JP4682395B2 - Non-aqueous battery - Google Patents

Non-aqueous battery Download PDF

Info

Publication number
JP4682395B2
JP4682395B2 JP2000128922A JP2000128922A JP4682395B2 JP 4682395 B2 JP4682395 B2 JP 4682395B2 JP 2000128922 A JP2000128922 A JP 2000128922A JP 2000128922 A JP2000128922 A JP 2000128922A JP 4682395 B2 JP4682395 B2 JP 4682395B2
Authority
JP
Japan
Prior art keywords
salt
electrode
carbon
group
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000128922A
Other languages
Japanese (ja)
Other versions
JP2001313035A (en
Inventor
達弘 福沢
康彦 大澤
幹夫 川合
雄児 丹上
英明 堀江
孝昭 安部
修 嶋村
寿弘 竹川
隆三 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000128922A priority Critical patent/JP4682395B2/en
Publication of JP2001313035A publication Critical patent/JP2001313035A/en
Application granted granted Critical
Publication of JP4682395B2 publication Critical patent/JP4682395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電助材及びかかる導電助材を用いた正極及び/又は負極を備える非水電池に関する。
【0002】
【従来の技術】
リチウム二次電池、リチウムイオン二次電池の電極は、通常、電極活物質と、電極の導電性を向上させるための導電助材と、それらを、集電体である金属箔上に結着するバインダーとからなる。電極を製造する際、電極材料と集電体との密着性は、電極の性能を左右する重要な要素となる。電極の密着性が悪いと、充放電の繰り返しの耐久性が低下したり、電極材料の脱落により容量が低下し、微小短絡の原因となったりする。
【0003】
電極材料と集電体との密着性は、結着剤であるバインダーの量を増加すれば向上するが、バインダーは電池の反応には直接関与せず、それ自体は導電性も有さないため、電極全体に占めるバインダーの分量が増加すると、その結果、電池の容量が低下し、電極の抵抗も大きくなる。
また、電極の抵抗を下げるために電極材料に導電助材を加えることが一般的に実施されており、例えば、特開平10−306193号公報が示すように、導電助材として一般的なアセチレンブラックを用いると、アセチレンブラックはバインダーを吸収してしまうため、アセチレンブラックの分量が増加すると、電極の密着性が低下するという問題がある。
【0004】
そして、最近リチウム二次電池の非水電解液のかわりにポリマー電解質を用いたものが開発されている。この電解質のポリマー化により、電池の形状自由性やコンパクト化が期待できる。しかし、現状のポリマー電解質のイオン伝導性は、せいぜい10-4S/cm程度で、非水電解液と比較すると2桁程度小さい。そのため、ポリマー中に電解液を含浸させたゲル電解質の検討が行われている。電解質をゲル化しても、室温での伝導度が10-3S/cmをこえることが報告されている。たとえば、J. Y. Songらがこれについて総説を発表している〔J. Power Sources, 77(1999)183.〕公開特許としてはたとえば、特開平8−264205などがある。ゲル電解質としては、ポリエチレンオキシド系、ポリアクリロニトリル系、ポリメチルメチクリル系、ポリフッカビニリデン系、及びこれらを含む共重合体などが提案されている。
【0005】
しかしながら従来のゲル状ポリマー電解質は、高分子マトリックスが電解液を含有することを特徴とし、全固体型のポリマー電解質に比べればイオン伝導度が改善されているものの、まだ電解液のレベルに及ばず、この電解質を用いて電池を構成した場合、電解質相の低イオン伝導性のため、電極の内部抵抗が大きく、出力が低下して電流を流しにくくなるので、電池の充放電容量を十分に引き出せない。容量を引き出せるようにするには、電極内でのイオン伝導度を向上させ、内部抵抗を低くする必要がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、バインダーの量を増加したり、導電助材の量を減少したりすることなく、電極の密着性を向上させることができる導電助材及び該導電助材を用いた正極及び/又は負極を備えた非水電池を提供する。
【0007】
【課題を解決するための手段】
請求項1記載の非水電池は、正極と負極の少なくとも片方の電極が導電助材として、スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩のいずれか1つを表面に有したカーボンを含むことを特徴とする
【0009】
請求項2記載の非水電池は、前記スルホン酸基の塩が、リチウムのスルホン酸塩であることを特徴とする。
【0010】
請求項3記載の非水電池は、前記導電助材として、スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩を表面に有しないカーボンを含むことを特徴とする。
【0011】
請求項4記載の非水電池は、前記スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩のいずれか1つを表面に有したカーボンが、粒子の平均粒径が1μm以下の微粒子状及び/又はアスペクト比が500以下で直径が20μm以下の繊維状であることを特徴とする。
【0012】
請求項5記載の非水電池は、記スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩のいずれか1つを表面に有したカーボンの含有量が、電極活物質の1〜30重量%であることを特徴とする。
【0013】
請求項6記載の非水電池は、電解質はポリマーとリチウム塩を溶解した有機電解液から成るゲル状ポリマー電解質であることを特徴とする。
【0014】
【発明の実施の形態】
本発明の非水電池用電極に用いる導電助材は、該導電助材の全部又は一部に非水溶液中でイオン解離しうる官能基を表面に有したカーボンを含むことを特徴とする。
【0015】
まず、本発明の非水電池に用いる導電助材には非水溶液中でイオン解離しうる官能基を表面に有したカーボンが含有される。
ここで非水溶液とは、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチメメチルカーボネート(EMC)、ジメトキシエタン DME)等の単体もしくは混合溶液に、支持塩としてLiPF6 ,LiBF4 ,LiClO4 ,LiAsF6 等を溶解させたものである。
更に高容量の非水電池を得るには、電解質としてポリマーとリチウム塩を溶解した有機電解液から成るゲル状ポリマー電解質を用いることが好ましく、リチウムイオンポリマー二次電池の充放電容量を大きくできる。
【0016】
イオン解離しうる官能基には、例えばスルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩が含まれる。特にリチウム二次電池、リチウムイオン二次電池の電極に用いる場合には、スルホン酸基のリチウム塩が望ましい。
かかるイオン解離しうる官能基を表面に有するためのカーボンには、種々の方法で製造されるカーボンブラックの他、天然グラファイト、有機物を炭化することによって造られる種々のカーボンなどが含まれる。
【0017】
本発明の導電助材は、上記イオン解離しうる官能基を表面に有したカーボンの他に、官能基を事実上表面に有さないカーボンを含む。
導電助材中に、イオン解離しうる官能基を表面に有するカーボンを含有する割合は、10〜80重量%である。かかる範囲とすることにより電極の導電性をもったまま密着性を向上させることができる。
官能基を事実上表面に有さないとは、通常の合成法で製造されるアセチレンブラック等が表面に有するイオン解離性基の量を超えない状態をいう。
【0018】
カーボン微粒子を用いる場合、その大きさは、1nmから10μm が電極の耐久性、密着性から好ましく、この範囲の大きさにすることにより電極活物質間にカーボン微粒子のネットワークを形成することができ、電極の導電性を向上することができる。
また、この目的に使えるカーボンとしては、必ずしも微粒子である必要はなく、表面領域にイオン解離性基を設けられる繊維状のものでもよく、アスペクト比が500以下で直径が20μm 以下の繊維状カーボンを用いるのが好ましい。また、導電助材としてのカーボンの含有量は、電極活物質の1から30重量%であることが特に好ましい。
【0019】
電極内で、電子伝導性とイオン伝導性の向上を同時に解決するための本発明の、密着性以外の別の効果の概念を図1に示す。電子はカーボン骨格上を移動し、周りのイオン性領域をイオンが移動することを模式的に示している。カーボンの周りのイオン性領域をつくることで、イオンが通りやすくなり、結果としてイオン伝導性の向上になると考えられる。
【0020】
このように本発明の非水電池に用いる導電助材においては、表面に、非水溶液中でイオン解離する官能基を有するカーボンブラックは、電極材料スラリー中で官能基の塩がイオン解離することにより、それら同士で反発し合い、より小さな単位で分散する。
【0021】
通常、導電助材として用いられるアセチレンブラックは、数百nm程度の二次粒子を形成するため、その空孔部分にバインダーが吸収されてしまうが、官能基を有するカーボンブラックは、分散性がよく、大きな二次粒子を形成しにくいため、バインダーを吸収しない。このため、官能基を有するカーボンブラックを導電助材として用いると、アセチレンブラックを導電助剤として同量使用した場合に比べて、電極の密着性が向上する。
【0022】
リチウムイオン電池の電極のような微粒子を塗布したような電極の内部抵抗や分極現象についてはよくわからない面が多いが、応答性のよい電極を構成するためには電極厚さを薄くする等の形状因子の制御の他に、(1)電極活物質の電荷移動過程を速くし、(2)電極内での電子伝導性を向上し、(3)電極内でのイオン伝導性を向上することが重要と考えられる。電子伝導抵抗の低減については、溶液系の電池でも通常アセチレンブラック等の導電助材の添加が行われる。イオン伝導抵抗の低減には、微粒子状や繊維状のカーボンに、スルホン酸リチウムのようなイオン解離性基を設けたカーボンを用いることにより、電子伝導性とイオン導電性を同時に改善できると考えて検討した。
【0023】
本発明の導電助材は、非水電池及び/又は負極の電極に用いて、非水電池を構成することができる。図2を参照しながら説明する。非水電池は、薄膜状の正極(1)と負極(2)を、それらの間にセパレーター(3)を挟んで捲回した捲回体を、電池缶(7)に挿入し、正極リード(4)を正極側蓋(6)に、負極リード(5)を電池缶底に溶接して、缶内部に非水溶液の電解液を満たすことにより構成されるものである。
【0024】
本発明の電解質としては、ポリマーとリチウム塩を溶解した有機電解液から成るゲル状ポリマー電解質が好ましく使用できる。
本発明は、ゲル状ポリマー電解質の電池用電極にリチウムイオン解離性基を形成させた微粒子およびまたは繊維状のカーボンを含ませることにより新規で高容量のリチウムイオンポリマー二次電池を構成しようというものである。
リチウムイオンポリマー二次電池の正極は、正極活物質微粒子と前記イオン解離性基を設けたカーボンの混合物の空隙をゲル状ポリマー電解質が満たした構成となっており、負極は、正極活物質を負極活物質に換えて同様にして製作する。これらの正負の電極で、別途製作したゲル状ポリマー電解質膜を挟み薄型電池を構成した。図面3にその断面の模式図を示す。
【0025】
【実施例】
本発明を次の実施例及び比較例により説明する。
実施例1
イオン解離性基を形成させた微粒子又は繊維状、あるいはその両方の形状のカーボンとして、表面にスルホン酸基を有するカーボンブラックを選んで本発明実施の一形態を説明する。なお、表面にスルホン酸基を有するカーボンブラックは、カーボンブラックを濃硫酸等でスルホン化することにより得られる。本発明で用いるのは、カーボンに結合したスルホン酸基を水酸化リチウム等で中和して、スルホン酸リチウム塩として、十分に乾燥した物を使用する。以後これをスルホン化カーボンブラック5重量%、LiCoO2 85重量%、バインダーとしてポリフッ化ビニリデン10重量%、溶媒としてN−メチルピロリドンを加え、ホモジナイザーで混合してスラリー状とし、アルミ箔上に塗布乾燥し、正極とした。負極にはLi金属を使用した。これらで電解液として1MのLiPF6 のプロピレンカーボネートジメチルカーボネート溶液(混合比1:1)を染み込ませた石英ガラス濾紙を挟み、コイン含セルを構成した。この電極は、表1に示すとおり、導電性は比較例2と同程度で密着性が更に向上されたものであった。
電極の密着性の評価は、15mm四方の粘着性テープを電極表面に貼り、200mm/min の速度で電極面に対して垂直に剥がした時の破断荷重を測定することにより行った(図4)。導電性の評価は、電極表面に、鏡面に磨いたSUS製の電極を押し付け、SUS製電極と集電体缶の抵抗を測定することにより行った。上記評価の結果を、電極破断荷重として表1に示した。
【0026】
実施例2
スルホン化カーボンブラック2.5重量%、アセチレンブラック2.5重量%、LiCoO2 85重量%、バインダーとしてポリフッ化ビニリデン10重量%、溶媒としてN−メチルピロリドンを加え、ホモジナイザーで混合してスラリー状とし、アルミ箔上に塗布乾燥し、正極としたこの正極を用い、実施例1と同様の構成でコイン型セルを構成した。密着性、導電性の評価は実施例1と同様の手法により行った。この電極は表1に示すとおり、実施例1と比較しても伝導性が大幅に向上した、電極の密着性も実施例1と同程度のものであった。また図5に示すとおり充放電も問題なく行うことができ、電極として問題のない性能を有するものであった。
【0027】
比較例1
アセチレンブラック5重量%、LiCoO2 85重量%、バインダーとしてポリフッ化ビニリデン10重量%、溶媒としてN−メチルピロリドンを加え、ホモジナイザーで混合してスラリー状とし、アルミ箔上に塗布乾燥し、正極とした。負極にはLi金属を使用した。これらで電解液として1MのLiPF6 のプロピレンカーボネート−ジメチルカーボネート溶液(混合比1:1)を染み込ませた石英ガラス濾紙を挟み、コイン型セルを構成した。この電極は、表1に示すとおり、導電性は問題なかったが、密着性が悪いものであった。
上記実施例1〜2及び比較例1〜2で得られた導電助材を用いた電極の抵抗と密着性を(電極破断荷重)以下の表1に示す。
【0028】
【表1】

Figure 0004682395
Figure 0004682395
【0029】
実施例3
スルホン化カーボンブラックを含むポリマー電位質複合正極は以下の方法で作製した。正極活物質としてLiMn204を60重量%、スルホン化カーボンブラック10重量%、高分子の原料モノマーとして、ポリエチレングリコールジアクリレート7重量%、電解質溶液23重量%、アゾイソブチロニトリルを0.2重量%加えてよく攪拌混合して、できたペーストをアルミニウム集電体に塗布して80℃にて1時間加熱重合して正極とした。用いた電解質溶液は、プロピレンカーボネートとエチレンカーボネートの体積比1:1の混合溶媒に、1モル/リットルのLiPF6 塩を溶解させたものである。正極活物質のかわりに負極活物質として、ハードカーボンを用いて同様にして、負極を製作した。ポエチレングリコールジアクリレートと電解質溶液の重量比を前記と同様にして調製し、重量比0.5の重合開始剤ベンジルジメチルケタールを加え、紫外線重合してゲル状のポリマー電解質膜を製作した。作製したゲル電解質ポリマー膜を先に製作した正極と負極でサンドイッチして、それぞれの集電体からリードを取り出せるようにして、アルミニウムのラミネートパックに収納後、シールして薄型電池を構成した。
【0030】
実施例4
実施例3において、正極活物質LiMn204を60重量%として、スルホン化カーボンブラックを5重量%とした以外は同様にして正極を作製し、負極も同様な組成により製作して、実施例3とほぼ同じサイズの薄型電池を作製した。
【0031】
比較例2
実施例3において、スルホン化カーボンブラックを通常のアセチレンブラックに替えた以外は同様にして、正極、負極、ゲル電解質ポリマー膜を作製し、実施例3と同じサイズの薄型電池を作製した。
【0032】
図6に、実施例3、実施例4、比較例2で作製した電池の充放電特性を示す。充電は、4.2Vまで5mAの定電流充電後、4.2Vで定電圧充電を行い、合計4時間の充電時間とした。これを、1mAから8mAの範囲で2Vまで定電流放電を行ったときの放電容量の結果をまとめたものである。図から明らかなように、電極中のアセチレンブラックをスルホン化カーボンブラックに替えることにより、高電流密度で流せる電池容量が大幅に増大していることがわかる。実施例3に見られるようにスルホン化カーボンブラックの量を増やすと、更に改善されるが、あまり増やしすぎると、電極中での活物質量が相対的に減るので、取り出せる電気量が減少してしまうので、リチウムイオン解離性基を成型させたカーボンの量は、5から15重量%が好ましく使える。
【0033】
【発明の効果】
本発明は、非水溶液中でイオン解離する官能基を有するカーボン微粒子と、通常の官能基を事実上有さないカーボン微粒子の両方とを混合して、好ましくは1:1の比で混合、非水電池用電極の導電助材として使用することにより、電池の容量や電極の導電性を低下させることなく、電極の密着性を大幅に向上させることができる。また更に、ゲル状のポリマー電解質を用いた電池においても本発明の構成にすることにより、高容量の非水電池を得ることができる。
【図面の簡単な説明】
【図1】 本発明に使用するカーボンの模式図である。
【図2】 非水電解質二次電池の一構成例を示す概略断面図である。
【図3】 本発明の薄型のリチウムイオンポリマー二次電池の断面図である。
【図4】 密着性評価試験の概念図。
【図5】 本発明のスルホン酸塩導入カーボンブラックとアセチレンブラックとを用いて作製した電極(実施例2)の充放電曲線図である。評価条件は、実施例1,2で構成したコイル型セルを、電流密度0.28mA/cm2 しで、充電終止電圧4.2V、放電終止電圧3.5Vで定電流充放電させたものである。
【図6】 本発明の実施例及び比較例のリチウムイオンポリマー二次電池の放電容量の放電電流密度依存性を示す図である。
【符号の説明】
1 正極
2 負極
3 セパレーター
4 正極リード
5 負極リード
6 正極側蓋
7 電池缶
8 治具
9 両面テープ
10 電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive additive and a nonaqueous battery including a positive electrode and / or a negative electrode using the conductive additive.
[0002]
[Prior art]
The electrode of a lithium secondary battery or a lithium ion secondary battery is usually bonded to an electrode active material, a conductive aid for improving the conductivity of the electrode, and a metal foil as a current collector. It consists of a binder. When manufacturing an electrode, the adhesion between the electrode material and the current collector is an important factor that affects the performance of the electrode. If the adhesion of the electrode is poor, the durability of repeated charge / discharge may be reduced, or the capacity may be reduced due to the electrode material falling off, causing a micro short circuit.
[0003]
The adhesion between the electrode material and the current collector can be improved by increasing the amount of the binder that is the binder, but the binder does not directly participate in the reaction of the battery and itself does not have conductivity. As the amount of binder in the entire electrode increases, the battery capacity decreases as a result, and the resistance of the electrode increases.
Further, in order to reduce the resistance of the electrode, it is common practice to add a conductive additive to the electrode material. For example, as disclosed in Japanese Patent Application Laid-Open No. 10-306193, acetylene black, which is a general conductive additive, is used. When acetylene black is used, acetylene black absorbs the binder, and therefore, when the amount of acetylene black increases, there is a problem that the adhesion of the electrode is lowered.
[0004]
Recently, a lithium secondary battery using a polymer electrolyte instead of the non-aqueous electrolyte has been developed. By forming the electrolyte into a polymer, it is expected that the battery is free to be shaped and compact. However, the ionic conductivity of the current polymer electrolyte is at most about 10 −4 S / cm, which is about two orders of magnitude smaller than that of the non-aqueous electrolyte. Therefore, studies have been made on gel electrolytes in which an electrolyte is impregnated in a polymer. It has been reported that even when the electrolyte is gelled, the conductivity at room temperature exceeds 10 −3 S / cm. For example, JY Song et al. Have published a review on this [J. Power Sources, 77 (1999) 183. For example, JP-A-8-264205 is disclosed as an open patent. As gel electrolytes, polyethylene oxide, polyacrylonitrile, polymethylmethyryl, polyfucavinylidene, and copolymers containing these have been proposed.
[0005]
However, the conventional gel polymer electrolyte is characterized in that the polymer matrix contains an electrolytic solution, and although the ionic conductivity is improved as compared with the all-solid polymer electrolyte, it does not reach the level of the electrolytic solution yet. When a battery is constructed using this electrolyte, the internal resistance of the electrode is large due to the low ionic conductivity of the electrolyte phase, and the output is reduced, making it difficult for current to flow. Absent. In order to extract the capacity, it is necessary to improve the ionic conductivity in the electrode and reduce the internal resistance.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a conductive additive capable of improving the adhesion of the electrode without increasing the amount of the binder or decreasing the amount of the conductive additive, and a positive electrode using the conductive additive and A nonaqueous battery including a negative electrode is provided.
[0007]
[Means for Solving the Problems]
The non-aqueous battery according to claim 1 , wherein at least one of the positive electrode and the negative electrode has one of a sulfonic acid group salt, a carboxyl group salt, an imide group salt, and a meside group salt as a conductive additive. It includes carbon having on the surface.
The non-aqueous battery according to claim 2, wherein the salt of the sulfonic acid group, characterized in that it is a sulfonic acid salt of lithium.
[0010]
The nonaqueous battery according to claim 3 is characterized in that the conductive auxiliary agent includes carbon having no sulfonic acid group salt, carboxyl group salt, imide group salt, or meside group salt on the surface .
[0011]
The nonaqueous battery according to claim 4 , wherein the carbon having any one of the sulfonic acid group salt, the carboxyl group salt, the imide group salt and the meside group salt on the surface has an average particle diameter of particles. It is characterized by being in the form of fine particles of 1 μm or less and / or fibers having an aspect ratio of 500 or less and a diameter of 20 μm or less.
[0012]
6. The nonaqueous battery according to claim 5 , wherein the content of carbon having any one of a sulfonic acid group salt, a carboxyl group salt, an imide group salt, and a meside group salt on the surface is an electrode active material. 1 to 30% by weight.
[0013]
The nonaqueous battery according to claim 6 is characterized in that the electrolyte is a gel polymer electrolyte made of an organic electrolytic solution in which a polymer and a lithium salt are dissolved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The conductive additive used for the electrode for a nonaqueous battery according to the present invention is characterized in that all or a part of the conductive additive contains carbon having a functional group capable of ion dissociation in a non-aqueous solution on the surface.
[0015]
First, the conductive additive used in the nonaqueous battery of the present invention contains carbon having a functional group capable of ion dissociation in a nonaqueous solution on the surface.
Here, the non-aqueous solution is a simple substance or a mixed solution such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), etimemethyl carbonate (EMC), dimethoxyethane (DME). LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 and the like are dissolved as a supporting salt.
Further, in order to obtain a high capacity non-aqueous battery, it is preferable to use a gel polymer electrolyte composed of an organic electrolytic solution in which a polymer and a lithium salt are dissolved as the electrolyte, and the charge / discharge capacity of the lithium ion polymer secondary battery can be increased.
[0016]
Examples of functional groups capable of ion dissociation include salts of sulfonic acid groups, salts of carboxyl groups, salts of imide groups, and salts of meside groups. In particular, when used for an electrode of a lithium secondary battery or a lithium ion secondary battery, a lithium salt of a sulfonic acid group is desirable.
Such carbon for having functional groups capable of ion dissociation on the surface includes carbon black produced by various methods, natural graphite, various carbons produced by carbonizing organic substances, and the like.
[0017]
The conductive additive of the present invention contains carbon having virtually no functional group on the surface in addition to the carbon having the functional group capable of ion dissociation on the surface.
The ratio of the conductive auxiliary material containing carbon having functional groups capable of ion dissociation on the surface is 10 to 80% by weight. By setting it as such a range, adhesiveness can be improved with the electroconductivity of an electrode.
The fact that the functional group does not substantially have a surface means a state in which the amount of ionic dissociable groups on the surface of acetylene black or the like produced by a usual synthesis method does not exceed.
[0018]
When carbon fine particles are used, the size is preferably 1 nm to 10 μm from the viewpoint of electrode durability and adhesion, and by making the size within this range, a network of carbon fine particles can be formed between the electrode active materials, The conductivity of the electrode can be improved.
Further, the carbon usable for this purpose is not necessarily a fine particle, and may be a fibrous one having an ion dissociable group in the surface region, and a fibrous carbon having an aspect ratio of 500 or less and a diameter of 20 μm or less. It is preferable to use it. Further, the content of carbon as a conductive additive is particularly preferably 1 to 30% by weight of the electrode active material.
[0019]
The concept of another effect other than adhesion of the present invention for simultaneously solving the improvement of the electron conductivity and the ionic conductivity in the electrode is shown in FIG. Electrons move on the carbon skeleton and schematically show that ions move around the ionic region. By creating an ionic region around the carbon, it will be easier for ions to pass, resulting in improved ionic conductivity.
[0020]
Thus, in the conductive additive used in the non-aqueous battery of the present invention, the carbon black having a functional group capable of ion dissociation in a non-aqueous solution on the surface is obtained by ion dissociation of the salt of the functional group in the electrode material slurry. Repel each other and disperse in smaller units.
[0021]
Usually, acetylene black used as a conductive additive forms secondary particles of about several hundreds of nanometers, so that the binder is absorbed into the pores, but carbon black having a functional group has good dispersibility. Because it is difficult to form large secondary particles, the binder is not absorbed. For this reason, when the carbon black which has a functional group is used as a conductive support material, the adhesiveness of an electrode improves compared with the case where acetylene black is used as a conductive support agent in the same amount.
[0022]
There are many aspects of the internal resistance and polarization phenomenon of electrodes coated with fine particles such as electrodes of lithium ion batteries, but in order to construct a responsive electrode, the electrode thickness is reduced. In addition to controlling the factors, (1) the charge transfer process of the electrode active material can be accelerated, (2) the electron conductivity in the electrode can be improved, and (3) the ionic conductivity in the electrode can be improved. Considered important. In order to reduce the electron conduction resistance, a conductive additive such as acetylene black is usually added even in a solution battery. In order to reduce ionic conduction resistance, we believe that the use of carbon with an ion-dissociable group such as lithium sulfonate in fine or fibrous carbon can improve both electron conductivity and ionic conductivity at the same time. investigated.
[0023]
The conductive additive of the present invention can be used for a nonaqueous battery and / or a negative electrode to constitute a nonaqueous battery. This will be described with reference to FIG. A non-aqueous battery has a thin film-like positive electrode (1) and negative electrode (2) wound with a separator (3) sandwiched between them, and is inserted into a battery can (7). 4) is welded to the positive electrode side lid (6), and the negative electrode lead (5) is welded to the bottom of the battery can, and the inside of the can is filled with a non-aqueous electrolyte.
[0024]
As the electrolyte of the present invention, a gel polymer electrolyte composed of an organic electrolytic solution in which a polymer and a lithium salt are dissolved can be preferably used.
The present invention is intended to constitute a new high-capacity lithium ion polymer secondary battery by including fine particles in which lithium ion dissociable groups are formed and / or fibrous carbon in a gel polymer electrolyte battery electrode. It is.
The positive electrode of the lithium ion polymer secondary battery has a structure in which the gel polymer electrolyte fills the voids of the mixture of the positive electrode active material fine particles and the carbon provided with the ion dissociative group, and the negative electrode has the positive electrode active material as the negative electrode. Proceed in the same way instead of the active material. A thin battery was constructed by sandwiching a separately produced gel polymer electrolyte membrane between these positive and negative electrodes. FIG. 3 shows a schematic diagram of the cross section.
[0025]
【Example】
The invention is illustrated by the following examples and comparative examples.
Example 1
One embodiment of the present invention will be described by selecting carbon black having sulfonic acid groups on the surface as carbon in the form of fine particles and / or fibers formed with ion dissociable groups, or both. Carbon black having a sulfonic acid group on the surface can be obtained by sulfonating carbon black with concentrated sulfuric acid or the like. In the present invention, a sulfonic acid group bonded to carbon is neutralized with lithium hydroxide or the like, and a sufficiently dried product is used as a lithium sulfonic acid salt. Thereafter, 5% by weight of sulfonated carbon black, 85% by weight of LiCoO 2 , 10% by weight of polyvinylidene fluoride as a binder, and N-methylpyrrolidone as a solvent are mixed into a slurry by a homogenizer, and are coated and dried on an aluminum foil. And it was set as the positive electrode. Li metal was used for the negative electrode. A quartz glass filter paper impregnated with 1M LiPF 6 propylene carbonate dimethyl carbonate solution (mixing ratio 1: 1) as an electrolytic solution was sandwiched between them to constitute a coin-containing cell. As shown in Table 1, this electrode had the same conductivity as Comparative Example 2 and the adhesion was further improved.
The evaluation of electrode adhesion was performed by applying a 15 mm square adhesive tape to the electrode surface and measuring the breaking load when peeled perpendicular to the electrode surface at a speed of 200 mm / min (FIG. 4). . The conductivity was evaluated by pressing a polished SUS electrode on the electrode surface and measuring the resistance of the SUS electrode and the current collector can. The results of the evaluation are shown in Table 1 as electrode break loads.
[0026]
Example 2
Sulfonated carbon black 2.5% by weight, acetylene black 2.5% by weight, LiCoO 2 85% by weight, polyvinylidene fluoride 10% by weight as a binder, N-methylpyrrolidone as a solvent, and mixed with a homogenizer to form a slurry. Then, a coin-type cell having the same configuration as that of Example 1 was formed by using this positive electrode that was applied and dried on an aluminum foil to form a positive electrode. Evaluation of adhesion and conductivity was performed by the same method as in Example 1. As shown in Table 1, the conductivity of the electrode was significantly improved compared to Example 1, and the adhesion of the electrode was similar to that of Example 1. Moreover, as shown in FIG. 5, charging / discharging could be performed without a problem, and it had the performance without a problem as an electrode.
[0027]
Comparative Example 1
5% by weight of acetylene black, 85% by weight of LiCoO 2 , 10% by weight of polyvinylidene fluoride as a binder, N-methylpyrrolidone as a solvent, mixed with a homogenizer to form a slurry, coated and dried on an aluminum foil, and used as a positive electrode . Li metal was used for the negative electrode. A coin-type cell was constructed by sandwiching a quartz glass filter paper impregnated with a 1M LiPF 6 propylene carbonate-dimethyl carbonate solution (mixing ratio 1: 1) as an electrolytic solution. As shown in Table 1, this electrode had no problem with conductivity, but had poor adhesion.
The resistance and adhesion of the electrodes using the conductive aids obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1 below (electrode breaking load).
[0028]
[Table 1]
Figure 0004682395
Figure 0004682395
[0029]
Example 3
A polymer potential composite composite cathode containing sulfonated carbon black was prepared by the following method. 60% by weight of LiMn204 as positive electrode active material, 10% by weight of sulfonated carbon black, 7% by weight of polyethylene glycol diacrylate, 23% by weight of electrolyte solution, and 0.2% by weight of azoisobutyronitrile as polymer raw material monomers In addition, the mixture was thoroughly stirred and mixed, and the resulting paste was applied to an aluminum current collector and heated and polymerized at 80 ° C. for 1 hour to obtain a positive electrode. The electrolyte solution used was prepared by dissolving 1 mol / liter of LiPF 6 salt in a mixed solvent of propylene carbonate and ethylene carbonate in a volume ratio of 1: 1. A negative electrode was produced in the same manner using hard carbon as the negative electrode active material instead of the positive electrode active material. A weight ratio of the polyethylene glycol diacrylate and the electrolyte solution was prepared in the same manner as described above, a polymerization initiator benzyl dimethyl ketal having a weight ratio of 0.5 was added, and ultraviolet polymerization was performed to produce a gel polymer electrolyte membrane. The prepared gel electrolyte polymer film was sandwiched between the positive electrode and negative electrode prepared earlier, and the leads could be taken out from the respective current collectors, housed in an aluminum laminate pack, and sealed to form a thin battery.
[0030]
Example 4
A positive electrode was prepared in the same manner as in Example 3 except that the positive electrode active material LiMn204 was changed to 60% by weight and the sulfonated carbon black was changed to 5% by weight. A thin battery of the same size was produced.
[0031]
Comparative Example 2
In Example 3, except that the sulfonated carbon black was replaced with ordinary acetylene black, a positive electrode, a negative electrode, and a gel electrolyte polymer film were prepared, and a thin battery having the same size as that of Example 3 was prepared.
[0032]
FIG. 6 shows the charge / discharge characteristics of the batteries produced in Example 3, Example 4, and Comparative Example 2. Charging was performed at a constant current of 5 mA up to 4.2 V, followed by a constant voltage charge at 4.2 V, for a total charging time of 4 hours. This is a summary of the results of discharge capacity when constant current discharge is performed from 2 mA to 2 V in the range of 1 mA to 8 mA. As can be seen from the figure, the battery capacity that can flow at a high current density is greatly increased by replacing acetylene black in the electrode with sulfonated carbon black. As can be seen in Example 3, the amount of sulfonated carbon black is further improved, but if the amount is increased too much, the amount of active material in the electrode is relatively reduced, so the amount of electricity that can be extracted is reduced. Therefore, the amount of carbon formed by molding a lithium ion dissociable group is preferably 5 to 15% by weight.
[0033]
【The invention's effect】
In the present invention, both carbon fine particles having a functional group ion-dissociating in a non-aqueous solution and carbon fine particles having virtually no functional group are mixed, preferably in a ratio of 1: 1, By using it as a conductive additive for a water battery electrode, the adhesion of the electrode can be greatly improved without lowering the capacity of the battery or the conductivity of the electrode. Furthermore, even in a battery using a gel polymer electrolyte, a high-capacity nonaqueous battery can be obtained by adopting the structure of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic view of carbon used in the present invention.
FIG. 2 is a schematic cross-sectional view showing a configuration example of a nonaqueous electrolyte secondary battery.
FIG. 3 is a cross-sectional view of a thin lithium ion polymer secondary battery of the present invention.
FIG. 4 is a conceptual diagram of an adhesion evaluation test.
FIG. 5 is a charge / discharge curve diagram of an electrode (Example 2) produced using the sulfonate-introduced carbon black and acetylene black of the present invention. The evaluation conditions were that the coil-type cell configured in Examples 1 and 2 was charged and discharged at a constant current at a current end voltage of 4.2 V and a discharge end voltage of 3.5 V with a current density of 0.28 mA / cm 2. is there.
FIG. 6 is a graph showing the discharge current density dependence of the discharge capacity of lithium ion polymer secondary batteries of examples and comparative examples of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 Positive electrode side cover 7 Battery can 8 Jig 9 Double-sided tape
10 electrodes

Claims (6)

正極と負極の少なくとも片方の電極が導電助材として、スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩のいずれか1つを表面に有したカーボンを含むことを特徴とする非水電池。At least one of the positive electrode and the negative electrode includes, as a conductive additive, carbon having a sulfonic acid group salt, a carboxyl group salt, an imide group salt, or a meside group salt on the surface. And non-aqueous battery. 前記スルホン酸基の塩が、リチウムのスルホン酸塩であることを特徴とする請求項1記載の非水電池。The nonaqueous battery according to claim 1 , wherein the sulfonic acid group salt is a lithium sulfonate. 前記導電助材として、スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩を表面に有しないカーボンを含むことを特徴とする請求項1記載の非水電池。 2. The nonaqueous battery according to claim 1, wherein the conductive additive contains carbon having no sulfonic acid group salt, carboxyl group salt, imide group salt, or meside group salt on the surface . 前記スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩のいずれか1つを表面に有したカーボンが、粒子の平均粒径が1μm以下の微粒子状及び/又はアスペクト比が500以下で直径が20μm以下の繊維状であることを特徴とする請求項1記載の非水電池。 The carbon having any one of the sulfonic acid group salt, carboxyl group salt, imide group salt and meside group salt on the surface is in the form of fine particles having an average particle diameter of 1 μm or less and / or the aspect ratio. The non-aqueous battery according to claim 1, wherein the non-aqueous battery has a fibrous form having a diameter of 500 or less and a diameter of 20 μm or less. 前記スルホン酸基の塩、カルボキシル基の塩、イミド基の塩、メサイド基の塩のいずれか1つを表面に有したカーボンの含有量が、電極活物質の1〜30重量%であることを特徴とする請求項1記載の非水電池。The content of carbon having any one of the salt of sulfonic acid group, the salt of carboxyl group, the salt of imide group, and the salt of meside group on the surface is 1 to 30% by weight of the electrode active material. The nonaqueous battery according to claim 1. 電解質はポリマーとリチウム塩を溶解した有機電解液から成るゲル状ポリマー電解質であることを特徴とする請求項4記載の非水電池。5. The nonaqueous battery according to claim 4 , wherein the electrolyte is a gel polymer electrolyte composed of an organic electrolytic solution in which a polymer and a lithium salt are dissolved.
JP2000128922A 2000-04-28 2000-04-28 Non-aqueous battery Expired - Fee Related JP4682395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128922A JP4682395B2 (en) 2000-04-28 2000-04-28 Non-aqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128922A JP4682395B2 (en) 2000-04-28 2000-04-28 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JP2001313035A JP2001313035A (en) 2001-11-09
JP4682395B2 true JP4682395B2 (en) 2011-05-11

Family

ID=18638283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128922A Expired - Fee Related JP4682395B2 (en) 2000-04-28 2000-04-28 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP4682395B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663845B2 (en) 2005-02-10 2014-03-04 Showa Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
FR3038145B1 (en) * 2015-06-23 2017-07-21 Centre Nat Rech Scient PROCESS FOR PREPARING A COMPOSITE ELECTRODE
HUE049070T2 (en) * 2015-08-31 2020-09-28 Zeon Corp Composition for non-aqueous secondary cell functional layer, functional layer for non-aqueous secondary cell, and non-aqueous secondary cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO1999031175A1 (en) * 1997-12-15 1999-06-24 Cabot Corporation Polymeric products containing modified carbon products and methods of making and using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081291B2 (en) * 1991-08-20 2000-08-28 三洋電機株式会社 Non-aqueous electrolyte battery
JP4070244B2 (en) * 1996-12-30 2008-04-02 イドロ−ケベック Surface-modified carbonized material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO1999031175A1 (en) * 1997-12-15 1999-06-24 Cabot Corporation Polymeric products containing modified carbon products and methods of making and using the same

Also Published As

Publication number Publication date
JP2001313035A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
CN108258236B (en) 18650 cylindrical lithium battery with high specific capacity and long cycle life and preparation method thereof
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
JP4352475B2 (en) Solid electrolyte secondary battery
US6268087B1 (en) Method of preparing lithium ion polymer battery
CN105470576A (en) High voltage lithium battery cell and preparation method therefor, and lithium ion battery
WO2011103705A1 (en) Manufacturing method for long-lived negative electrode and capacitor battery adopting the same
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
CN104347881A (en) Preparation method and applications of battery graphene-base current collector
JPH10255842A (en) Lithium-polymer secondary battery
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
CN110600680A (en) Positive electrode slurry, positive plate comprising positive electrode slurry and lithium ion battery
CN114883748B (en) Composite diaphragm for lithium ion battery and preparation method thereof
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
JP2003331838A (en) Lithium secondary battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JP4682395B2 (en) Non-aqueous battery
CN109659475A (en) A kind of preparation method of high-performance high-voltage lithium ion battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN115036458B (en) Lithium ion battery
JPH11329393A (en) Nonwoven cloth for battery separator and battery using it
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
CN114583094A (en) Lithium ion battery capable of improving low-temperature performance and preparation method thereof
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
CN113161514A (en) Graphite composition, battery cathode and lithium ion battery
JPH08124597A (en) Solid electrolytic secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees