power source for supplying an operating power to an ultra-high load of a notebook type personal computer or the like, when the floppy disk drive of the notebook type personal computer is operating, it is extremely large, about 1500 mA. Discharge current is required. However,
In the conventional alkaline manganese battery as described above, it was not possible to obtain a satisfactory discharge capacity under such an ultrahigh load.

【0009】そこで、前述したような正極合剤の配合比
率を工夫したアルカリマンガン電池に対して改良を施す
ことにより本発明に至ったのであり、その目的は超高負
荷に対する放電特性の優れたアルカリマンガン電池を提
供することにある。
Therefore, the present invention has been accomplished by improving the alkaline manganese battery in which the compounding ratio of the positive electrode mixture is devised as described above, and the purpose thereof is to obtain an alkaline having excellent discharge characteristics against an ultrahigh load. To provide a manganese battery.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
請求項1に係る本発明は、正極活物質としての二酸化マ
ンガンに混合される導電剤としての黒鉛を3〜10重量
%の範囲で含有する正極合剤固形分に対し、正極用水酸
化カリウム電解液を含浸させた正極と、酸化亜鉛を含む
負極用水酸化カリウム電解液に対して負極活物質として
の亜鉛粉末、ゲル化剤、および高吸水性ポリマーを混合
したゲル状負極とを備えたアルカリ電池において、前記
正極と前記負極との電気容量比率を100:105〜1
00:125の範囲とした。
In order to achieve the above-mentioned object, the present invention according to claim 1 comprises 3 to 10% by weight of graphite as a conductive agent mixed with manganese dioxide as a positive electrode active material. For the positive electrode mixture solid content, the positive electrode impregnated with the potassium hydroxide electrolytic solution for the positive electrode, and the zinc powder, the gelling agent, and the high water absorption as the negative electrode active material for the potassium hydroxide electrolytic solution for the negative electrode containing zinc oxide In an alkaline battery provided with a gelled negative electrode mixed with a conductive polymer, an electric capacity ratio between the positive electrode and the negative electrode is 100: 105 to 1
The range was 00: 125.

【0011】ここで正極または負極の電気容量とは次に
示す計算式によって定まる理論容量のことである。
Here, the electric capacity of the positive electrode or the negative electrode is a theoretical capacity determined by the following formula.

【0012】〔正極の電気容量:1電子反応として〕 (二酸化マンガンの当量に対する正極に用いた二酸化マ
ンガンの質量の割合)×(96500/3600) 〔負極の電気容量:2電子反応として〕 (亜鉛の当量に対する負極に用いた亜鉛粉末の質量の割
合)×(96500/3600)
[Electrical capacity of positive electrode: as one-electron reaction] (Ratio of mass of manganese dioxide used for positive electrode to equivalent of manganese dioxide) × (96500/3600) [Electrical capacity of negative electrode: as two-electron reaction] (Zinc Ratio of the mass of the zinc powder used for the negative electrode to the equivalent weight of x) (96500/3600)

【0013】また、前記目的を達成するため請求項2に
係る本発明は、前記正極用水酸化カリウム電解液の水酸
化カリウム濃度を40重量%とするとともに、前記正極
合剤固形分と前記正極用水酸化カリウム電解液との体積
比率を100:25〜100:35の範囲とした。
In order to achieve the above object, the present invention according to claim 2 provides that the potassium hydroxide concentration of the potassium hydroxide electrolyte for the positive electrode is 40% by weight, and the solid content of the positive electrode mixture and the water for the positive electrode. The volume ratio with the potassium oxide electrolyte was in the range of 100: 25 to 100: 35.

【0014】さらに、前記目的を達成するため請求項3
に係る本発明は、正極活物質としての二酸化マンガンに
混合される導電剤として平均粒径が10〜20μmの黒
鉛を3〜10重量%の範囲で含有する正極合剤固形分に
対し、正極用水酸化カリウム電解液を含浸させた正極
と、酸化亜鉛を含む負極用水酸化カリウム電解液に対し
て負極活物質としての亜鉛粉末、ゲル化剤、および高吸
水性ポリマーを混合したゲル状負極とを備えたアルカリ
マンガン電池において、前記正極と前記負極との電気容
量比率を100:105〜100:125の範囲とし、
且つ前記正極用水酸化カリウム電解液の水酸化カリウム
濃度を40重量%とするとともに、前記正極合剤固形分
と前記正極用水酸化カリウム電解液との体積比率を10
0:25〜100:35の範囲とした。
Furthermore, in order to achieve the above-mentioned object, claim 3
The present invention relates to a positive electrode mixture solid content containing graphite having an average particle size of 10 to 20 μm in a range of 3 to 10 wt% as a conductive agent mixed with manganese dioxide as a positive electrode active material. A positive electrode impregnated with a potassium oxide electrolytic solution, and a gelled negative electrode in which zinc powder as a negative electrode active material for a negative electrode potassium hydroxide electrolytic solution containing zinc oxide, a gelling agent, and a superabsorbent polymer are mixed In the alkaline manganese battery, the electric capacity ratio between the positive electrode and the negative electrode is in the range of 100: 105 to 100: 125,
The potassium hydroxide concentration of the positive electrode potassium hydroxide electrolytic solution is set to 40% by weight, and the volume ratio of the positive electrode mixture solid content to the positive electrode potassium hydroxide electrolytic solution is 10%.
The range was 0:25 to 100: 35.

【0015】好ましくは、前記負極用水酸化カリウム電
解液の水酸化カリウム濃度を40重量%とするととも
に、前記負極用水酸化カリウム電解液に対する前記酸化
亜鉛の濃度を4重量%とする。
Preferably, the potassium hydroxide concentration of the negative electrode potassium hydroxide electrolytic solution is 40% by weight, and the zinc oxide concentration of the negative electrode potassium hydroxide electrolytic solution is 4% by weight.

【0016】前述したような構成の本発明にあっては次
のような作用を奏する。
The present invention having the above-described structure has the following operation.

【0017】正極と負極との電気容量比率を100:1
05〜100:125の範囲として負極側の電気容量を
大きくすることにより、正極および負極の放電利用率を
向上させ、例えば1500m A程度の大放電流を必要と
する超高負荷に対してその放電時間を長くすることがで
きる。
The electric capacity ratio of the positive electrode and the negative electrode is 100: 1.
The discharge capacity of the positive electrode and the negative electrode is improved by increasing the electric capacity on the negative electrode side in the range of 05 to 100: 125, and the discharge is performed against an ultrahigh load that requires a large discharge current of, for example, 1500 mA. The time can be lengthened.

【0018】前記電気容量比率において負極側が105
より小さいと、正極側の二酸化マンガンに対して負極側
の亜鉛粉末の量が少ないため正極および負極の活物質の
放電利用率が低下し、超高負荷に対する放電容量が小さ
くなり好ましくない。また、前記電気容量比率において
負極側が125より大きいと、正極側の二酸化マンガン
に対して負極側の亜鉛粉末の量が多すぎるためゲル負極
が電池の所定容積に入りきらず製造困難となり好ましく
ない。
In the electric capacity ratio, the negative electrode side is 105
When it is smaller, the amount of zinc powder on the negative electrode side is smaller than the amount of manganese dioxide on the positive electrode side, so the discharge utilization factor of the active material of the positive electrode and the negative electrode decreases, and the discharge capacity under an ultrahigh load decreases, which is not preferable. Further, when the negative electrode side is larger than 125 in the above electric capacity ratio, the amount of the zinc powder on the negative electrode side is too large for the manganese dioxide on the positive electrode side, and the gel negative electrode does not fill the predetermined volume of the battery, which is difficult to manufacture, which is not preferable.

