JPH09306546A - Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents
Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH09306546A JPH09306546A JP8120114A JP12011496A JPH09306546A JP H09306546 A JPH09306546 A JP H09306546A JP 8120114 A JP8120114 A JP 8120114A JP 12011496 A JP12011496 A JP 12011496A JP H09306546 A JPH09306546 A JP H09306546A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- positive electrode
- lithium
- particle diameter
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質二次電
池用正極板及び非水電解質二次電池に関するものであ
る。TECHNICAL FIELD The present invention relates to a positive electrode plate for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】マンガン、バナジウム等の酸化物からな
るリチウムの挿入、離脱が可能な材料を正極材に用い、
金属リチウムを負極材に用い、電解質としてリチウム塩
を有機溶媒で溶解した非水電解液を用いる非水電解質二
次電池が知られている。この種の電池は金属リチウムを
用いるため、デンドライト発生による短絡等の危険性が
あり、実用化に至るのが困難であった。そこで、リチウ
ム含有複酸化物と炭素粉末からなる導電助剤と結着剤と
の混合物からなる正極合剤により正極材を形成し、グラ
ファイト等のリチウムの挿入、離脱が可能な材料を用い
て負極材を形成して、電池系内部に金属リチウムのかた
まりを存在させないロッキングチェアー型電池(リチウ
ムイオン非水電解質二次電池)が提案された。これらの
非水電解質二次電池では、小さい体積で容量を高くする
(エネルギー密度を高くする)ことが求められている。
そのためには、正極材及び負極材の活物質材料の充填密
度を高めることが重要となる。しかしながら、無機化合
物(リチウム含有複酸化物)を主体とする正極材(正極
合剤)の場合、導電助剤など充放電に直接関与しない物
質が正極合剤中に占める割合が大きい。また、電極の厚
みが薄いために正極合剤のかさ密度を高めるには限界が
ある。そのため、リチウム含有複酸化物の高密度充填が
困難であった。2. Description of the Related Art A positive electrode material made of a material such as manganese or vanadium oxide capable of inserting and removing lithium is used.
A non-aqueous electrolyte secondary battery is known in which metallic lithium is used as a negative electrode material and a non-aqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used as an electrolyte. Since this type of battery uses metallic lithium, there is a risk of a short circuit or the like due to generation of dendrites, and it was difficult to put it into practical use. Therefore, a positive electrode material is formed of a positive electrode mixture made of a mixture of a lithium-containing composite oxide, a conductive auxiliary agent made of carbon powder, and a binder, and a material such as graphite capable of inserting and releasing lithium is used for the negative electrode. A rocking chair type battery (lithium ion non-aqueous electrolyte secondary battery) has been proposed in which a material is formed to prevent metallic lithium clusters from existing inside the battery system. In these non-aqueous electrolyte secondary batteries, it is required to increase capacity (energy density) in a small volume.
For that purpose, it is important to increase the packing density of the active material material of the positive electrode material and the negative electrode material. However, in the case of a positive electrode material (positive electrode mixture) mainly composed of an inorganic compound (lithium-containing composite oxide), a large proportion of the positive electrode mixture contains a substance such as a conduction aid that is not directly involved in charging / discharging. Further, since the thickness of the electrode is thin, there is a limit to increase the bulk density of the positive electrode mixture. Therefore, it has been difficult to densely fill the lithium-containing composite oxide.
【0003】そこで、特開平4−162357号公報に
示すように、リチウム含有複酸化物および導電助剤(炭
素粉末)の平均粒子径および配合比率を適正化すること
が検討された。該公報に示す技術では、リチウム含有複
酸化物の平均粒子径を1μm以上10μm未満とし、導
電助剤として平均粒子径0.1μm以上10μm未満の
炭素粉末と平均粒子径0.01μm以上0.08μm未
満の炭素粉末の二種類の炭素粉末を用いる。そして、炭
素粉末のリチウム含有複酸化物に対する重量割合を特定
することが提案されている。この技術では、粒子径の小
さい炭素粉末でリチウム含有複酸化物の相互の電気的接
触を確保した導電ネットワークを形成し、粒子径の大き
い炭素粉末で導電ネットワーク相互及び集電体と導電ネ
ットワークとの電気的接触を確保する。これにより、正
極合剤中における炭素粉末の含有量を少なくできる。Therefore, as disclosed in Japanese Patent Application Laid-Open No. 4-162357, it has been studied to optimize the average particle diameter and the compounding ratio of the lithium-containing composite oxide and the conductive additive (carbon powder). In the technique disclosed in the publication, the lithium-containing composite oxide has an average particle diameter of 1 μm or more and less than 10 μm, a carbon powder having an average particle diameter of 0.1 μm or more and less than 10 μm as a conductive additive, and an average particle diameter of 0.01 μm or more and 0.08 μm. Two types of carbon powders are used: Then, it has been proposed to specify the weight ratio of the carbon powder to the lithium-containing composite oxide. In this technique, a carbon powder having a small particle diameter forms a conductive network that ensures mutual electrical contact between lithium-containing complex oxides, and a carbon powder having a large particle diameter forms a conductive network and a conductive network and a collector and a conductive network. Ensure electrical contact. Thereby, the content of carbon powder in the positive electrode mixture can be reduced.
【0004】[0004]
【発明が解決しようとする課題】非水電解質二次電池用
正極板は、通常厚み数10μmのアルミ箔等の集電体の
表面に正極合剤用インクを塗布して厚み100μm程度
の正極合剤の層を形成する。しかしながら、前述のよう
に平均粒子径0.01μm以上0.08μm未満という
非常に小さな粒子径を有する炭素粉末を用いると、正極
合剤用インクの流動性が低くなり、均一な厚みの正極合
剤の層を形成し難くなるという問題があった。そのた
め、正極合剤のかさ密度が低下して、容量を高くするこ
とが困難になる。なお、本発明者が実験した範囲におい
ては、正極合剤の層の厚みを略一定にすることができな
かったため、前述のようにして減少する容量は、前述の
公報に示される導電助剤の配合比の低減によって得られ
る容量増加分を上回るものであった。A positive electrode plate for a non-aqueous electrolyte secondary battery is usually manufactured by applying an ink for a positive electrode mixture to the surface of a current collector such as an aluminum foil having a thickness of several 10 μm and having a thickness of about 100 μm. Form a layer of agent. However, as described above, when a carbon powder having a very small particle size of 0.01 μm or more and less than 0.08 μm is used, the fluidity of the ink for positive electrode mixture becomes low, and the positive electrode mixture having a uniform thickness is obtained. There is a problem that it is difficult to form the layer. Therefore, the bulk density of the positive electrode mixture decreases, and it becomes difficult to increase the capacity. In addition, in the range in which the present inventor has conducted an experiment, the thickness of the layer of the positive electrode mixture could not be made substantially constant, and therefore, the capacity that decreases as described above is the same as that of the conductive additive disclosed in the above publication. It exceeded the capacity increase obtained by the reduction of the compounding ratio.
【0005】またこのように非常に小さな粒子径を有す
る炭素粉末は、一般的に用いられているセパレータに形
成されている孔の平均孔径を下回るため、電池に充放電
を繰り返すと正極表面から脱落した炭素粉末がセパレー
タの孔に入り込んで、短絡を起こす原因となることが分
った。Further, since the carbon powder having such a very small particle diameter is smaller than the average pore diameter of the pores formed in the commonly used separator, the carbon powder falls off from the surface of the positive electrode when the battery is repeatedly charged and discharged. It was found that the carbon powder formed entered the holes of the separator and caused a short circuit.
【0006】なお、このように非常に小さな粒子径を有
する炭素粉末を用いなければ、これらの問題は解決する
が、前述したように、導電助剤を多量に添加しなければ
ならないという問題がある。If carbon powder having such a very small particle size is not used, these problems can be solved, but as mentioned above, there is a problem that a large amount of conductive auxiliary agent must be added. .
【0007】本発明の目的は、正極合剤のかさ密度を高
めて放電容量を高め、しかも炭素粉末による極板間の短
絡を防ぐことができる非水電解質二次電池用正極板を提
供することにある。An object of the present invention is to provide a positive electrode plate for a non-aqueous electrolyte secondary battery, which can increase the bulk density of the positive electrode mixture to increase the discharge capacity and can prevent a short circuit between the electrode plates due to carbon powder. It is in.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、平均粒子径の小さい炭素粉末を用いず
に、リチウム含有複酸化物粉末として平均粒子径1〜1
0μmの粉末と平均粒子径20〜30μmの粉末との粒
子径混合粉末を用い、炭素粉末として平均粒子径0.1
〜10μmの粉末を用いる。In order to solve the above-mentioned problems, the present invention does not use carbon powder having a small average particle diameter, but has an average particle diameter of 1 to 1 as lithium-containing double oxide powder.
An average particle size of 0.1 was obtained as carbon powder by using a mixed powder of particle sizes of 0 μm powder and powder having an average particle size of 20 to 30 μm.
Powder of 10 μm is used.
【0009】前述したように、平均粒子径の小さい
(0.01μm以上0.08μm未満)炭素粉末を用い
ずに、平均粒子径が0.1〜10μmの炭素粉末のみを
導電助剤として用いると、導電助剤を多量に添加しなけ
ればならず、通常の構成においてはリチウム含有複酸化
物の高密度充填が困難になり、容量を高めることができ
ない。しかしながら、発明者らは、リチウム含有複酸化
物粉末として、平均粒子径が20〜30μmのものを適
量用いた場合、比較的容易に正極合剤のかさ密度を高め
ることができることを見い出した。これは、まずリチウ
ム含有複酸化物粉末の粒子径を大きくすると、正極合剤
インクの流動性が高くなり、正極合剤層の厚みを均一に
できて、プレスによる正極合剤層の圧縮成形が効果的に
行われるためであると考えられる。ただし、粒子径の大
きいリチウム含有複酸化物粉末のみを用いると、通常に
比べて得られる容量は低下する。これは、粒子径の大き
いリチウム含有複酸化物粉末のみを用いると、リチウム
イオンが粉末粒子内に構成される結晶構造中においてリ
チウムサイト(リチウムが結晶中で安定にいることがで
きる所)への移動距離が大きくなる即ちリチウム含有複
酸化物粉末自体のリチウム挿入反応における固相内拡散
抵抗が大きくなることにより、反応効率が低下するため
であると考えられる。As described above, when a carbon powder having an average particle diameter of 0.1 to 10 μm is used as a conduction aid without using a carbon powder having a small average particle diameter (0.01 μm or more and less than 0.08 μm). However, it is necessary to add a large amount of the conductive auxiliary agent, and in a usual structure, it becomes difficult to densely fill the lithium-containing composite oxide, and the capacity cannot be increased. However, the inventors have found that the bulk density of the positive electrode mixture can be relatively easily increased when an appropriate amount of lithium-containing composite oxide powder having an average particle diameter of 20 to 30 μm is used. This is because first, when the particle size of the lithium-containing mixed oxide powder is increased, the fluidity of the positive electrode mixture ink is increased, the thickness of the positive electrode mixture layer can be made uniform, and compression molding of the positive electrode mixture layer by pressing can be performed. It is considered that this is done effectively. However, when only the lithium-containing composite oxide powder having a large particle size is used, the capacity obtained is lower than usual. This is because when only a lithium-containing mixed oxide powder having a large particle size is used, it is possible to move to a lithium site (where lithium can be stable in the crystal) in the crystal structure in which lithium ions are formed in the powder particle. It is considered that this is because the reaction efficiency decreases due to an increase in the migration distance, that is, an increase in diffusion resistance in the solid phase in the lithium insertion reaction of the lithium-containing composite oxide powder itself.
【0010】そこで、発明者は、比較的平均粒子径の大
きい(20〜30μm)リチウム含有複酸化物粉末と反
応効率のよい比較的平均粒子径の小さな(1〜10μ
m)リチウム含有複酸化物粉末を混合した粒子径混合粉
末を用いることにより、正極合剤のかさ密度を高くし
て、しかも電池の容量を高くすることができることを見
出した。Therefore, the inventor has found that the lithium-containing composite oxide powder having a relatively large average particle diameter (20 to 30 μm) and the relatively small average particle diameter (1 to 10 μm) having good reaction efficiency.
m) It has been found that the bulk density of the positive electrode mixture can be increased and the capacity of the battery can be increased by using the mixed powder having a particle size in which the lithium-containing mixed oxide powder is mixed.
【0011】また、本発明では、導電助剤として粒子径
の小さい炭素粉末を用いず平均粒子径0.1〜10μm
の炭素粉末のみを用いるので電池内部短絡の発生を低減
させることができる。Further, in the present invention, carbon powder having a small particle size is not used as the conductive additive, and the average particle size is 0.1 to 10 μm.
Since only the carbon powder of No. 3 is used, the occurrence of short circuit inside the battery can be reduced.
【0012】なお、平均粒子径が1μm未満のリチウム
含有複酸化物粉末が添加されると正極合剤インクの性状
が変化して均一な厚みの正極合剤層を形成し難くなる。
また平均粒子径が10μmから20μmの間のリチウム
含有複酸化物粉末が添加されると、平均粒子径20μm
以上のリチウム含有複酸化物粉末により得られる効果が
薄れてしまう。また平均粒子径30μmを超えるリチウ
ム含有複酸化物粉末が添加されると電気化学特性が悪化
し、電池の容量低下を招く。またこのような大きな平均
粒子径のリチウム含有複酸化物粉末を得るには造粒など
の二次加工が必要となる場合があり、製造工程が増加す
る点からも好ましくない。また、炭素粉末としては、前
述の短絡防止の観点から平均粒子径の下限は0.1μm
とすべきである。また10μm以上のものを用いると導
電助剤としての特性が低下するため、平均粒子径の上限
は10μmとすべきである。When a lithium-containing mixed oxide powder having an average particle diameter of less than 1 μm is added, the properties of the positive electrode mixture ink change and it becomes difficult to form a positive electrode mixture layer having a uniform thickness.
When a lithium-containing mixed oxide powder having an average particle size of 10 μm to 20 μm is added, the average particle size of 20 μm
The effect obtained by the above lithium-containing mixed oxide powder is diminished. Further, when a lithium-containing composite oxide powder having an average particle diameter of more than 30 μm is added, the electrochemical characteristics are deteriorated and the capacity of the battery is reduced. Further, secondary processing such as granulation may be required to obtain the lithium-containing composite oxide powder having such a large average particle size, which is not preferable from the viewpoint of increasing the number of manufacturing processes. Further, as the carbon powder, the lower limit of the average particle size is 0.1 μm from the viewpoint of the above-mentioned short circuit prevention.
Should be. Further, if the particles having a particle size of 10 μm or more are used, the characteristics as a conductive additive are deteriorated, so the upper limit of the average particle size should be 10 μm.
【0013】リチウム含有複酸化物粉末中の平均粒子径
1〜10μmの粉末の含有割合は5〜50重量%とし、
炭素粉末は、正極合剤に対して5〜10重量%含有する
必要がある。このような配合割合にすると、正極合剤の
かさ密度が高くなり、電池の容量が高くなる。The content of the powder having an average particle diameter of 1 to 10 μm in the lithium-containing mixed oxide powder is 5 to 50% by weight,
The carbon powder needs to be contained in an amount of 5 to 10% by weight based on the positive electrode mixture. With such a blending ratio, the bulk density of the positive electrode mixture becomes high and the capacity of the battery becomes high.
【0014】なお本発明では、0.1〜10μmの炭素
粉末のみを用いるため、導電性が低下することが予想さ
れたが、二種類のリチウム含有複酸化物の配合割合を特
定することで、導電性が低下するのを防ぐことができ
た。これは、20〜30μmの平均粒子径を有する粉末
の量が半分以上になるため、比較的少量のリチウム含有
複酸化物粉末を添加することで、リチウム含有複酸化物
粉末間の導電ネットワーク形成と、導電ネットワーク間
および導電ネットワークと集電体との電気的接触を図る
ことができるためであると考えられる。In the present invention, since only the carbon powder of 0.1 to 10 μm is used, the conductivity is expected to decrease, but by specifying the blending ratio of the two kinds of lithium-containing composite oxides, It was possible to prevent the conductivity from decreasing. This is because the amount of the powder having an average particle diameter of 20 to 30 μm becomes more than half, so by adding a relatively small amount of the lithium-containing composite oxide powder, it is possible to form a conductive network between the lithium-containing composite oxide powders. It is considered that this is because electrical contact can be achieved between the conductive networks and between the conductive networks and the current collector.
【0015】なお、ここでいうリチウム含有複酸化物と
は、リチウムを含む複酸化物であり、LiCoO2 、L
iNiO2 、LiCo0.97Sn0.03O2 、LiCo0.96
Al0.05O2 、LiCo0.98In0.06O2 等を用いるこ
とができる。また炭素粉末としては、グラファイト、無
定形炭素等を用いることができる。また結着剤として
は、ポリフッ化ビニリデン(PVDF)、ポリテトラフ
ロロエチレン(PTFE)等のフッ素系樹脂を用いるこ
とができる。また正極板には電解質(非水電解液)が含
浸される場合がある。非水電解液はリチウム塩が有機溶
媒に溶解されて形成されている。リチウム塩としては、
LiClO4 、LiBF4 、LiAsF6、CF3 SO
3 Li、LiPF6 等を用いることができる。また有機
溶媒としては、プロピレンカーボネート、エチレンカー
ボネート、ジメチルカーボネート、テトロヒドロフラン
及びこれらの混合物を用いることができる。The lithium-containing complex oxide referred to here is a complex oxide containing lithium, such as LiCoO 2 and L.
iNiO 2 , LiCo 0.97 Sn 0.03 O 2 , LiCo 0.96
It can be used Al 0.05 O 2, LiCo 0.98 In 0.06 O 2 and the like. As the carbon powder, graphite, amorphous carbon or the like can be used. Further, as the binder, a fluororesin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) can be used. Further, the positive electrode plate may be impregnated with an electrolyte (non-aqueous electrolytic solution). The non-aqueous electrolyte is formed by dissolving a lithium salt in an organic solvent. As lithium salts,
LiClO 4 , LiBF 4 , LiAsF 6 , CF 3 SO
3 Li, LiPF 6 or the like can be used. As the organic solvent, propylene carbonate, ethylene carbonate, dimethyl carbonate, tetrohydrofuran, or a mixture thereof can be used.
【0016】また、ここでの各平均粒子径の範囲を有す
る粉末とは、その範囲内に粒子分布のピークを一つ有
し、粒子径の平均値がその範囲内に入る粉末である。例
えば平均粒子径1〜10μmの粉末とは、粒子径1〜1
0μmの範囲内に粒子分布のピークを一つ有し、粒子径
の平均値が1〜10μmの範囲内に入る粉末である。The powder having the range of each average particle size is a powder having one peak of particle distribution within the range and the average value of the particle size falls within the range. For example, powder having an average particle size of 1 to 10 μm means a particle size of 1 to 1
The powder has one particle distribution peak in the range of 0 μm, and the average particle diameter falls within the range of 1 to 10 μm.
【0017】本発明の正極板を用いて、非水電解質二次
電池を作るには、本発明の正極板と負極板とを非水電解
液を含有する電解質層を介して積層すればよい。この場
合、負極板としては、金属リチウム、またはリチウムイ
オンを吸蔵、放出するグラファイト等を負極材として用
いることができる。To make a non-aqueous electrolyte secondary battery using the positive electrode plate of the present invention, the positive electrode plate and the negative electrode plate of the present invention may be laminated with an electrolyte layer containing a non-aqueous electrolytic solution interposed therebetween. In this case, as the negative electrode plate, metallic lithium or graphite that absorbs and releases lithium ions can be used as the negative electrode material.
【0018】[0018]
【発明の実施の形態】試験に用いる実施例及び比較例の
非水電解質二次電池用正極板を次のようにして製造し
た。まず表1に示す平均粒子径及び重量比のコバルト酸
リチウム(LiCoO2 )からなるリチウム含有複酸化
物粉末と、炭素粉末からなる導電助剤と、ポリフッ化ビ
ニリデン(PVDF)からなる結着剤と、N−メチル−
2−ピロリドン(NMP)からなる分散溶媒とを混練し
て正極合剤用インクをそれぞれ作った。なお、表1に示
す重量比(重量%)は後に形成する正極合剤層(正極合
剤用インクから分散溶媒を除いたもの)に対するそれぞ
れの重量比である。また、平均粒子径0.1μm以上の
炭素粉末はグラファイトからなる炭素粉末を用い、0.
05μmの炭素粉末はアセチレンブラックからなる炭素
粉末を用いた。次に、正極合剤用インクを厚み20μm
のアルミ箔からなる正極集電体にバーコーターにより塗
布した後に、100℃で乾燥し、その後、プレスして、
厚み約90μmの正極合剤層を形成して各正極板を完成
した。なおプレスは、各極板の最大の充填密度が得ら
れ、且つ正極合剤層の剥離や伸びがない範囲の圧力で行
った。BEST MODE FOR CARRYING OUT THE INVENTION Positive electrode plates for non-aqueous electrolyte secondary batteries of Examples and Comparative Examples used for the test were manufactured as follows. First, a lithium-containing composite oxide powder made of lithium cobalt oxide (LiCoO 2 ) having an average particle size and weight ratio shown in Table 1, a conductive additive made of carbon powder, and a binder made of polyvinylidene fluoride (PVDF). , N-methyl-
Ink for a positive electrode mixture was prepared by kneading with a dispersion solvent composed of 2-pyrrolidone (NMP). The weight ratios (% by weight) shown in Table 1 are respective weight ratios with respect to the positive electrode mixture layer (the positive electrode mixture ink from which the dispersion solvent has been removed) to be formed later. Further, as the carbon powder having an average particle diameter of 0.1 μm or more, carbon powder made of graphite was used, and
The carbon powder of acetylene black was used as the carbon powder of 05 μm. Next, the ink for the positive electrode mixture was coated with a thickness of 20 μm.
After being applied to the positive electrode current collector made of aluminum foil with a bar coater, it is dried at 100 ° C. and then pressed,
Each positive electrode plate was completed by forming a positive electrode material mixture layer having a thickness of about 90 μm. The pressing was performed at a pressure within the range in which the maximum packing density of each electrode plate was obtained and the positive electrode material mixture layer was not peeled or stretched.
【0019】[0019]
【表1】 次に各正極板の正極合剤層のかさ密度(g/cm3 )を測定
した。かさ密度は、実質的に正極合剤層の重量密度とな
り、(正極板の重量−集電体の重量)/(正極合剤層の
体積)の式から算出した。なお、正極合剤層の体積は
(正極板の面積)×(正極板の厚み−集電体の厚み)の
式で求めた。表2はその測定結果を示している。表2よ
り、実施例1〜7の正極板はかさ密度が高いのが分る。
これに対して比較例1,3,6,7の正極板はかさ密度
が低いのが分る。これは、比較例1,3の正極板は、平
均粒子径の小さいLiCoO2 粉末を用い、比較例6,
7の正極板は、平均粒子径の小さい炭素粉末(アセチレ
ンブラック)を用いたため、正極合剤用インクの流動性
が高くなり、均一な厚みの正極合剤層が形成できなかっ
たためである。[Table 1] Next, the bulk density (g / cm 3 ) of the positive electrode mixture layer of each positive electrode plate was measured. The bulk density is substantially the weight density of the positive electrode mixture layer, and was calculated from the formula (weight of positive electrode plate-weight of current collector) / (volume of positive electrode mixture layer). The volume of the positive electrode mixture layer was calculated by the formula (area of positive electrode plate) × (thickness of positive electrode plate−thickness of current collector). Table 2 shows the measurement results. From Table 2, it can be seen that the positive electrode plates of Examples 1 to 7 have high bulk density.
On the other hand, it can be seen that the positive electrode plates of Comparative Examples 1, 3, 6, 7 have a low bulk density. This is because the positive electrode plates of Comparative Examples 1 and 3 used LiCoO 2 powder having a small average particle size, and Comparative Example 6
This is because the positive electrode plate of No. 7 used carbon powder (acetylene black) having a small average particle size, so the fluidity of the positive electrode mixture ink was high, and the positive electrode mixture layer with a uniform thickness could not be formed.
【0020】次にエチレンカーボネートとジメチルカー
ボネートを体積比1:1で混合した混合溶媒に6フッ化
リン酸リチウム(LiPF6 )1モル/リットルを溶解
した非水電解液中に上記各正極板と、正極板の理論容量
を上回る容量の金属リチウム対極とをそれぞれ浸漬し、
対極(金属リチウム)に対して2.5〜4.2Vの電位
範囲になるように正極板及び対極に5時間率充電を行っ
た後に5時間率放電を行い、各正極板の放電容量を測定
し、各正極板の正極合剤層における単位重量あたりの放
電容量及び各正極板の正極合剤層における単位体積あた
りの放電容量を求めた。表2はその測定結果を示してい
る。表2より、実施例1〜7の正極板を用いると単位重
量あたりの放電容量及び単位体積あたりの放電容量を高
くできるのが分る。これに対して特に比較例2,4の正
極板を用いると単位重量あたりの放電容量及び単位体積
あたりの放電容量が低くなるのが分る。これは、比較例
2,4の正極板は、粒子径の大きいコバルト酸リチウム
粉末を用いたため、反応効率が低下したためである。ま
た比較例5の正極板は、粒子径の大きい炭素粉末を用い
たために活物質利用率が低下して容量が低下した。また
比較例6の正極板では、粒子径の小さい炭素粉末(アセ
チレンブラック)を用いて電池の高容量化を図ったが、
実施例1〜7の正極板には及ばないのが分る。Next, each of the above positive electrode plates was placed in a non-aqueous electrolyte prepared by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1. , And a metallic lithium counter electrode having a capacity exceeding the theoretical capacity of the positive electrode plate, respectively,
The positive electrode plate and the counter electrode were charged for 5 hours at a rate of 2.5 to 4.2 V with respect to the counter electrode (metal lithium), and then discharged for 5 hours to measure the discharge capacity of each positive electrode plate. Then, the discharge capacity per unit weight in the positive electrode mixture layer of each positive electrode plate and the discharge capacity per unit volume in the positive electrode mixture layer of each positive electrode plate were obtained. Table 2 shows the measurement results. From Table 2, it can be seen that the discharge capacity per unit weight and the discharge capacity per unit volume can be increased by using the positive electrode plates of Examples 1 to 7. On the other hand, it can be seen that the discharge capacity per unit weight and the discharge capacity per unit volume are reduced particularly when the positive electrode plates of Comparative Examples 2 and 4 are used. This is because the positive electrode plates of Comparative Examples 2 and 4 used the lithium cobalt oxide powder having a large particle size, and thus the reaction efficiency was lowered. Further, in the positive electrode plate of Comparative Example 5, since the carbon powder having a large particle diameter was used, the utilization ratio of the active material was lowered and the capacity was lowered. Further, in the positive electrode plate of Comparative Example 6, a carbon powder having a small particle size (acetylene black) was used to increase the capacity of the battery.
It turns out that it does not reach the positive electrode plates of Examples 1 to 7.
【0021】次に上記各正極板とグラファイトを負極材
として用いる公知の負極板とをポリプラスチック社より
セルガード2500の商品名で販売されているセパレー
タを介して積層するように巻回して極板群をそれぞれ作
った。次に各極板群を電池缶に収納してから、電池缶内
に前述の試験で用いた非水電解液を注液して極板及びセ
パレータ内に電解液を含浸させてリチウムイオン電池を
それぞれ1000個作った。そして、各リチウムイオン
電池の端子間に300Vの電圧を0.5秒間印加し、
0.5mA以上の電流が流れたものを短絡品として、そ
の発生率を調べた。表2はその測定結果を示している。
表2より、粒子径の小さい炭素粉末(アセチレンブラッ
ク)を用いた比較例6,7の正極板を用いた電池は、他
の正極板を用いた電池に比べて短絡しやすいことがわか
る。Next, the above positive electrode plates and a known negative electrode plate using graphite as a negative electrode material are wound so as to be laminated via a separator sold by Polyplastics Co., Ltd. under the trade name of Celgard 2500, and an electrode plate group is wound. Each made. Next, each electrode plate group is housed in a battery can, and then the nonaqueous electrolytic solution used in the above-mentioned test is poured into the battery can to impregnate the electrode plate and the separator with the electrolytic solution to form a lithium ion battery. I made 1000 each. Then, a voltage of 300 V is applied between the terminals of each lithium ion battery for 0.5 seconds,
The occurrence rate of the short-circuited product was examined with a current of 0.5 mA or more flowing as the short-circuited product. Table 2 shows the measurement results.
From Table 2, it can be seen that the batteries using the positive electrode plates of Comparative Examples 6 and 7 using the carbon powder (acetylene black) having a small particle size are more likely to cause a short circuit than the batteries using other positive electrode plates.
【0022】[0022]
【表2】 次にLiCoO2 粉末中の平均粒子径5μm(1〜10
μmの範囲内)の粉末の含有割合を変え、その他は実施
例1と同様にしてそれぞれ正極板を作り、各正極板のか
さ密度を測定して、平均粒子径5μmの粉末の含有割合
とかさ密度との関係を調べた。図1はその測定結果を示
している。本図より、平均粒子径5μmの粉末の含有割
合が50重量%を越えるとかさ密度が低下するのが分
る。[Table 2] Next, the average particle diameter of the LiCoO 2 powder was 5 μm (1-10
(in the range of μm), the content ratio of the powder is changed, and the other positive electrode plates are made in the same manner as in Example 1 and the bulk density of each positive electrode plate is measured. The relationship with density was investigated. FIG. 1 shows the measurement result. From this figure, it can be seen that the bulk density decreases when the content ratio of the powder having the average particle diameter of 5 μm exceeds 50% by weight.
【0023】次にこれらの平均粒子径5μm(1〜10
μmの範囲内)の粉末の含有割合を変えた正極板を用い
てそれぞれ電池を組み立て、各電池の正極合剤層におけ
る単位重量あたりの放電容量を測定し、平均粒子径5μ
mの粉末の含有割合と単位重量あたりの放電容量との関
係を調べた。なお、電池を組立て及び単位重量あたりの
放電容量の測定は前述の試験と同じ方法で行った。図2
はその測定結果を示している。本図より平均粒子径5μ
mの粉末の含有割合が5重量%を下回ると活物質利用率
が低下して単位重量あたりの放電容量が低下するのが分
る。以上より、リチウム含有複酸化物粉末中の平均粒子
径5μm(1〜10μmの範囲内)の粉末の含有割合は
5〜50重量%が好ましいのが分る。Next, the average particle diameter of these particles is 5 μm (1-10
The batteries were assembled using the positive electrode plates with different powder content ratios (in the range of μm), the discharge capacity per unit weight in the positive electrode mixture layer of each battery was measured, and the average particle diameter was 5 μm.
The relationship between the content ratio of the m powder and the discharge capacity per unit weight was investigated. The assembling of the battery and the measurement of the discharge capacity per unit weight were performed by the same method as the above-mentioned test. FIG.
Indicates the measurement result. From this figure, the average particle size is 5μ
It can be seen that when the content ratio of the powder of m is less than 5% by weight, the utilization factor of the active material is reduced and the discharge capacity per unit weight is reduced. From the above, it is found that the content ratio of the powder having an average particle diameter of 5 μm (within the range of 1 to 10 μm) in the lithium-containing mixed oxide powder is preferably 5 to 50% by weight.
【0024】次に正極合剤中の平均粒子径0.4μm
(0.1〜10μmの範囲内)の炭素粉末の含有量を変
え、その他は実施例1と同様にして形成したそれぞれ正
極板を用いて電池を作り、各電池の正極合剤層における
単位重量あたりの放電容量を測定し、平均粒子径0.4
μmの炭素粉末の含有量と単位重量あたりの放電容量と
の関係を調べた。なお、電池を組立て及び単位重量あた
りの放電容量の測定は前述の試験と同じ方法で行った。
図3はその測定結果を示している。本図より、炭素粉末
の含有量が5重量%を下回ると正極合剤中の導電性が低
下して活物質利用率が低下して容量が低下するのが分
る。また炭素粉末の含有量が10重量%を上回るとLi
CoO2 粉末量が減少するため理論充填容量が低くな
り、容量が低下するのが分る。以上より、正極合剤中の
平均粒子径0.4μm(0.1〜10μmの範囲内)の
炭素粉末の含有量は5〜10重量%が好ましいのが分
る。Next, the average particle diameter in the positive electrode mixture is 0.4 μm.
A unit weight of the positive electrode mixture layer of each battery was prepared by using each positive electrode plate formed in the same manner as in Example 1 except that the content of carbon powder (within the range of 0.1 to 10 μm) was changed. Discharge capacity is measured, average particle size 0.4
The relationship between the content of the carbon powder of μm and the discharge capacity per unit weight was investigated. The assembling of the battery and the measurement of the discharge capacity per unit weight were performed by the same method as the above-mentioned test.
FIG. 3 shows the measurement results. From this figure, it can be seen that when the content of the carbon powder is less than 5% by weight, the conductivity in the positive electrode mixture is lowered, the utilization factor of the active material is lowered, and the capacity is lowered. When the content of carbon powder exceeds 10% by weight, Li
It can be seen that the theoretical filling capacity becomes lower and the capacity lowers because the amount of CoO 2 powder decreases. From the above, it can be seen that the content of carbon powder having an average particle diameter of 0.4 μm (within the range of 0.1 to 10 μm) in the positive electrode mixture is preferably 5 to 10% by weight.
【0025】なお、上記実施例では、リチウム含有複酸
化物粉末としてLiCoO2 粉末を用いたが、LiCo
0.97Sn0.03O2 粉末等の他のリチウム含有複酸化物粉
末を用いることができる。LiCo0.97Sn0.03O2 粉
末を用いても、本実施例と同様の効果を得ることができ
る。Although LiCoO 2 powder was used as the lithium-containing mixed oxide powder in the above-mentioned embodiment, LiCoO 2 powder was used.
Other lithium-containing composite oxide powders such as 0.97 Sn 0.03 O 2 powder can be used. Even if LiCo 0.97 Sn 0.03 O 2 powder is used, the same effect as in this embodiment can be obtained.
【0026】[0026]
【発明の効果】本発明によれば、平均粒子径の小さい
(0.01μm以上0.08μm未満)炭素粉末を用い
ずに、正極合剤のかさ密度を高めることができる上、リ
チウム含有複酸化物粉末の反応効率が低下するのを抑制
することができる。本発明の正極板を用いれば、非水電
解液二次電池の電池の単位重量あたりの放電容量及び単
位体積あたりの放電容量を高くできる。また本発明によ
れば、平均粒子径の小さい炭素粉末を用いることがない
ので極板間の短絡を防止することができる。According to the present invention, the bulk density of the positive electrode mixture can be increased without using a carbon powder having a small average particle size (0.01 μm or more and less than 0.08 μm), and lithium-containing double oxides can be used. It is possible to prevent the reaction efficiency of the product powder from decreasing. By using the positive electrode plate of the present invention, the discharge capacity per unit weight and the discharge capacity per unit volume of the non-aqueous electrolyte secondary battery can be increased. Further, according to the present invention, since carbon powder having a small average particle diameter is not used, it is possible to prevent a short circuit between the electrode plates.
【図1】 平均粒子径5μm(1〜10μmの範囲内)
の粉末の含有割合とかさ密度との関係を示す図である。FIG. 1 Average particle size 5 μm (within the range of 1 to 10 μm)
It is a figure which shows the relationship between the content rate of the powder of, and a bulk density.
【図2】 平均粒子径5μm(1〜10μmの範囲内)
の粉末の含有割合と単位重量あたりの放電容量との関係
を示す図である。FIG. 2 Average particle size 5 μm (within the range of 1 to 10 μm)
FIG. 3 is a diagram showing the relationship between the powder content ratio and the discharge capacity per unit weight.
【図3】 平均粒子径0.4μm(0.1〜10μmの
範囲内)の炭素粉末の含有量と単位重量あたりの放電容
量との関係を示す図であるFIG. 3 is a diagram showing the relationship between the content of carbon powder having an average particle size of 0.4 μm (within the range of 0.1 to 10 μm) and the discharge capacity per unit weight.
Claims (2)
質材料と炭素粉末からなる導電助剤と結着剤とを含有す
る正極合剤の層が集電体上に形成されてなる非水電解質
二次電池用正極板において、 前記リチウム含有複酸化物粉末として平均粒子径1〜1
0μmの粉末と平均粒子径20〜30μmの粉末との粒
子径混合粉末を用い、 前記リチウム含有複酸化物粉末中の前記平均粒子径1〜
10μmの粉末の含有割合は5〜50重量%であり、 前記炭素粉末として平均粒子径0.1〜10μmの粉末
を用い、 前記炭素粉末は、前記正極合剤に対して5〜10重量%
含有されていることを特徴とすることを特徴とする非水
電解質二次電池用正極板。1. A non-aqueous electrolyte in which a layer of a positive electrode mixture containing an active material material made of lithium-containing double oxide powder, a conductive auxiliary agent made of carbon powder, and a binder is formed on a current collector. In the positive electrode plate for a secondary battery, the lithium-containing composite oxide powder has an average particle diameter of 1 to 1
The average particle diameter of the lithium-containing mixed oxide powder 1 to 1 is used by using a mixed powder of particle diameters of 0 μm powder and powder having an average particle diameter of 20 to 30 μm.
The content ratio of the powder of 10 μm is 5 to 50% by weight, powder having an average particle diameter of 0.1 to 10 μm is used as the carbon powder, and the carbon powder is 5 to 10% by weight with respect to the positive electrode mixture.
A positive electrode plate for a non-aqueous electrolyte secondary battery, characterized in that it is contained.
質材料と炭素粉末からなる導電助剤と結着剤とを含有す
る正極合剤の層が集電体上に形成されてなる正極板と負
極板とが非水電解液を含有する電解質層を介して積層さ
れた非水電解質二次電池において、 前記リチウム含有複酸化物粉末として平均粒子径1〜1
0μmの粉末と平均粒子径20〜30μmの粉末との粒
子径混合粉末を用い、 前記リチウム含有複酸化物粉末中の前記平均粒子径1〜
10μmの粉末の含有割合は5〜50重量%であり、 前記炭素粉末として平均粒子径0.1〜10μmの粉末
を用い、 前記炭素粉末は、前記正極合剤に対して5〜10重量%
含有されていることを特徴とする非水電解質二次電池。2. A positive electrode plate having a positive electrode mixture layer formed on a current collector, the positive electrode mixture layer containing an active material material made of lithium-containing double oxide powder, a conductive auxiliary agent made of carbon powder, and a binder. A non-aqueous electrolyte secondary battery in which a negative electrode plate is laminated via an electrolyte layer containing a non-aqueous electrolyte solution, wherein the lithium-containing composite oxide powder has an average particle diameter of 1 to 1.
The average particle diameter of the lithium-containing mixed oxide powder 1 to 1 is used by using a mixed powder of particle diameters of 0 μm powder and powder having an average particle diameter of 20 to 30 μm.
The content ratio of the powder of 10 μm is 5 to 50% by weight, powder having an average particle diameter of 0.1 to 10 μm is used as the carbon powder, and the carbon powder is 5 to 10% by weight with respect to the positive electrode mixture.
A non-aqueous electrolyte secondary battery characterized by being contained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8120114A JPH09306546A (en) | 1996-05-15 | 1996-05-15 | Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8120114A JPH09306546A (en) | 1996-05-15 | 1996-05-15 | Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09306546A true JPH09306546A (en) | 1997-11-28 |
Family
ID=14778299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8120114A Pending JPH09306546A (en) | 1996-05-15 | 1996-05-15 | Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09306546A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002110251A (en) * | 2000-09-27 | 2002-04-12 | Mitsubishi Cable Ind Ltd | Lithium ion secondary battery |
WO2004030125A1 (en) * | 2002-09-26 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode active substance for lithium secondary battery and process for producing the same |
JP2006185887A (en) * | 2004-11-30 | 2006-07-13 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
CN100337351C (en) * | 2002-11-29 | 2007-09-12 | 清美化学股份有限公司 | Method for preparing positive electrode active material for lithium secondary cell |
WO2009078125A1 (en) * | 2007-12-14 | 2009-06-25 | Panasonic Corporation | Coating liquid for formation of positive electrode for lithium rechargeable battery, positive electrode for lithium rechargeable battery, and lithium rechargeable battery |
CN101789523A (en) * | 2009-01-28 | 2010-07-28 | 三洋电机株式会社 | Nonaqueous electrolyte secondary battery |
WO2010086910A1 (en) * | 2009-02-02 | 2010-08-05 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
US7981544B2 (en) | 2007-02-13 | 2011-07-19 | Sanyo Electric Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof |
WO2021210444A1 (en) | 2020-04-16 | 2021-10-21 | 三洋電機株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
-
1996
- 1996-05-15 JP JP8120114A patent/JPH09306546A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002110251A (en) * | 2000-09-27 | 2002-04-12 | Mitsubishi Cable Ind Ltd | Lithium ion secondary battery |
US7824803B2 (en) | 2002-09-26 | 2010-11-02 | Seimi Chemical Co., Ltd. | Positive electrode active substance for lithium secondary battery and process for producing the same |
WO2004030125A1 (en) * | 2002-09-26 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode active substance for lithium secondary battery and process for producing the same |
US7981547B2 (en) | 2002-09-26 | 2011-07-19 | Seimi Chemical Co., Ltd. | Process for positive electrode active substance for lithium secondary battery |
CN100382363C (en) * | 2002-09-26 | 2008-04-16 | 清美化学股份有限公司 | Positive active material for lithium secondary battery and its manufacturing method |
CN100337351C (en) * | 2002-11-29 | 2007-09-12 | 清美化学股份有限公司 | Method for preparing positive electrode active material for lithium secondary cell |
JP2006185887A (en) * | 2004-11-30 | 2006-07-13 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
US7981544B2 (en) | 2007-02-13 | 2011-07-19 | Sanyo Electric Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof |
US8043387B2 (en) | 2007-02-13 | 2011-10-25 | Sanyo Electric Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof |
JP2009146788A (en) * | 2007-12-14 | 2009-07-02 | Panasonic Corp | Coating liquid for positive electrode formation for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery |
WO2009078125A1 (en) * | 2007-12-14 | 2009-06-25 | Panasonic Corporation | Coating liquid for formation of positive electrode for lithium rechargeable battery, positive electrode for lithium rechargeable battery, and lithium rechargeable battery |
CN101789523A (en) * | 2009-01-28 | 2010-07-28 | 三洋电机株式会社 | Nonaqueous electrolyte secondary battery |
WO2010086910A1 (en) * | 2009-02-02 | 2010-08-05 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
WO2021210444A1 (en) | 2020-04-16 | 2021-10-21 | 三洋電機株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5882516B2 (en) | Lithium secondary battery | |
EP2131422B1 (en) | Positive electrode-forming material, component thereof, method for producing the same, and rechargeable lithium-ion battery | |
US10637097B2 (en) | Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly | |
CN107660316B (en) | Positive electrode of lithium electrochemical power generation device | |
EP4170755A1 (en) | Positive electrode material, positive electrode pole piece, lithium secondary battery, battery module, battery pack, and apparatus | |
WO2013179924A1 (en) | Electrode for lithium-ion secondary battery, and lithium-ion secondary battery using said electrode | |
JP3579280B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode | |
JP5088856B2 (en) | Electrode for lithium secondary battery and lithium secondary battery | |
KR101170172B1 (en) | Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries | |
JP2006004739A (en) | Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method | |
JP3139390B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JPH09306546A (en) | Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP2005158623A (en) | Nonaqueous electrolyte secondary battery | |
WO2015132845A1 (en) | All-solid-state battery | |
US20230290955A1 (en) | Carbon-based conductive agent, secondary battery, and electrical device | |
JP4780361B2 (en) | Lithium secondary battery | |
JPH10144302A (en) | Manufacture of electrode for non-aqueous electrolytic battery and non-aqueous electrolytic battery employing this electrode | |
JP5418828B2 (en) | Lithium secondary battery and manufacturing method thereof | |
JP4151459B2 (en) | Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method | |
JP4120439B2 (en) | Lithium ion secondary battery | |
JP2000228199A (en) | Nonaqueous electrolyte solution secondary battery | |
CN108808006A (en) | Negative pole piece and battery | |
JPH11312523A (en) | Electrode for battery and nonaqueous electrolyte battery | |
JP2011134535A (en) | Positive electrode for lithium secondary battery, and method for manufacturing the same | |
JP2006344395A (en) | Cathode for lithium secondary battery and utilization and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050322 |