JPH07282845A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH07282845A
JPH07282845A JP6069541A JP6954194A JPH07282845A JP H07282845 A JPH07282845 A JP H07282845A JP 6069541 A JP6069541 A JP 6069541A JP 6954194 A JP6954194 A JP 6954194A JP H07282845 A JPH07282845 A JP H07282845A
Authority
JP
Japan
Prior art keywords
dioxaspiro
electrolytic solution
electrolyte
dendrites
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6069541A
Other languages
Japanese (ja)
Other versions
JP3223035B2 (en
Inventor
Toru Matsui
徹 松井
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP06954194A priority Critical patent/JP3223035B2/en
Publication of JPH07282845A publication Critical patent/JPH07282845A/en
Application granted granted Critical
Publication of JP3223035B2 publication Critical patent/JP3223035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase conductivity and suppress generation of dendrites on a negative electrode to enhance reliability by selecting an electrolyte from the group containing a dioxaspiro compound and comprising ethylene carbonate as the main solvent. CONSTITUTION:By containing a dioxaspiro compound in an electrolyte, a lithium atom deposited on a metallic substrate is not fixed in the deposition portion, diffuses on the surface of the substrate, and is caught at a thermodinamically stable crystal lattice point. When a crystal nucleus having many defects is formed immediately after deposition starts, deposited atoms gather around the crystal nucleous, crystallinity is increased, and the crystal nucleous globularly grows to prevent the generation of dendrites. When the main solvent of the electrolyte is ethylene carbonate and/or propylene carbonate, the solubility of the dioxaspiro compound is increased even at low temperature, and battery performance is increased. Conductivity is enhanced, generation of dendrites is suppressed, internal short circuit is prevented, and reliability is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池、
特に、その電解液の改良に関する。
The present invention relates to a non-aqueous electrolyte secondary battery,
Particularly, it relates to improvement of the electrolytic solution.

【0002】[0002]

【従来の技術】今日、プロピレンカーボネート、γ−ブ
チロラクトン、ジメトキシエタン、テトラヒドロフラ
ン、ジオキソラン等の有機溶媒に、LiClO4、Li
BF4、LiAsF6、LiPF6、LiCF3SO3等の
溶質を溶かして得られる電解液と、リチウム等のアルカ
リ金属を活物質とする負極を組み合わせた非水電解質電
池は、高エネルギー密度を有するため、電子時計、カメ
ラをはじめとする小型電子機器に広く用いられるように
なった。この種の非水電解質電池を充電可能にする課題
のひとつは、充電過程において負極上に析出するアルカ
リ金属の形態が、樹枝状、フィブリル状ないしは針状と
いう、いわゆるデンドライトになることである。このデ
ンドライトが著しく成長すると、負極と正極の内部短
絡、発火という危険性が増加するばかりか、以降の放電
過程で溶解させても、デンドライトの局部的溶解が進行
し一部は電気的に極板より遊離するためすべてのデンド
ライトを溶かし出すことができない。すなわち、充電
(析出)量に対する放電(溶解)量が小さくなり(充放
電効率の低下)、サイクル寿命が短くなる。
2. Description of the Related Art Today, organic solvents such as propylene carbonate, γ-butyrolactone, dimethoxyethane, tetrahydrofuran and dioxolane are mixed with LiClO 4 , Li
A non-aqueous electrolyte battery having a combination of an electrolyte obtained by dissolving a solute such as BF 4 , LiAsF 6 , LiPF 6 , and LiCF 3 SO 3 and a negative electrode using an alkali metal such as lithium as an active material has a high energy density. Therefore, it has come to be widely used in small electronic devices such as electronic timepieces and cameras. One of the problems in enabling this type of non-aqueous electrolyte battery to be charged is that the form of the alkali metal deposited on the negative electrode during the charging process becomes so-called dendrite, which is dendritic, fibrillar, or acicular. When this dendrite grows significantly, not only the risk of internal short circuit between the negative electrode and the positive electrode and ignition increases, but even if the dendrite is dissolved in the subsequent discharge process, local dissolution of the dendrite proceeds and part of it is electrically Not all dendrites can be melted out because they are more liberated. That is, the amount of discharge (dissolution) with respect to the amount of charge (deposition) becomes small (reduction of charge / discharge efficiency), and the cycle life becomes short.

【0003】このような、課題を解決する方法として、
電解質塩を多く溶かす高誘電率のプロピレンカーボネー
トの溶媒に炭化水素化合物を添加剤として含ませ、析出
するリチウムの表面を保護することによって、デンドラ
イトの発生を抑制する試みがある(3rd International
Meeting on Lithium Batteries、アブストラクト、第34
6頁 (1986))。
As a method for solving such a problem,
There is an attempt to suppress the generation of dendrites by including a hydrocarbon compound as an additive in a solvent of propylene carbonate having a high dielectric constant, which dissolves a large amount of electrolyte salt, and protecting the surface of the precipitated lithium (3rd International
Meeting on Lithium Batteries, Abstract, 34th
Page 6 (1986)).

【0004】[0004]

【発明が解決しようとする課題】前記のような、プロピ
レンカーボネートに炭化水素を添加剤として含ませた溶
媒を電解液に使用しても、上記引用文献に記載されてい
るように、充電(析出)後長期にわたって放置した電極
上のリチウムの腐食が進行し、充放電効率が低下すると
いう課題があった。また、炭化水素化合物を電解液に添
加すると、電解液の電導度が低下するため、高電流密度
での充放電時の分極が大きくなるという不都合が生じる
ことが判明した。本発明は、このような従来の欠点を除
去するものであり、充電(析出)によって析出したリチ
ウム等のアルカリ金属の腐食進行を抑制するとともに、
電導度が大きく、充放電を繰り返しても負極上でのデン
ドライトの発生が抑制される電解液を得ることによっ
て、信頼性の大きい非水電解質二次電池を提供すること
を目的とする。
Even when the above-mentioned solvent in which propylene carbonate contains hydrocarbon as an additive is used in the electrolytic solution, charging (precipitation) occurs as described in the above cited document. ) There has been a problem that the corrosion of lithium on the electrode that has been left for a long period of time afterward progresses, and the charge / discharge efficiency decreases. Further, it has been found that when a hydrocarbon compound is added to the electrolytic solution, the electric conductivity of the electrolytic solution is lowered, so that there is an inconvenience that polarization at the time of charging and discharging at a high current density becomes large. The present invention eliminates such conventional defects, while suppressing the progress of corrosion of alkali metals such as lithium deposited by charging (deposition),
It is an object of the present invention to provide a highly reliable non-aqueous electrolyte secondary battery by obtaining an electrolytic solution having a high electric conductivity and suppressing generation of dendrites on the negative electrode even when charging and discharging are repeated.

【0005】[0005]

【課題を解決するための手段】本発明の非水電解質二次
電池は、正極と、アルカリイオン伝導性の非水電解液
と、アルカリ金属を活物質とする負極とを具備し、前記
電解液が、式1で示される1,3−ジオキサスピロ
[4,5]デカン、式2で示される1,4−ジオキサス
ピロ[4,5]デカン、式3で示される1,3−ジオキ
サスピロ[4,4]ノナンおよび式4で示される1,4
−ジオキサスピロ[4,4]ノナンよりなる群から選ば
れる少なくとも1種を含むことを特徴とする。
A non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode, an alkali ion conductive non-aqueous electrolytic solution, and a negative electrode using an alkali metal as an active material. Is 1,3-dioxaspiro [4,5] decane represented by the formula 1, 1,4-dioxaspiro [4,5] decane represented by the formula 2, and 1,3-dioxaspiro [4,4 represented by the formula 3 ] Nonane and 1,4 shown in Formula 4
-Containing at least one member selected from the group consisting of dioxaspiro [4,4] nonane.

【0006】[0006]

【化1】 [Chemical 1]

【0007】ここで、前記電解液の主溶媒は、エチレン
カーボネートおよびプロピレンカーボネートよりなる群
から選ばれる少なくとも1種であることが好ましい。
Here, the main solvent of the electrolytic solution is preferably at least one selected from the group consisting of ethylene carbonate and propylene carbonate.

【0008】[0008]

【作用】本発明者らが種々考察したところによると、ジ
オキサスピロ化合物を含む電解液中では、金属基体に析
出したリチウム原子(厳密には吸着イオン)は析出した
その場で固定されず、基体表面を拡散した後に熱力学的
に安定な結晶格子点で捕捉されやすいことが判明した。
したがって、析出開始直後に欠陥の多い結晶核が生成す
ると、析出原子はこの結晶核に集まりその結晶性を高め
るとともに、結晶核が球状に成長し、いわゆるデンドラ
イトになることが防がれる。ジオキサスピロ化合物は、
その構造式からも明らかなように、分子構造の一方が炭
素と水素原子のみからなる疎水構造であり、他方が酸素
原子を含む親水構造である。したがって、エチレンカー
ボネートやプロピレンカーボネートのような高誘電率の
溶媒と親和しやすく、また、自らリチウム等のイオンに
配位し電解質塩の解離に寄与するので、電解液の電導度
を損なうことがない。
According to various investigations by the present inventors, in the electrolyte solution containing the dioxaspiro compound, the lithium atoms (strictly speaking, adsorbed ions) deposited on the metal substrate are not fixed on the spot where they are deposited, and the substrate surface It has been found that after being diffused, it is easily trapped at thermodynamically stable crystal lattice points.
Therefore, when crystal nuclei with many defects are generated immediately after the start of precipitation, the precipitated atoms gather in the crystal nuclei to enhance their crystallinity and prevent the crystal nuclei from growing spherically to become so-called dendrites. The dioxaspiro compound is
As is clear from the structural formula, one of the molecular structures is a hydrophobic structure containing only carbon and hydrogen atoms, and the other is a hydrophilic structure containing oxygen atoms. Therefore, it is easy to be compatible with a solvent having a high dielectric constant such as ethylene carbonate or propylene carbonate, and also contributes to the dissociation of the electrolyte salt by coordinating with ions such as lithium, so that the conductivity of the electrolytic solution is not impaired. .

【0009】また、分析の結果、ジオキサスピロ化合物
は、リチウム等のアルカリ金属からなる電極の表面に吸
着しており、エチレンカーボネートやプロピレンカーボ
ネートのような高誘電率の溶媒との境界にあって、これ
らの高誘電率溶媒がアルカリ金属と直接反応するのを妨
げていることが明らかになった。このようなことから、
ジオキサスピロ化合物を含む電解液中で析出させたアル
カリ金属は、長期の放置においても腐食が進行せず、充
放電効率が向上するものと考えられる。
As a result of the analysis, the dioxaspiro compound is adsorbed on the surface of the electrode made of an alkali metal such as lithium, and is present at the boundary with a solvent having a high dielectric constant such as ethylene carbonate or propylene carbonate. It was found that the high dielectric constant solvent of the above prevents the direct reaction with the alkali metal. From such a thing,
It is considered that the alkali metal deposited in the electrolytic solution containing the dioxaspiro compound does not undergo corrosion even when left standing for a long time and the charge / discharge efficiency is improved.

【0010】電解液の主溶媒が、エチレンカーボネート
および/またはプロピレンカーボネートであるときは、
低温においてもジオキサスピロ化合物の溶解度が大き
く、特性の優れた電池を与える。
When the main solvent of the electrolytic solution is ethylene carbonate and / or propylene carbonate,
The solubility of the dioxaspiro compound is large even at a low temperature, and a battery having excellent characteristics is provided.

【0011】[0011]

【実施例】以下、本発明の実施例について説明する。な
お、実施例における電池の組立はすべてアルゴンガス雰
囲気下で行った。 [実施例1]エチレンカーボネートとプロピレンカーボ
ネートを体積比で1/1の割合で混合し、この混合溶媒
にLiClO4を1モル/lの割合で溶解し、電解液を
調製した。この電解液に種々のジオキサスピロ化合物を
計1wt%の割合で添加し、その電導度を25℃におい
て交流二極法を用いて測定した。 [比較例1]電解液に1wt%の割合でデカリンを混合
した他は実施例1と同様に調製した電解液を比較例とす
る。
EXAMPLES Examples of the present invention will be described below. All the batteries in the examples were assembled under an argon gas atmosphere. Example 1 Ethylene carbonate and propylene carbonate were mixed in a volume ratio of 1/1, and LiClO 4 was dissolved in this mixed solvent at a ratio of 1 mol / l to prepare an electrolytic solution. Various dioxaspiro compounds were added to this electrolytic solution in a proportion of 1 wt% in total, and the conductivity thereof was measured at 25 ° C. using an AC bipolar method. Comparative Example 1 An electrolytic solution prepared in the same manner as in Example 1 except that 1% by weight of decalin was mixed with the electrolytic solution will be used as a comparative example.

【0012】これらの実施例および比較例の電解液の電
導度を表1に示す。ここで、D13は1,3−ジオキサ
スピロ[4,5]デカンを表し、以下同様に、D14は
1,4−ジオキサスピロ[4,5]デカンを、N13は
1,3−ジオキサスピロ[4,4]ノナンを、N14は
1,4−ジオキサスピロ[4,4]ノナンをそれぞれ表
す。表1より、本発明の実施例であるジオキサスピロ化
合物を添加した電解液の電導度は、比較例に対して約1
5%向上することがわかる。これは、ジオキサスピロ化
合物自身が電解質塩の解離に寄与し、電導度を損なうこ
とがないためである。
Table 1 shows the electric conductivities of the electrolytic solutions of these Examples and Comparative Examples. Here, D13 represents 1,3-dioxaspiro [4,5] decane, D14 is 1,4-dioxaspiro [4,5] decane, and N13 is 1,3-dioxaspiro [4,5] decane. Nonane and N14 represent 1,4-dioxaspiro [4,4] nonane, respectively. From Table 1, the conductivity of the electrolytic solution containing the dioxaspiro compound, which is an example of the present invention, is about 1 as compared with the comparative example.
It can be seen that it is improved by 5%. This is because the dioxaspiro compound itself contributes to the dissociation of the electrolyte salt and does not impair the conductivity.

【0013】[0013]

【表1】 [Table 1]

【0014】[実施例2]実施例1と同様に、エチレン
カーボネートとプロピレンカーボネートを体積比で1/
1の割合で混合し、この混合溶媒にLiClO4を1モ
ル/lの割合で溶解し、電解液を調製した。この電解液
に種々のジオキサスピロ化合物を計1wt%の割合で添
加した。このようにして調製した電解液を用いて図1に
示すような偏平型電池を構成した。この電池の構成を図
1に基づき説明する。正極1は、LiMn24 粉末、
カーボンブラックおよび四弗化エチレン樹脂粉末を混合
し、チタンのエキスパンドメタルからなる集電体2をス
ポット溶接した正極缶3に加圧成型したものである。負
極4は、円板状に打ち抜いたリチウムシートをニッケル
のエキスパンドメタル5をスポット溶接した封口板6に
圧着してある。セパレータ7には、ポリプロピレン製多
孔質膜を用いている。正極缶に前記の電解液を注液後、
ガスケット8を介して封口板を組合せて偏平型電池を構
成した。
[Example 2] As in Example 1, ethylene carbonate and propylene carbonate were mixed in a volume ratio of 1 /
The mixture was mixed at a ratio of 1 and LiClO 4 was dissolved in this mixed solvent at a ratio of 1 mol / l to prepare an electrolytic solution. Various dioxaspiro compounds were added to this electrolytic solution in a proportion of 1 wt% in total. A flat-type battery as shown in FIG. 1 was constructed using the electrolytic solution thus prepared. The structure of this battery will be described with reference to FIG. The positive electrode 1 is LiMn 2 O 4 powder,
The carbon black and the tetrafluoroethylene resin powder were mixed, and the current collector 2 made of expanded metal of titanium was spot-welded and pressed into a positive electrode can 3. The negative electrode 4 is obtained by crimping a lithium sheet punched into a disc shape onto a sealing plate 6 obtained by spot welding an expanded metal 5 of nickel. A polypropylene porous film is used for the separator 7. After injecting the electrolytic solution into the positive electrode can,
A flat battery was constructed by combining a sealing plate with a gasket 8 interposed therebetween.

【0015】[比較例2]プロピレンカーボネートとエ
チレンカーボネートを体積比1/1の割合で混合した溶
媒にLiClO4を1モル/lの割合で溶解した電解液
に、デカリンを1wt%添加したものを用いた他は実施
例2と同様に構成した電池を比較例の電池とする。以上
のように構成した実施例2および比較例2の電池を25
℃において、2mA/cm2の電流密度、放電下限電圧
2.0V、充電上限電圧3.5Vで充放電サイクルを繰
り返し、放電容量が1サイクル目の半分になるまでのサ
イクル数(サイクル寿命)を求めた。表2は、実施例お
よび比較例の電池のサイクル寿命を比較したものであ
る。表2より、本発明のジオキサスピロ化合物を添加し
た電解液を用いた電池は、充放電サイクル寿命が著しく
向上していることがわかる。これは、本発明の電解液で
は、負極の腐食が低減し、デンドライトの発生が抑制さ
れることにより負極の充放電効率が向上したためであ
る。
COMPARATIVE EXAMPLE 2 An electrolytic solution prepared by dissolving LiClO 4 at a ratio of 1 mol / l in a solvent prepared by mixing propylene carbonate and ethylene carbonate at a ratio of 1/1 by volume, and adding 1 wt% of decalin thereto. A battery configured in the same manner as in Example 2 except for the use is used as a comparative battery. The batteries of Example 2 and Comparative Example 2 configured as described above were used as 25
At a temperature of 2 ° C, the charge / discharge cycle was repeated at a current density of 2 mA / cm 2 , a discharge lower limit voltage of 2.0 V, and a charge upper limit voltage of 3.5 V, and the number of cycles (cycle life) until the discharge capacity became half of the first cycle I asked. Table 2 compares the cycle lives of the batteries of Examples and Comparative Examples. From Table 2, it can be seen that the battery using the electrolyte solution containing the dioxaspiro compound of the present invention has a significantly improved charge / discharge cycle life. This is because the electrolytic solution of the present invention reduces the corrosion of the negative electrode and suppresses the generation of dendrites, thereby improving the charge / discharge efficiency of the negative electrode.