【0019】正極合剤固形分と40重量%正極用水酸化
カリウム電解液との体積比率を100:25〜100:
35の範囲とすることにより、正極および負極の放電利
用率を向上させ、例えば1500mA程度の大放電流を
必要とする超高負荷に対してその放電時間を長くするこ
とができる。
The volume ratio of the positive electrode mixture solid content to the 40 wt% positive electrode potassium hydroxide electrolyte is 100: 25 to 100:
By setting it in the range of 35, the discharge utilization factor of the positive electrode and the negative electrode can be improved, and the discharge time can be lengthened for an ultra-high load requiring a large discharge current of, for example, about 1500 mA.

【0020】前記体積比率において水酸化カリウム電解
液側が25より小さいと、イオン電導性の低下を生じて
正極合剤の放電利用率が低下するため、超高負荷に対す
る放電容量が小さくなり好ましくない。前記体積比率に
おいて水酸化カリウム電解液側が35より大きいと、こ
の電解液が多すぎて電池として組み立てると保存条件に
よっては漏液が発生する可能性があり好ましくない。
When the potassium hydroxide electrolyte solution side is less than 25 in the above volume ratio, the ion conductivity is lowered and the discharge utilization rate of the positive electrode mixture is lowered, so that the discharge capacity under an extremely high load is reduced, which is not preferable. When the potassium hydroxide electrolyte solution side is larger than 35 in the volume ratio, the electrolyte solution is too much, and there is a possibility that liquid leakage may occur depending on storage conditions when assembled into a battery, which is not preferable.

【0021】負極用水酸化カリウム電解液の水酸化カリ
ウム濃度を40重量%とするとともに、負極用水酸化カ
リウム電解液に対する前記酸化亜鉛の濃度を4重量%と
すれば、前述したような超高負荷の放電特性をより向上
できる。
If the potassium hydroxide concentration of the negative electrode potassium hydroxide electrolyte is set to 40% by weight and the concentration of the zinc oxide to the negative electrode potassium hydroxide electrolyte is set to 4% by weight, the ultrahigh load as described above is obtained. The discharge characteristics can be further improved.

【0022】[0022]

【発明の実施の形態】本発明の実施の形態にあっては、
正極、負極および電解液を構成する要素は前述した従来
の技術と同様であるが、これら構成要素のうち次の乃
至についてその比率または濃度を特定している。
BEST MODE FOR CARRYING OUT THE INVENTION In the embodiments of the present invention,
The elements constituting the positive electrode, the negative electrode, and the electrolytic solution are the same as those in the conventional technique described above, but the ratios or concentrations of the following elements are specified.

【0023】電池に対するゲル負極の充填量を調整す
ることにより、正極と負極との電気容量比率を100:
105〜100:125の範囲として負極側の電気容量
を大きくする。
By adjusting the filling amount of the gel negative electrode in the battery, the electric capacity ratio between the positive electrode and the negative electrode was 100:
The electric capacity on the negative electrode side is increased in the range of 105 to 100: 125.

【0024】正極合剤固形分と40重量%の正極用水
酸化カリウム電解液との体積比率を100:25〜10
0:35の範囲とする。
The volume ratio of the positive electrode mixture solid content to the 40% by weight positive electrode potassium hydroxide electrolyte is 100: 25 to 10
The range is 0:35.

【0025】40重量%の負極用水酸化カリウム電解
液に対する酸化亜鉛の濃度を4重量%とする。
The concentration of zinc oxide relative to 40% by weight of the negative electrode potassium hydroxide electrolytic solution is set to 4% by weight.

【0026】正極合剤は、電解二酸化マンガン65.0
重量部に対して粒度分布が1〜200μm、平均粒径
(50重量%)18μmの膨張化黒鉛を3.25重量部
を加えることにより正極合剤の固形分に対する黒鉛の含
有率を4.7重量%とし、前述した従来の技術と同様
に、3〜10重量%の範囲内として放電容量の増大を図
った。この正極合剤の成形密度は3.3g/cm3 とし
た。この正極合剤に対して40重量%の水酸化カリウム
電解液を2.10重量部含浸させた。
The positive electrode mixture is electrolytic manganese dioxide 65.0.
By adding 3.25 parts by weight of expanded graphite having a particle size distribution of 1 to 200 μm and an average particle size (50% by weight) of 18 μm to parts by weight, the content ratio of graphite to the solid content of the positive electrode mixture is 4.7. In the same manner as the conventional technique described above, the discharge capacity was set to be within the range of 3 to 10% by weight to increase the discharge capacity. The molding density of this positive electrode mixture was 3.3 g / cm 3 . The positive electrode mixture was impregnated with 2.10 parts by weight of a 40% by weight potassium hydroxide electrolytic solution.

【0027】尚、さらに放電容量の増加を図れるように
平均粒径が10μmより小さな膨張化黒鉛を用い、二酸
化マンガン比率を高めた正極合剤を試作したが、成形し
た正極合剤の強度が低く、製造困難となった。また、膨
張化黒鉛の平均粒径を変えた本形態の正極合剤と後述す
るゲル負極とを用いたLR6形電池を試作して初度の内
部抵抗を測定した。その結果、膨張化黒鉛の平均粒径が
20μm以下の場合には内部抵抗が0.1オーム以下と
なったのに対して、これが20μmを越えると内部抵抗
が例えば0.2オームとなったりして大きくなってしま
い、実用的ではないことが判明した。したがって、膨張
化黒鉛の平均粒径は10〜20μmの範囲であることが
好ましい。
In order to further increase the discharge capacity, an expansive graphite having an average particle size of less than 10 μm was used, and a positive electrode mixture having a high manganese dioxide ratio was prototyped. However, the strength of the molded positive electrode mixture was low. , Became difficult to manufacture. Further, an LR6 type battery using a positive electrode mixture of the present embodiment in which the average particle diameter of expanded graphite was changed and a gel negative electrode to be described later was prototyped and the initial internal resistance was measured. As a result, the internal resistance was 0.1 ohms or less when the average particle size of the expanded graphite was 20 μm or less, whereas the internal resistance was 0.2 ohms when it exceeded 20 μm. It turned out to be too big to be practical. Therefore, the average particle size of the expanded graphite is preferably in the range of 10 to 20 μm.

【0028】ゲル負極は、40重量%の水酸化カリウム
に対して酸化亜鉛を4重量%混合した電解液92重量部
に対して、200重量部の亜鉛粉末、ゲル化剤としてポ
リアクリル酸を0.9重量部、高吸水性ポリマーとして
ポリアクリル酸ナトリウムを0.9重量部をそれぞれ混
合することにより構成した。
The gel negative electrode was prepared by mixing 200 parts by weight of zinc powder and 92 parts by weight of an electrolytic solution prepared by mixing 4% by weight of zinc oxide with 40% by weight of potassium hydroxide, and polyacrylic acid of 0 as a gelling agent. 1.9 parts by weight and 0.9 parts by weight of sodium polyacrylate as a superabsorbent polymer, respectively.

【0029】このような構成のアルカリ電池について、
前記、で示した各比率を変えた前記図1のLR6形
(No.1〜12)に適用して超高負荷放電試験を行っ
た。このとき各電池は正極について体積、電気容量、成
形密度(3.3g/cm3 )および黒鉛の含有率(4.7
重量%)を一定とするとともに、前記の通り、負極に
ついて40重量%の水酸化カリウム電解液に対する酸化
亜鉛の濃度を4重量%とし、20℃の雰囲気中で放電終
止電圧0.9Vで1500mAの定電流放電時間を測定
した。この試験結果を表1に示す。
Regarding the alkaline battery having such a structure,
An ultra-high load discharge test was performed by applying the above-mentioned LR6 type (No. 1 to 12) of FIG. At this time, each battery had a volume, an electric capacity, a molding density (3.3 g / cm 3 ) and a graphite content (4.7%) with respect to the positive electrode.
(% By weight), and the concentration of zinc oxide in the negative electrode was 40% by weight with respect to 40% by weight of the potassium hydroxide electrolyte as described above, and the discharge end voltage was 0.9 mA and 1500 mA at 20 ° C. in the atmosphere. The constant current discharge time was measured. Table 1 shows the test results.

【0030】[0030]

【表1】 先ず、No.1〜6の電池にあっては正極と負極との電
気容量比率を変えたものであり、No.2〜5の負極側
の比率がそれぞれ105、114、120、125のも
のは、No.1の負極側の比率が100の従来品に比
べ、放電時間が明らかに向上している。これは、正極側
の二酸化マンガンに対して負極側の亜鉛粉末の量が多い
ため正極および負極の活物質の放電利用率が向上し、超
高負荷に対する放電容量が大きくなったためと考えられ
る。No.6の負極側の比率が130のものは、正極側
の二酸化マンガンに対して負極側の亜鉛粉末の量が多す
ぎるためゲル負極が電池の所定容積に入りきらず製造困
難となった。
[Table 1] First, No. In the batteries Nos. 1 to 6, the electric capacity ratios of the positive electrode and the negative electrode were changed. Nos. 2 to 5 having a negative electrode side ratio of 105, 114, 120 and 125, respectively, are No. The discharge time is clearly improved as compared with the conventional product in which the ratio of 1 on the negative electrode side is 100. It is considered that this is because the amount of zinc powder on the negative electrode side was larger than the amount of manganese dioxide on the positive electrode side, the discharge utilization rate of the active material of the positive electrode and the negative electrode was improved, and the discharge capacity under an ultrahigh load was increased. No. In the case of No. 6 having a ratio of 130 on the negative electrode side, the amount of zinc powder on the negative electrode side was too large relative to the manganese dioxide on the positive electrode side, and the gel negative electrode did not fill the predetermined volume of the battery, making manufacturing difficult.

【0031】次に、No.7〜11の電池にあっては正
極合剤固形分と40重量%の水酸化カリウム電解液との
体積比率を変えたものであり、No.8〜10の電解液
側の比率がそれぞれ25%、30%、35%のものは、
No.7の電解液側の比率が20のものに比し、放電時
間が明らかに向上している。これは正極合剤固形分に対
して水酸化カリウム電解液が多くなることによりイオン
導電性が向上して正極合剤の放電利用率が高くなったた
めと考えられる。No.11の電解液側の比率が40%
のものは高温多湿貯蔵試験において不具合が発生したた
め採用できない。具体的には、温度60℃で湿度90%
の雰囲気下で20日間保存したところ漏液が発生した。
なお、No.11以外の電池についてはこの高温多湿貯
蔵試験において不具合は発生しなかった。
Next, No. In the batteries Nos. 7 to 11, the volume ratio of the solid content of the positive electrode mixture to the potassium hydroxide electrolytic solution of 40% by weight was changed. The proportions of 8 to 10 on the electrolyte side are 25%, 30%, and 35%, respectively,
No. The discharge time is obviously improved as compared with the case where the ratio of 7 on the electrolytic solution side is 20. It is considered that this is because an increase in the amount of the potassium hydroxide electrolytic solution relative to the solid content of the positive electrode mixture improved the ionic conductivity and increased the discharge utilization rate of the positive electrode mixture. No. The ratio of 11 on the electrolyte side is 40%
The ones listed above cannot be used because a problem occurred in the high temperature and high humidity storage test. Specifically, the temperature is 60 ° C and the humidity is 90%.
When it was stored for 20 days under the atmosphere described above, liquid leakage occurred.
In addition, No. For batteries other than No. 11, no trouble occurred in this high temperature and high humidity storage test.

【0032】また、No.12に示すように、正極と負
極との電気容量比率を100:120とするとともに、
正極合剤固形分と40重量%の水酸化カリウム電解液と
の体積比率を100:35とすると、放電時間を25.
0分と各No.の電池の中で最も大きくすることができ
た。
No. 12, the electric capacity ratio between the positive electrode and the negative electrode is 100: 120, and
When the volume ratio of the solid content of the positive electrode mixture to the 40 wt% potassium hydroxide electrolytic solution is 100: 35, the discharge time is 25.
0 minutes and each No. Could be the largest of all batteries.

【0033】なお、本発明にあっては、正極および負極
に対して用いられる水酸化カリウム電解液の濃度を40
重量%とすることが最も良く、40重量%未満では貯蔵
後の放電性能の低下が見られて好ましくない。
In the present invention, the concentration of the potassium hydroxide electrolytic solution used for the positive electrode and the negative electrode is 40%.
The content is most preferably in the range of 40% by weight, and if it is less than 40% by weight, the discharge performance after storage is deteriorated, which is not preferable.

【0034】[0034]

【発明の効果】本発明のアルカリ電池にあっては、正極
および負極の放電利用率を向上させることにより、例え
ば1500mA程度の大放電流を必要とする超高負荷に
対してその放電時間を長くすることができ、超高負荷放
電特性を向上させることができる。
In the alkaline battery of the present invention, by improving the discharge utilization factor of the positive electrode and the negative electrode, the discharge time is extended for an ultrahigh load requiring a large discharge current of, for example, about 1500 mA. It is possible to improve the super high load discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来および本発明によるアルカリマンガン電池
の断面図である。
FIG. 1 is a cross-sectional view of an alkaline manganese battery according to the related art and the present invention.

【符号の説明】[Explanation of symbols]

1 正極缶 2 正極 3 セパレータ 4 ゲル状負極 5 集電棒 6 絶縁材 7 封口ガスケット 8 負極端子板 1 Positive Electrode Can 2 Positive Electrode 3 Separator 4 Gel Negative Electrode 5 Current Collector 6 Insulating Material 7 Sealing Gasket 8 Negative Terminal Plate

フロントページの続き (72)発明者 西田 国良 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 泉 彰英 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内Front Page Continuation (72) Inventor Kuniyoshi Nishida 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Inventor Akihide Izumi 5-36-11 Shinbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. In the company

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質としての二酸化マンガンに混
合される導電剤としての黒鉛を3〜10重量%の範囲で
含有する正極合剤固形分に対し、正極用水酸化カリウム
電解液を含浸させた正極(2)と、酸化亜鉛を含む負極
用水酸化カリウム電解液に対して負極活物質としての亜
鉛粉末、ゲル化剤、および高吸水性ポリマーを混合した
ゲル状負極(4)とを備えたアルカリ電池において、該
正極と該負極との電気容量比率を100:105〜10
0:125の範囲としてなることを特徴とするアルカリ
マンガン電池。
1. A positive electrode mixture solid content containing 3 to 10% by weight of graphite as a conductive agent mixed with manganese dioxide as a positive electrode active material is impregnated with a potassium hydroxide electrolytic solution for a positive electrode. Alkali comprising a positive electrode (2) and a gelled negative electrode (4) in which zinc powder as a negative electrode active material, a gelling agent, and a superabsorbent polymer are mixed in a negative electrode potassium hydroxide electrolytic solution containing zinc oxide. In the battery, the electric capacity ratio between the positive electrode and the negative electrode is 100: 105 to 10
Alkali manganese battery characterized by having a range of 0: 125.
【請求項2】 正極活物質としての二酸化マンガンに混
合される導電剤としての黒鉛を3〜10重量%の範囲で
含有する正極合剤固形分に対し、正極用水酸化カリウム
電解液を含浸させた正極(2)と、酸化亜鉛を含む負極
用水酸化カリウム電解液に対して負極活物質としての亜
鉛粉末、ゲル化剤、および高吸水性ポリマーを混合した
ゲル状負極(4)とを備えたアルカリマンガン電池にお
いて、該正極用水酸化カリウム電解液の水酸化カリウム
濃度を40重量%とするとともに、該正極合剤固形分と
該正極用水酸化カリウム電解液との体積比率を100:
25〜100:35の範囲としてなることを特徴とする
アルカリマンガン電池。
2. A positive electrode mixture solid content containing 3 to 10% by weight of graphite as a conductive agent mixed with manganese dioxide as a positive electrode active material is impregnated with a potassium hydroxide electrolytic solution for a positive electrode. Alkali comprising a positive electrode (2) and a gelled negative electrode (4) in which zinc powder as a negative electrode active material, a gelling agent, and a superabsorbent polymer are mixed in a negative electrode potassium hydroxide electrolytic solution containing zinc oxide. In the manganese battery, the potassium hydroxide concentration of the positive electrode potassium hydroxide electrolytic solution is set to 40% by weight, and the volume ratio of the positive electrode mixture solid content to the positive electrode potassium hydroxide electrolytic solution is 100:
The alkaline manganese battery is characterized by having a range of 25 to 100: 35.
【請求項3】 正極活物質としての二酸化マンガンに混
合される導電剤として平均粒径が10〜20μmの黒鉛
を3〜10重量%の範囲で含有する正極合剤固形分に対
し、正極用水酸化カリウム電解液を含浸させた正極
(2)と、酸化亜鉛を含む負極用水酸化カリウム電解液
に対して負極活物質としての亜鉛粉末、ゲル化剤、およ
び高吸水性ポリマーを混合したゲル状負極(4)とを備
えたアルカリマンガン電池において、該正極と該負極と
の電気容量比率を100:105〜100:125の範
囲とし、且つ該正極用水酸化カリウム電解液の水酸化カ
リウム濃度を40重量%とするとともに、該正極合剤固
形分と該正極用水酸化カリウム電解液との体積比率を1
00:25〜100:35の範囲としてなることを特徴
とするアルカリマンガン電池。
3. A positive electrode mixture containing a graphite having an average particle size of 10 to 20 μm in a range of 3 to 10% by weight as a conductive agent mixed with manganese dioxide as a positive electrode active material is used as a positive electrode hydroxide. A positive electrode (2) impregnated with a potassium electrolytic solution, and a gelled negative electrode obtained by mixing a negative electrode potassium hydroxide electrolytic solution containing zinc oxide with zinc powder as a negative electrode active material, a gelling agent, and a superabsorbent polymer ( 4) In the alkaline manganese battery provided with, the electric capacity ratio between the positive electrode and the negative electrode is in the range of 100: 105 to 100: 125, and the potassium hydroxide concentration of the potassium hydroxide electrolyte solution for the positive electrode is 40% by weight. And the volume ratio of the positive electrode mixture solid content to the positive electrode potassium hydroxide electrolytic solution is 1
Alkali manganese battery having a range of 00:25 to 100: 35.
【請求項4】 前記負極用水酸化カリウム電解液の水酸
化カリウム濃度を40重量%とするとともに、該負極用
水酸化カリウム電解液に対する前記酸化亜鉛の濃度を4
重量%としてなることを特徴とする請求項3に記載のア
ルカリマンガン電池。
4. The potassium hydroxide concentration of the negative electrode potassium hydroxide electrolytic solution is set to 40% by weight, and the zinc oxide concentration of the negative electrode potassium hydroxide electrolytic solution is set to 4%.
The alkaline manganese battery according to claim 3, wherein the alkaline manganese battery is used as a weight percentage.
JP33913295A 1995-12-26 1995-12-26 Alkaline manganese battery Expired - Fee Related JP3022758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33913295A JP3022758B2 (en) 1995-12-26 1995-12-26 Alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33913295A JP3022758B2 (en) 1995-12-26 1995-12-26 Alkaline manganese battery

Publications (2)

Publication Number Publication Date
JPH09180736A true JPH09180736A (en) 1997-07-11
JP3022758B2 JP3022758B2 (en) 2000-03-21

Family

ID=18324553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33913295A Expired - Fee Related JP3022758B2 (en) 1995-12-26 1995-12-26 Alkaline manganese battery

Country Status (1)

Country Link
JP (1) JP3022758B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113895A (en) * 1998-10-06 2000-04-21 Toshiba Battery Co Ltd Cylindrical alkaline battery
WO2000030193A1 (en) * 1998-11-16 2000-05-25 Duracell Inc. Alkaline cell with improved cathode
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
JP2002008668A (en) * 2000-06-21 2002-01-11 Toshiba Battery Co Ltd Alkaline battery
JP2006500742A (en) * 2002-09-20 2006-01-05 エヴァレディー バッテリー カンパニー インコーポレイテッド Battery with increased electrode interface surface area and increased active material
JP5022526B1 (en) * 2011-04-18 2012-09-12 パナソニック株式会社 Alkaline primary battery
WO2012143984A1 (en) * 2011-04-18 2012-10-26 パナソニック株式会社 Alkaline primary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
JP2000113895A (en) * 1998-10-06 2000-04-21 Toshiba Battery Co Ltd Cylindrical alkaline battery
WO2000030193A1 (en) * 1998-11-16 2000-05-25 Duracell Inc. Alkaline cell with improved cathode
US6207322B1 (en) 1998-11-16 2001-03-27 Duracell Inc Alkaline cell with semisolid cathode
JP2002008668A (en) * 2000-06-21 2002-01-11 Toshiba Battery Co Ltd Alkaline battery
JP4503790B2 (en) * 2000-06-21 2010-07-14 東芝電池株式会社 Alkaline battery
JP2006500742A (en) * 2002-09-20 2006-01-05 エヴァレディー バッテリー カンパニー インコーポレイテッド Battery with increased electrode interface surface area and increased active material
JP5022526B1 (en) * 2011-04-18 2012-09-12 パナソニック株式会社 Alkaline primary battery
WO2012143984A1 (en) * 2011-04-18 2012-10-26 パナソニック株式会社 Alkaline primary battery
CN102859767A (en) * 2011-04-18 2013-01-02 松下电器产业株式会社 Alkaline primary battery

Also Published As

Publication number Publication date
JP3022758B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US3956018A (en) Primary electric current-producing dry cell using a (CFx)n cathode and an aqueous alkaline electrolyte
EP0477461B1 (en) Nickel/hydrogen storage battery and method of manufacturing the same
US7754386B2 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
US4197366A (en) Non-aqueous electrolyte cells
JP2001015106A (en) Alkaline battery
JPH07272715A (en) Alkaline manganese battery
EP1445812A1 (en) Alkaline battery
JPH09180736A (en) Alkaline manganese battery
JP3866903B2 (en) Alkaline battery
JP3216451B2 (en) Non-aqueous electrolyte battery
JP3552194B2 (en) Alkaline battery
JPH10144304A (en) Alkali battery
JPH09180708A (en) Alkaline dry cell
JP4255762B2 (en) Zinc alkaline battery
US4228228A (en) Electrode structure for energy cells
JP2001068121A (en) Cylindrical alkaline battery
JPS6091562A (en) Cylindrical alkali battery
JPS60240056A (en) Alkaline-manganese cell
CA1082306A (en) Binder for pressed nickel electrodes
JP2000260425A (en) Positive electrode mix for alkaline battery and alkaline battery using it
JPH02239572A (en) Polyaniline battery
JPH07105940A (en) Non-aqueous electrolyte battery
JPH07272714A (en) Nonaqueous electrolyte battery
JP2878294B2 (en) Lithium battery
JP2867458B2 (en) Alkaline battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees