JPS63232266A - Alkaline dry battery - Google Patents

Alkaline dry battery

Info

Publication number
JPS63232266A
JPS63232266A JP62067235A JP6723587A JPS63232266A JP S63232266 A JPS63232266 A JP S63232266A JP 62067235 A JP62067235 A JP 62067235A JP 6723587 A JP6723587 A JP 6723587A JP S63232266 A JPS63232266 A JP S63232266A
Authority
JP
Japan
Prior art keywords
positive electrode
manganese dioxide
graphite
particle size
alkaline dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62067235A
Other languages
Japanese (ja)
Inventor
Kunio Yoneyama
米山 邦夫
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP62067235A priority Critical patent/JPS63232266A/en
Publication of JPS63232266A publication Critical patent/JPS63232266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the amount of the air residual in a positive electrode body and to improve the discharge capacity by specifying the mean particle diameters of the manganese dioxide and the graphite. CONSTITUTION:Manganese dioxide of the mean particle diameter 80 to 300 mum and graphite of the mean particle diameter 0.5 to 10 mum are used. Since the actual weight of manganese dioxide per unit volume as a positive electrode composite is increased while the surface area is decreased by using a coarse manganese dioxide, the air taken in around the manganese dioxide when it is stirred up or granulated can be degased easily by the pressure of the formation. By pressurizing and forming the positive electrode composite mixed with such a manganese dioxide and the graphite of the designated mean particle diameter of 0.5 to 1.0 mum, a positive electrode body with a high reaction area can be manufactures easily, and a dry battery with a high discharge capacity can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルカリ乾電池に関し、特に正極体を構成する
正極合剤を改良したアルカリ乾電池に係わるものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an alkaline dry battery, and particularly to an alkaline dry battery in which the positive electrode mixture constituting the positive electrode body is improved.

[従来の技術] アルカリ乾電池は、塩化亜鉛電解液を用いたマンガン乾
電池に比べて連続放電及び高負荷放電性能が優れている
ため、携帯用再生録音機やカメラのフラッシュライトの
電源等として利用されている。
[Prior art] Alkaline batteries have superior continuous discharge and high-load discharge performance compared to manganese batteries using zinc chloride electrolyte, and are therefore used as power sources for portable playback recorders and camera flashlights. ing.

ところで、アルカリ乾電池に使用される正極活物質とし
ての二酸化マンガンは、従来より平均粒径が30μmで
、粒度分布は90%以上が74μm以下のものが用いら
れてきた。これは、二酸化マンガンの粒径を小さくする
ことにより単位重量当りの表面積を大きくできるため、
導電剤と共に構成される正極体の反応面積を大きくでき
、ひいては大電流を取出すことができるからである。従
って、これらの粒径を持つ二酸化マンガンを用いる場合
、二酸化マンガンのままでは導電性が低いため、黒鉛を
混合した正極合剤が用いられている。かかる黒鉛の粒径
については、特開昭54−28426号公報に酸化銀を
正極活物質に用いる正極合剤の導電剤として平均粒径l
O〜50μmの黒鉛が開示されている。
By the way, manganese dioxide as a positive electrode active material used in alkaline dry batteries has conventionally been used with an average particle size of 30 μm and a particle size distribution in which 90% or more is 74 μm or less. This is because by reducing the particle size of manganese dioxide, the surface area per unit weight can be increased.
This is because the reaction area of the positive electrode body configured together with the conductive agent can be increased, and as a result, a large current can be extracted. Therefore, when manganese dioxide having these particle sizes is used, a positive electrode mixture containing graphite is used because manganese dioxide as it is has low conductivity. Regarding the particle size of graphite, Japanese Patent Application Laid-Open No. 54-28426 describes the average particle size l as a conductive agent of a positive electrode mixture using silver oxide as a positive electrode active material.
Graphite of 0 to 50 μm is disclosed.

[発明が解決しようとする問題点コ 上記二酸化マンガン及び黒鉛からなる正極体は、次のよ
うな方法により製作され、電池の金属缶に収納される。
[Problems to be Solved by the Invention] The positive electrode body made of manganese dioxide and graphite is manufactured by the following method and housed in a metal can of a battery.

まず、従来技術で示した平均粒径30μmで粒度分布が
9096以上で74μm以下の小さい粒径の二酸化マン
ガンを正極活物質とし、これに平均粒径20μmの黒鉛
を該二酸化マンガンに対し8〜12重量%混合させ、こ
れに結着剤としてポリエチレン、ポリスチロールの粉末
又は水溶性高分子のポリアクリル酸塩及び水溶性無機化
合物の水酸化アルカリ(例えば水酸化カリウム)を添加
し、攪拌混合して正極合剤を調製する。つづいて、該正
極合剤を成形密度を向上させるために顆粒にした後、円
筒状に加圧成形して正極体とし、これを金属缶内に挿入
し、ひきつづきパンチにより正極体を再加圧して該正極
体と金属缶体との接触を高める方法か採用されている。
First, manganese dioxide with an average particle size of 30 μm and a particle size distribution of 9096 or more and 74 μm or less as shown in the prior art is used as a positive electrode active material, and graphite with an average particle size of 20 μm is added to this as a positive electrode active material. % by weight, and add polyethylene, polystyrene powder or water-soluble polymer polyacrylate as a binder, and a water-soluble inorganic compound alkali hydroxide (e.g. potassium hydroxide), and stir and mix. Prepare a positive electrode mixture. Next, the positive electrode mixture is granulated to improve the molding density, and then pressure-molded into a cylindrical shape to form a positive electrode body. This is inserted into a metal can, and the positive electrode body is then re-pressurized using a punch. A method of increasing the contact between the positive electrode body and the metal can is adopted.

しかしながら、前述した加圧成形に際して二酸化マンガ
ンの平均粒径が30μmと小さいため、攪拌時又は顆粒
時に二酸化マンガン粒周辺に取込まれる空気が脱気され
ずに、そのまま正極合剤に保持された状態で正極か製作
される。その結果、二酸化マンガンの平均粒径を小さく
することによって、単位重量当りの表面積の増大、放電
容量の向上効果を図ることができるものの、反面、正極
体内に空気が残留し易くなり、前記放電容量の向上効果
が半減されてしまうという問題があった。
However, because the average particle size of manganese dioxide is as small as 30 μm during the above-mentioned pressure molding, the air that is taken in around the manganese dioxide particles during stirring or granulation is not degassed and remains in the positive electrode mixture. The positive electrode is manufactured by As a result, by reducing the average particle size of manganese dioxide, it is possible to increase the surface area per unit weight and improve the discharge capacity, but on the other hand, air tends to remain in the positive electrode body, which increases the discharge capacity. There was a problem in that the improvement effect was halved.

本発明は、上記従来の問題点を解決するためになされた
もので、正極体内に残留する空気量を減少させ、放電容
量を向−ヒさせたアルカリ乾電池を提供しようとするも
のである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide an alkaline dry battery with increased discharge capacity by reducing the amount of air remaining in the positive electrode body.

[問題点を解決するための手段] 本発明は、二酸化マンガンを正極活物質とし、黒鉛を導
電剤として配合される正極合剤を加圧成形した正極体と
、亜鉛からなる負極活物質とを備えたアルカリ乾電池に
おいて、前記二酸化マンガンとして平均粒径が80〜3
00μmのものを、前記黒鉛として平均粒径が0.5〜
10μmのものを夫々用いることを特徴とするアルカリ
乾電池である。
[Means for Solving the Problems] The present invention includes a positive electrode body formed by pressure molding a positive electrode mixture containing manganese dioxide as a positive electrode active material and graphite as a conductive agent, and a negative electrode active material made of zinc. In the alkaline dry battery equipped with the above-mentioned manganese dioxide, the average particle size is 80 to 3.
00 μm is used as the graphite with an average particle size of 0.5 to 0.00 μm.
These alkaline dry batteries are characterized by using 10 μm cells.

上記二酸化マンガンの平均粒径を限定した理由は、その
粒径を80μm未満にすると正極合剤の加圧成形時での
脱気を効果的に行なえず、かといってその粒径が300
μmを越えると充分な脱気を行なえるものの、二酸化マ
ンガンの表面積が低減されて放電反応の低下するからで
ある。
The reason for limiting the average particle size of manganese dioxide is that if the particle size is less than 80 μm, degassing cannot be performed effectively during pressure molding of the positive electrode mixture.
This is because if the diameter exceeds .mu.m, sufficient deaeration can be achieved, but the surface area of manganese dioxide is reduced and the discharge reaction is reduced.

上記黒鉛の平均粒径を限定した理由は、その粒径が0.
5μm未満になっても、10μmを越えても正極体の成
形作業性が悪化するからである。
The reason for limiting the average particle size of the graphite is that the particle size is 0.
This is because the molding workability of the positive electrode body deteriorates even if the thickness is less than 5 μm or exceeds 10 μm.

上記正極合剤の二酸化マンガンと黒鉛との配合重量比は
、92:8〜85:15の範囲にすることが好ましい。
The weight ratio of manganese dioxide and graphite in the positive electrode mixture is preferably in the range of 92:8 to 85:15.

この理由は、一方の成分である黒鉛の比率が8未満にな
ると、正極体の導電率が低下し、かといって黒鉛の比率
か15を越えると黒鉛の比重か小さいために正極合剤の
単位体積当りに占める黒鉛の体積が多くなり、二酸化マ
ンガンの配合量が低減されて放電容量が低下する恐れが
あるからである。
The reason for this is that when the ratio of graphite, one of the components, is less than 8, the conductivity of the positive electrode decreases, but when the ratio of graphite exceeds 15, the specific gravity of graphite is small, so the unit of the positive electrode mixture This is because the volume of graphite per volume increases, and the amount of manganese dioxide blended is reduced, which may lead to a decrease in discharge capacity.

[作用] 本発明によれば、正極合剤の一成分として平均粒径が8
0〜300μmと粗い二酸化マンガンを用いることによ
って、正極合剤として単位体積当りの二酸化マンガンの
実質重量が増加し、しかも表面積が減少するため、攪拌
時や顆粒時に二酸化マンガン周辺に取込まれた空気を成
形時の圧力により容易に脱気できる。従って、かかる二
酸化マンガンと平均粒径を0.5〜10μmの規定した
黒鉛とが配合された正極合剤を加圧成形することによっ
て、反応面積の高い正極体を容易に製作でき、放電容量
の高い乾電池を得ることができる。
[Function] According to the present invention, as one component of the positive electrode mixture, the average particle size is 8.
By using coarse manganese dioxide with a diameter of 0 to 300 μm, the actual weight of manganese dioxide per unit volume as a positive electrode mixture increases, and the surface area decreases. can be easily degassed by the pressure during molding. Therefore, by press-molding a positive electrode mixture containing manganese dioxide and graphite with a defined average particle size of 0.5 to 10 μm, a positive electrode body with a high reaction area can be easily produced, and the discharge capacity can be increased. You can get high quality batteries.

[発、明の実施例コ 以下、本発明をJ I 5−LR6(単3形)アルカリ
乾電池に適用した例について図面を参照して詳細に説明
する。
[Embodiments of the Invention] Hereinafter, an example in which the present invention is applied to a JI5-LR6 (AA size) alkaline battery will be described in detail with reference to the drawings.

実施例1 図中の1は、正極端子を兼ねる金属缶である。Example 1 1 in the figure is a metal can that also serves as a positive electrode terminal.

この色属缶1内には、円筒状に加圧成形した正極体2が
充填されており、かつ該正極体2には金属缶1に対する
接触性を高めるために例えば3ton/iの圧力で再加
圧される。前記正極体2は、平均粒径80μmの二酸化
マンガン92重量部と平均粒径0.5μmの黒鉛8重量
部にO%苛性カリのアルカリ電解液を3重量部加えて攪
拌混合して正極合剤を調製し、これを3ton/CIj
の圧力で中空円筒状に加圧成形したものである。
This colored metal can 1 is filled with a positive electrode body 2 which is press-molded into a cylindrical shape, and the positive electrode body 2 is refilled at a pressure of, for example, 3 tons/i to improve contact with the metal can 1. Pressurized. The positive electrode body 2 was prepared by adding 3 parts by weight of an alkaline electrolyte of 0% caustic potash to 92 parts by weight of manganese dioxide having an average particle size of 80 μm and 8 parts by weight of graphite having an average particle size of 0.5 μm, and stirring and mixing the mixture to form a positive electrode mixture. 3ton/CIj
It is press-molded into a hollow cylindrical shape at a pressure of .

また、前記円筒状の正極体2の中空部にはアセタール化
ポリビニルアルコール繊維の不織布からなる有底円筒状
のセパレータ3を介してゲル状負極合剤4が充填されて
いる。このデル状負極合剤4は、ポリアクリル酸ソーダ
を含む苛性カリ電解液に負極活物質であるアマルガム化
した亜鉛粉末を分散させた構成になっている。図中の5
は、真鍮製の負極集電棒であり、該負極集電棒5の一端
側は前記ゲル状負極合剤4内に挿入されており、かつ他
端は金属封口板6に接続されている。前記金属缶lと前
記金属封口板6の間には、ポリアミド樹脂からなる絶縁
ガスケット7か介在されており、該金属缶1の開口縁を
内方に屈曲させることにより該ガスケット7及び金属封
口板6で金属缶1内を密封口している。
Further, the hollow portion of the cylindrical positive electrode body 2 is filled with a gelled negative electrode mixture 4 via a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fibers. This delta-shaped negative electrode mixture 4 has a structure in which amalgamated zinc powder, which is a negative electrode active material, is dispersed in a caustic potassium electrolyte containing sodium polyacrylate. 5 in the diagram
is a negative electrode current collector rod made of brass; one end side of the negative electrode current collector rod 5 is inserted into the gel-like negative electrode mixture 4, and the other end is connected to the metal sealing plate 6. An insulating gasket 7 made of polyamide resin is interposed between the metal can 1 and the metal sealing plate 6, and by bending the opening edge of the metal can 1 inward, the gasket 7 and the metal sealing plate are separated. At 6, the inside of the metal can 1 is sealed.

実施例2〜9 下記表に示す組成の正極合剤から実施例1と同様な方法
で製作した正極合剤を用いた以外、実施例1と同構成の
アルカリ乾電池を組立てた。
Examples 2 to 9 Alkaline dry batteries having the same configuration as in Example 1 were assembled, except that a positive electrode mixture prepared in the same manner as in Example 1 from a positive electrode mixture having the composition shown in the table below was used.

しかして、本実施例1〜9で用いた正極合剤を加圧成形
した後、別に用意した金属缶の内径に等しい金型に挿入
し、3ton/C7jで再加圧し、ひきつづき金型から
取出した正極体に水溶液を浸透させて加圧成形により取
込まれた空気を置換し、20°Cの温度で正極体に置換
された水分量を、空気含有量として測定した。その結果
を同表に併記した。
After the positive electrode mixture used in Examples 1 to 9 was press-molded, it was inserted into a mold that was equal to the inner diameter of a separately prepared metal can, re-pressurized at 3 tons/C7j, and then removed from the mold. An aqueous solution was permeated into the positive electrode body to replace the air taken in by pressure molding, and the amount of water displaced into the positive electrode body at a temperature of 20°C was measured as the air content. The results are also listed in the same table.

また、本実施例1〜9のアルカリ乾電池を20°Cの室
温で負荷抵抗10Ω、終止電圧0.9Vまでの放電持続
時間を測定した。その結果を電池10個当りの平均値と
して同表に併記した。なお、表中には従来のアルカリ乾
電池を従来例とし、平均粒径が本発明の範囲から外れる
二酸化マンガン及び黒鉛からなる正極合剤を成形した正
極体を有するアルカリ乾電池を比較例1〜8として併記
した。
Further, the discharge duration of the alkaline dry batteries of Examples 1 to 9 at a room temperature of 20° C. with a load resistance of 10Ω and a final voltage of 0.9V was measured. The results are also shown in the same table as an average value per 10 batteries. In addition, in the table, conventional alkaline dry batteries are shown as conventional examples, and alkaline dry batteries having positive electrode bodies formed from positive electrode mixtures made of manganese dioxide and graphite whose average particle size is outside the range of the present invention are shown as Comparative Examples 1 to 8. Also listed.

上記表から明らかなように、従来例の正極体の空気含有
ごは0.52cc、放電持続時間は12.5hrである
のに対し、本実施例1〜9で用いた正極体は空気含有量
が0.26〜0.30ccと低く、かつ該正極組込んだ
アルカリ乾電池の放電持続時間は13,8〜146h「
と長いことがわかる。なお、二酸化マンガンと黒鉛の配
合重合比を92=8〜85:15の範囲とすることが、
正極体を加圧成形時のパンチ抜は時の力に耐える硬さに
でき、欠は等を防止する上でa効であった。
As is clear from the above table, the air content of the conventional positive electrode body was 0.52 cc and the discharge duration was 12.5 hr, whereas the positive electrode bodies used in Examples 1 to 9 had an air content of 0.52 cc and a discharge duration of 12.5 hr. is as low as 0.26 to 0.30cc, and the discharge duration of the alkaline dry battery incorporating the positive electrode is 13.8 to 146 hours.
You can see that it is long. In addition, setting the blending polymerization ratio of manganese dioxide and graphite in the range of 92=8 to 85:15,
Punching during pressure molding of the positive electrode body made it hard enough to withstand the force of time, and was effective in preventing chips and the like.

一方、平均粒径が本発明の範囲から外れる70μmの二
酸化マンガンを配合して正極体とした比較例1.2では
、空気含有量が増加して放電持続時間が12.2hr、
12.3hrと低くなる。また、平均粒径が本発明の範
囲から外れる400μmの二酸化マンガンを配合して正
極体とした比較例3.4では、空気cs Q MLが低
減されるものの、表面積が小さくなり過ぎて同様に放電
時間が11.7hr、 11.6hrと低下する。
On the other hand, in Comparative Example 1.2 in which the positive electrode was made by blending manganese dioxide with an average particle size of 70 μm outside the range of the present invention, the air content increased and the discharge duration was 12.2 hr.
It will be as low as 12.3hr. In addition, in Comparative Example 3.4, in which the positive electrode was made by blending manganese dioxide with an average particle size of 400 μm outside the range of the present invention, although the air cs Q ML was reduced, the surface area became too small and the discharge was similarly reduced. The time decreases to 11.7hr and 11.6hr.

更に、二酸化マンガンの平均粒径が80〜300umで
あるが、平均粒径か本発明から外れる黒鉛を用い、かつ
二酸化マンガンと黒鉛の比を93ニア、g4:18とし
て比較例5〜8のアルカリ乾電池においては、比較例5
.6では空気量N xが本実施例と変らないが、二酸化
マンガンの比率が93と増加した分だけ黒鉛の平均粒径
を小さくするため、正極体の導電性が低下して電池内部
抵抗が増大し、放電持続時間が低下する。また、比較例
6.8は黒鉛配合量が増加するため、二酸化マンガンの
量が減少して放電持続時間が低下する。このことから、
二酸化マンガンと黒鉛の配合重量比が92;8〜85:
15の範囲が好ましいことがわかる。
Furthermore, the average particle size of manganese dioxide is 80 to 300 um, but using graphite whose average particle size is out of the scope of the present invention, and using a ratio of manganese dioxide and graphite of 93 nia and g4:18, the alkali of Comparative Examples 5 to 8 For dry batteries, Comparative Example 5
.. In case of No. 6, the air amount N However, the discharge duration decreases. Furthermore, in Comparative Examples 6 and 8, since the blended amount of graphite increases, the amount of manganese dioxide decreases and the discharge duration decreases. From this,
The blending weight ratio of manganese dioxide and graphite is 92; 8 to 85:
It can be seen that the range of 15 is preferable.

[発明の効果] 以上詳述した如く、本発明によれば正極体内に残留する
空気量を減少させて正極活物質の反応面積を増大でき、
ひいては放電容量等の放電特性の優れたアルカリ乾電池
を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, the amount of air remaining in the cathode body can be reduced and the reaction area of the cathode active material can be increased.
Furthermore, it is possible to provide an alkaline dry battery with excellent discharge characteristics such as discharge capacity.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施例を示すアルカリ乾電池の断面
図である。 1・・・金属缶、2・・・正極体、4・・・ゲル状負極
合剤、5・・・負極集電棒。
The drawing is a sectional view of an alkaline dry battery showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Metal can, 2... Positive electrode body, 4... Gel-like negative electrode mixture, 5... Negative electrode current collector rod.

Claims (2)

【特許請求の範囲】[Claims] (1)、二酸化マンガンを正極活物質とし、黒鉛を導電
剤として配合される正極合剤を加圧成形した正極体と、
亜鉛からなる負極活物質とを備えたアルカリ乾電池にお
いて、前記二酸化マンガンとして平均粒径が80〜30
0μmのものを、前記黒鉛として平均粒径が0.5〜1
0μmのものを夫々用いることを特徴とするアルカリ乾
電池。
(1) A positive electrode body formed by pressure molding a positive electrode mixture containing manganese dioxide as a positive electrode active material and graphite as a conductive agent;
In an alkaline dry battery equipped with a negative electrode active material made of zinc, the manganese dioxide has an average particle size of 80 to 30
0 μm is used as the graphite with an average particle size of 0.5 to 1.
An alkaline dry battery characterized by using a 0 μm battery.
(2)、正極合剤の二酸化マンガンと黒鉛との配合重量
比が92:8〜85:15の範囲であることを特徴とす
る特許請求の範囲第1項記載のアルカリ乾電池。
(2) The alkaline dry battery according to claim 1, wherein the weight ratio of manganese dioxide and graphite in the positive electrode mixture is in the range of 92:8 to 85:15.
JP62067235A 1987-03-20 1987-03-20 Alkaline dry battery Pending JPS63232266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067235A JPS63232266A (en) 1987-03-20 1987-03-20 Alkaline dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067235A JPS63232266A (en) 1987-03-20 1987-03-20 Alkaline dry battery

Publications (1)

Publication Number Publication Date
JPS63232266A true JPS63232266A (en) 1988-09-28

Family

ID=13339050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067235A Pending JPS63232266A (en) 1987-03-20 1987-03-20 Alkaline dry battery

Country Status (1)

Country Link
JP (1) JPS63232266A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142060A (en) * 1993-11-16 1995-06-02 Fuji Elelctrochem Co Ltd Alkaline-manganese battery
US5482798A (en) * 1994-03-28 1996-01-09 Matsushita Electric Industrial Co., Ltd. Alkaline manganese battery
US6828064B1 (en) 1998-01-07 2004-12-07 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating enhanced graphite
US6833217B2 (en) 1997-12-31 2004-12-21 Duracell Inc. Battery cathode
JP2016162646A (en) * 2015-03-03 2016-09-05 セイコーインスツル株式会社 Flat alkaline primary battery and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142060A (en) * 1993-11-16 1995-06-02 Fuji Elelctrochem Co Ltd Alkaline-manganese battery
US5482798A (en) * 1994-03-28 1996-01-09 Matsushita Electric Industrial Co., Ltd. Alkaline manganese battery
US6833217B2 (en) 1997-12-31 2004-12-21 Duracell Inc. Battery cathode
US6828064B1 (en) 1998-01-07 2004-12-07 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating enhanced graphite
JP2016162646A (en) * 2015-03-03 2016-09-05 セイコーインスツル株式会社 Flat alkaline primary battery and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4322472B2 (en) Sealed nickel zinc primary battery
US3870564A (en) Alkaline cell
JP2007516567A (en) Zinc / air battery with improved negative electrode
US5919588A (en) Cathode additive for alkaline primary cells
JP2009170159A (en) Aa alkaline battery
JPS63232266A (en) Alkaline dry battery
JP5237680B2 (en) AA alkaline batteries and AAA alkaline batteries
JP4255762B2 (en) Zinc alkaline battery
JP2002093413A (en) Battery
JP4253172B2 (en) Sealed nickel zinc primary battery
CA1186373A (en) Electrochemical cell with compacted cathode containing polyolefin powder additive
JP2003017079A (en) Zinc alkaline battery
JP4307864B2 (en) Sealed alkaline zinc primary battery
JP2003257423A (en) Sealed alkaline zinc primary battery, and alkaline zinc compound positive electrode mix used in the same
JP2001068121A (en) Cylindrical alkaline battery
JP2003197206A (en) Sealed alkaline zinc primary battery
JPH1083810A (en) Positive cathode mix for zinc alkaline battery
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it
JP2003017042A (en) Sealed alkaline-zinc primary battery
JP2007250451A (en) Alkaline cell
JP4292431B2 (en) Cylindrical alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP3714734B2 (en) Method for producing positive electrode mixture for alkaline manganese battery
JP4503790B2 (en) Alkaline battery
JP2009163896A (en) Aa alkaline dry battery