【0016】[0016]

【表2】 [Table 2]

【0017】[実施例3]プロピレンカーボネートとエ
チレンカーボネートを体積比1/1の割合で混合した溶
媒に、LiClO4を1モル/lの割合で溶解した。こ
の電解液に1,3−ジオキサスピロ[4,5]デカンを
5wt%の割合で添加した。この電解液を用いて実施例
2と同様な偏平型電池を構成した。 [比較例3]プロピレンカーボネートとエチレンカーボ
ネートとジメトキシエタンを体積比0.5/0.5/2
の割合で混合した溶媒にLiClO4を1モル/lの割
合で溶解し、さらに1,3−ジオキサスピロ[4,5]
デカンを5wt%の割合で添加した電解液を用いた他は
実施例と同様に作製した電池を比較例とする。以上のよ
うに構成した実施例3および比較例3の電池の内部抵抗
を種々の温度で測定し、図2にプロットした。図2よ
り、比較例3の電池は、温度が−15℃以下で急激に内
部抵抗が増加していることがわかる。これは、比較例3
の電池は、主溶媒としてプロピレンカーボネートやエチ
レンカーボネート用いておらず、低温でジオキサスピロ
化合物の溶解度が低いために電解液が相分離したためで
ある。
Example 3 LiClO 4 was dissolved at a ratio of 1 mol / l in a solvent prepared by mixing propylene carbonate and ethylene carbonate at a ratio of 1/1 by volume. 1,3-Dioxaspiro [4,5] decane was added to this electrolyte at a ratio of 5 wt%. A flat-type battery similar to that of Example 2 was constructed using this electrolytic solution. [Comparative Example 3] Propylene carbonate, ethylene carbonate and dimethoxyethane in a volume ratio of 0.5 / 0.5 / 2
LiClO 4 was dissolved in a solvent mixed at a ratio of 1 mol / l at a ratio of 1 mol / l, and 1,3-dioxaspiro [4,5]
A battery manufactured in the same manner as the example except that the electrolytic solution added with decane at a ratio of 5 wt% was used as a comparative example. The internal resistances of the batteries of Example 3 and Comparative Example 3 configured as described above were measured at various temperatures and plotted in FIG. It can be seen from FIG. 2 that the battery of Comparative Example 3 has a sharp increase in internal resistance at a temperature of −15 ° C. or lower. This is Comparative Example 3
This is because the battery of No. 1 does not use propylene carbonate or ethylene carbonate as a main solvent, and the electrolyte has a phase separation due to the low solubility of the dioxaspiro compound at low temperature.

【0018】[0018]

【発明の効果】以上のように、本発明のジオキサスピロ
化合物を添加した電解液を採用すれば、電導度が高く、
また、充電時の負極上でのデンドライト発生が抑制され
ることにより内部短絡のない充放電サイクル寿命の長い
信頼性の大きい非水電解質二次電池が得られる。
As described above, when the electrolytic solution containing the dioxaspiro compound of the present invention is adopted, the electric conductivity is high,
Further, by suppressing the generation of dendrites on the negative electrode during charging, it is possible to obtain a highly reliable non-aqueous electrolyte secondary battery having a long charge / discharge cycle life without internal short circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた偏平型電池の縦断面図
である。
FIG. 1 is a vertical cross-sectional view of a flat battery used in an example of the present invention.

【図2】本発明の実施例及び比較例の電池の各温度にお
ける内部抵抗をプロットした図である。
FIG. 2 is a diagram in which internal resistances at respective temperatures of the batteries of Examples of the present invention and Comparative Examples are plotted.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体 3 正極缶 4 負極 5 負極集電体 6 封口板 7 セパレータ 8 ガスケット 1 Positive Electrode 2 Positive Electrode Current Collector 3 Positive Electrode Can 4 Negative Electrode 5 Negative Current Collector 6 Sealing Plate 7 Separator 8 Gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と、アルカリイオン伝導性の非水電
解液と、アルカリ金属を活物質とする負極とを具備し、
前記電解液が、1,3−ジオキサスピロ[4,5]デカ
ン、1,4−ジオキサスピロ[4,5]デカン、1,3
−ジオキサスピロ[4,4]ノナンおよび1,4−ジオ
キサスピロ[4,4]ノナンよりなる群から選ばれる少
なくとも1種を含むことを特徴とする非水電解質二次電
池。
1. A positive electrode, an alkali ion conductive non-aqueous electrolytic solution, and a negative electrode having an alkali metal as an active material.
The electrolytic solution is 1,3-dioxaspiro [4,5] decane, 1,4-dioxaspiro [4,5] decane, 1,3
-A non-aqueous electrolyte secondary battery comprising at least one selected from the group consisting of dioxaspiro [4,4] nonane and 1,4-dioxaspiro [4,4] nonane.
【請求項2】 前記電解液の主溶媒が、エチレンカーボ
ネートおよびプロピレンカーボネートよりなる群から選
ばれる少なくとも1種である請求項1記載の非水電解質
二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the main solvent of the electrolytic solution is at least one selected from the group consisting of ethylene carbonate and propylene carbonate.
JP06954194A 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3223035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06954194A JP3223035B2 (en) 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06954194A JP3223035B2 (en) 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07282845A true JPH07282845A (en) 1995-10-27
JP3223035B2 JP3223035B2 (en) 2001-10-29

Family

ID=13405689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06954194A Expired - Fee Related JP3223035B2 (en) 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3223035B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302836A (en) * 1997-03-06 1998-11-13 Mitsubishi Chem Corp Battery having adjusted electrode interface
EP2851990A1 (en) * 2013-09-24 2015-03-25 Samsung SDI Co., Ltd. Organic electrolyte solution comprising an additive for a lithium battery, and lithium battery using the same
US9748607B2 (en) 2015-03-12 2017-08-29 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery including the electrolyte
US9912010B2 (en) 2015-01-16 2018-03-06 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery and lithium battery using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302836A (en) * 1997-03-06 1998-11-13 Mitsubishi Chem Corp Battery having adjusted electrode interface
EP2851990A1 (en) * 2013-09-24 2015-03-25 Samsung SDI Co., Ltd. Organic electrolyte solution comprising an additive for a lithium battery, and lithium battery using the same
US9263766B2 (en) 2013-09-24 2016-02-16 Samsung Sdi Co., Ltd. Additive for electrolyte of lithium battery, organic electrolyte solution comprising the same, and lithium battery using the organic electrolyte solution
US9912010B2 (en) 2015-01-16 2018-03-06 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery and lithium battery using the same
US9748607B2 (en) 2015-03-12 2017-08-29 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery including the electrolyte

Also Published As

Publication number Publication date
JP3223035B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
EP3518334B1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising said additive
JP3249305B2 (en) Non-aqueous electrolyte battery
JP5702362B2 (en) Lithium secondary battery using ionic liquid
US20030148191A1 (en) Non-aqueous electrolyte secondary battery
JPWO2003044882A1 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
TW447164B (en) Dicarbonate additives for nonaqueous electrolyte rechargeable cells
CN113302763A (en) Lithium metal secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH11185806A (en) Lithium ion battery
JPH08115742A (en) Lithium secondary battery
JP2002231306A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
US20230378792A1 (en) Secondary battery charging method and charging system
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery
JPH06119939A (en) Secondary battery with organic electrolyte
JPH0896848A (en) Nonaqueous electrolytic secondary battery
JP4237531B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JP2006086060A (en) Manufacturing method of secondary battery
JP3287927B2 (en) Non-aqueous electrolyte secondary battery
JP3283412B2 (en) Non-aqueous electrolyte secondary battery
JP3444442B2 (en) Non-aqueous electrolyte secondary battery
JP4752126B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees