JP4151459B2 - Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method - Google Patents
Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method Download PDFInfo
- Publication number
- JP4151459B2 JP4151459B2 JP2003094959A JP2003094959A JP4151459B2 JP 4151459 B2 JP4151459 B2 JP 4151459B2 JP 2003094959 A JP2003094959 A JP 2003094959A JP 2003094959 A JP2003094959 A JP 2003094959A JP 4151459 B2 JP4151459 B2 JP 4151459B2
- Authority
- JP
- Japan
- Prior art keywords
- dispersion medium
- electrode plate
- added
- mass
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、厚みが均一でばらつきの少ない極板の製造方法およびこの製造方法によって得られる極板を用いた非水電解液二次電池に関する。
【0002】
【従来の技術】
近年、携帯電話、携帯情報端末等の携帯電子機器の性能は、搭載される半導体素子、電子回路だけでなく、充放電可能な密閉型二次電池の性能に大きく依存しており、搭載される密閉型二次電池の容量アップと共に、軽量・コンパクト化も同時に実現することが望まれている。これらの要望に応える密閉型二次電池として、ニッケルカドミウム蓄電池の約2倍のエネルギー密度を有するニッケル水素蓄電池が開発され、次いで、これを上回るリチウムイオン電池が開発され、主流になっている。
【0003】
これらの密閉型二次電池は、正極板と負極板とをセパレータを介して渦巻状に巻回や積層した極板群と電解液からなる発電要素を円筒形、角形や扁平形の電池ケースに収納し、かしめ封口やレーザー封口することによって構成されている。
【0004】
この電池に用いられる極板は、一般的に活物質(正極活物質または負極活物質)、結着剤(バインダー)、必要に応じて導電剤、導電助剤、増粘剤等を分散媒に混練分散させたペーストを集電体の片面もしくは両面に塗布乾燥した後、所定の厚みまで圧延し、所定の寸法形状にスリットすることにより作製されている。
【0005】
ここで、ペーストの混練分散の方法は、極板の厚みが均一でばらつきの少ない極板を得るために非常に重要なポイントである。
【0006】
従来、活物質、結着剤、必要に応じて導電剤、導電助剤、増粘剤等を所定量配合したものに所定量の溶剤を全量加え、練合機で混練することによってペーストを作製していたが、ペーストの混練状態、粘度等が安定しない為に、極板の厚みが均一でばらつきの少ない極板を得ることが困難であった。
【0007】
導電剤、結着剤と溶剤とを混練した後、活物質を添加して混練する提案(例えば、特許文献1参照)、導電剤と溶剤を混練した後、活物質と結着剤を添加して混練する提案(例えば、特許文献2参照)、結着剤と溶剤とを混練した後、活物質と導電剤を添加して混練する提案(例えば、特許文献3参照)、導電剤と溶剤を混練した後、活物質を添加して混練し、さらに結着剤を添加して混練する提案(例えば、特許文献4参照)などがあるが、これらの方法はいずれも溶剤と導電剤および/または結着剤とを混練した後、活物質を添加して混練する方法であり、せん断力がかからない状態で混練している為、ペーストの混練状態、粘度等を安定させることができなかった。
【0008】
そこで、導電剤、結着剤と活物質とを混練した後、溶剤量を調節して添加して混練し、さらに溶剤を加えてペーストを作製することによって必要な溶剤量が減り、乾燥時間を短縮する提案(例えば、特許文献5参照)、同様な方法により分散性と集電体との密着性を向上させる提案(例えば、特許文献6参照)、結着剤を溶剤に溶解したものに活物質と導電剤を添加して混合した後、微量の溶剤を複数回に分けて添加して固練りし、さらに溶剤を加えてペーストを作製する提案(例えば、特許文献7参照)であり、せん断力をかけた状態で混練した後、さらに溶剤を加えて所定の粘度のペーストを作製しているため、ペーストの混練状態、粘度等を安定させることができると開示されている。
【0009】
しかしながらこれらの方法を用いても、使用するロットが異なると活物質、導電剤、導電助剤などの粉末の場合は、粒径、粒度分布のバラツキによって、結着剤、増粘剤などの場合は、分子量のバラツキによって、最もせん断力のかかる状態で混練することができない場合が生じ、ペーストの混練状態、粘度等を一定にすることができなかった。
【0010】
【特許文献1】
特開平09−213309号公報
【特許文献2】
特開平10−144302号公報
【特許文献3】
特開平11−144714号公報
【特許文献4】
特開平11−213989号公報
【特許文献5】
特開平07−161350号公報
【特許文献6】
特開2000−353516号公報
【特許文献7】
特開2001−167756号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記問題点を解決すべく、使用する活物質、導電剤、導電助剤、結着剤、増粘剤などのロットが異なっても、最もせん断力のかかる状態で混練してペーストの混練状態、粘度等を一定にすることができ、厚みが均一でばらつきの少ない極板の製造方法およびこの製造方法によって得られる極板を用いた非水電解液二次電池を提供することを主たる目的とする。
【0012】
【課題を解決するための手段】
前記の課題を解決するための本発明は、少なくとも活物質と結着剤からなる混合物に分散媒を添加し、練合機にて混練分散したペーストを集電体に塗布乾燥してなる極板の製造方法であって、前記混合物に分散媒を添加しながら混練分散したときの前記練合機の負荷最大値となる分散媒の添加量を求め、前記分散媒の添加量に対して、さらに0.005倍〜0.05倍の分散媒を添加した状態で混練した後、さらに分散媒を添加して所定の粘度になるまで混練したペーストを集電体に塗布乾燥してなる極板の製造方法である。
【0013】
また、少なくとも活物質と結着剤からなる混合物に分散媒を添加し、練合機にて混練分散したペーストを集電体に塗布乾燥してなる極板の製造方法であって、前記混合物に分散媒を添加しながら混練分散したときの前記練合機の負荷最大値となる分散媒の添加量をあらかじめ求めておき、この分散媒の添加量の1.00倍〜1.05倍の分散媒を前記混合物に添加した状態で混練した後、さらに分散媒を添加して所定の粘度になるまで混練したペーストであることを特徴とする極板の製造方法である。
【0014】
そして、これらの製造方法において、練合機の負荷最大値となる分散媒の添加量は、1分間に前記活物質100質量部に対して0.1質量部〜1.0質量部を添加しながら求めることが好ましい。
【0015】
また、これらのいずれかに記載の製造方法によって得られる極板は、正極板および/または負極板であり、セパレータを介して絶縁状態の極板群を電池ケースに収納してなる非水電解液二次電池である。
【0016】
【発明の実施の形態】
本発明の好ましい実施の形態について図面を用いて説明する。
【0017】
図1は本発明の非水電解液二次電池の断面図である。上部が開口している有底の電池ケース11内に正極板13と負極板14とがセパレータ15を介して絶縁されている極板群を収納している。
【0018】
この正極板13は、例えば、アルミニウムやアルミニウム合金製の箔やラス加工もしくはエッチング処理された厚み10μm〜60μmの正極集電体の片面または両面に、正極ペーストを塗着し、乾燥し、圧延して正極活物質層を形成することにより作製される。
【0019】
正極ペーストに用いる正極活物質としては、特に限定されるものではないが、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも1種の遷移金属と、リチウムとの複合金属酸化物が使用される。なかでもLixCoO2、LixMnO2、LixNiO2、LiCrO2、αLiFeO2、LiVO2、LixCoyNi1-yO2、LixCoyM1-yOz、LixNi1-yMyOz、LixMn2O4、LixMn2-yMyO4(ここで、M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選ばれる少なくとも1種、x=0〜1.2、y=0〜0.9、z=2.0〜2.3)、遷移金属カルコゲン化物、バナジウム酸化物のリチウム化物、ニオブ酸化物のリチウム化物等が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、上記のx値は充放電により増減する。正極活物質の平均粒径は、1μm〜30μmであることが好ましい。
【0020】
正極ペーストに用いる結着剤、導電剤、必要に応じて添加できる増粘剤は、従来と同様のものを用いることができる。
【0021】
結着剤としては、ペーストの分散媒に溶解または分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着剤、アクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム(SBR)、アクリル系重合体、ビニル系重合体等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンの共重合体、ポリテトラフルオロエチレン等が好ましく、これらはディスパージョンとして用いることができる。
【0022】
導電剤としては、アセチレンブラック、グラファイト、炭素繊維等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0023】
増粘剤としては、エチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、メチルセルロースなどが好ましい。
【0024】
分散媒としては、結着剤、必要に応じて添加する増粘剤が溶解または分散できるものであれば特に限定されないが、有機系溶剤を用いる場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等を単独または混合して用いることが好ましい。また、水系溶剤を用いる場合は、水や温水が好ましい。
【0025】
正極ペーストは、次のようにして作製する。
【0026】
上述した正極活物質、結着剤、導電剤、分散媒及び必要に応じて添加する増粘剤の内、分散媒を除いて混合機にて混合するが、結着剤及び必要に応じて添加する増粘剤は、あらかじめ分散媒に溶解または分散させたものを用いることにより、より均一なペーストを作製することができる。
【0027】
すなわち、粉末状態の正極活物質、導電剤を混合機にて混合した後、練合機にて混練しながら、あらかじめ分散媒に溶解または分散させた結着剤および必要に応じて添加する増粘剤を添加する。次に、分散媒を添加しながら練合機の負荷最大値となる分散媒の添加量を求める。この分散媒の添加量は、1分間に前記正極活物質100質量部に対して0.1質量部〜1.0質量部を添加しながら求める。0.1質量部未満の場合には、練合機の負荷最大値となる分散媒の添加量を求めるのに必要な時間が長くなる。逆に、1.0質量部を超える場合には、練合機の負荷最大値となる分散媒の添加量を正確に求めることができず、せん断をかけた状態で混練することができない。
【0028】
なお、前記分散媒の添加量としては、あらかじめ分散媒に溶解または分散させた結着剤および必要に応じて添加する増粘剤を用いた場合には、これらの分散媒の量を含むものとする。
【0029】
このようにして求めた分散媒の添加量に対して、さらに0.005倍〜0.05倍の分散媒を添加して10分間〜60分間混練した後、さらに分散媒を添加して所定の粘度になるまで混練してペーストを作製する。
【0030】
ところで、あらかじめ分散媒に溶解または分散させた結着剤及び必要に応じて添加する増粘剤を用いる場合には、活物質、導電剤と分散媒とを、せん断力をかけた状態で混練した後に添加し、さらに分散媒を添加して所定の粘度になるまで混練してペーストを作製しても同様の結果が得られる。
【0031】
また、このような方法によって、練合機の負荷最大値となる分散媒の添加量をあらかじめ求めておき、この分散媒の添加量の1.00倍〜1.05倍の分散媒を正極活物質、結着剤、導電剤、及び必要に応じて添加する増粘剤からなる混合物に添加しながら30分〜60分間混練した後、さらに分散媒を添加して所定の粘度になるまで混練しても同様の結果が得られる。
【0032】
混合および混練に用いるものとしては、特に限定されるものではないが、例えば、プラネタリーミキサー、ホモミキサー、ピンミキサー、ニーダー、ホモジナイザー等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0033】
このようにして得られた正極ペーストは、使用するロットが異なり活物質、導電剤、導電助剤などの粒径、粒度分布のバラツキや結着剤、増粘剤などの分子量のバラツキがあっても、練合機の負荷最大値となる分散媒の添加量を求め、さらに0.005倍〜0.05倍の分散媒を添加した状態で混練することにより、最もせん断力のかかる状態で混練することができ、さらに分散媒を添加して所定の粘度になるまで混練するので、混練状態が均一な正極ペーストを得ることができる。
【0034】
次に、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、正極ペーストを正極集電体へ容易に塗着することができる。正極集電体に塗着された正極ペーストは、自然乾燥に近い乾燥を行うことが好ましいが、生産性を考慮すると、80℃〜200℃の温度で10分間〜5時間乾燥させるのが好ましい。
【0035】
圧延は、ロールプレス機によって正極板が130μm〜200μmの所定の厚みになるまで、線圧1000〜2000kg/cmで数回を行うか、線圧を変えて圧延するのが好ましい。
【0036】
正極板13には活物質層を有さない無地部を設け、ここに正極リードを溶接する。
【0037】
負極板14は、例えば、通常の銅箔やラス加工もしくはエッチング処理された銅箔からなる厚み10μm〜50μmの負極集電体の片面または両面に、負極ペーストを塗着し、乾燥し、圧延して負極活物質層を形成することにより作製される。
【0038】
負極ペーストに用いる負極活物質としては、特に限定されるものではないが、充電・放電によりリチウムイオンを放出・吸蔵できる炭素材料を用いることが好ましい。例えば、有機高分子化合物(フェノール樹脂、ポリアクリロニトリル、セルロース等)を焼成することにより得られる炭素材料、コークスやピッチを焼成することにより得られる炭素材料、人造黒鉛、天然黒鉛、ピッチ系炭素繊維、PAN系炭素繊維等が好ましく、その形状としては、繊維状、球状、鱗片状、塊状のものを用いることができる。
【0039】
負極ペーストに用いる結着剤、必要に応じて用いられる導電助剤、増粘剤には、従来と同様のものを用いることができ、正極板と同様の結着剤、導電剤、増粘剤を用いることもできる。
【0040】
負極ペーストは、負極活物質と、結着剤と、必要に応じて導電剤と、増粘剤とを、分散媒に分散させて調製される。負極板には活物質層を有さない無地部を設け、ここに負極リードが溶接される。
【0041】
負極ペーストは、次のようにして作製する。
【0042】
上述した負極活物質、結着剤、分散媒及び必要に応じて添加する導電助剤、増粘剤の内、分散媒を除いて混合機にて混合するが、結着剤及び必要に応じて添加する増粘剤は、あらかじめ分散媒に溶解または分散させたものを用いることにより、より均一なペーストを作製することができる。
【0043】
すなわち、粉末状態の負極活物質と必要に応じて添加する導電助剤を混合機にて混合した後、練合機にて混練しながら、あらかじめ分散媒に溶解または分散させた結着剤および必要に応じて添加する増粘剤を添加する。次に、分散媒を添加しながら練合機の負荷最大値となる分散媒の添加量を求める。この分散媒の添加量は、正極ペーストと同様に1分間に前記負極活物質100質量部に対して0.1質量部〜1.0質量部を添加して求める。0.1質量部未満の場合には、練合機の負荷最大値となる分散媒の添加量を求めるのに必要な時間が長くなる。逆に、1.0質量部を超える場合には、練合機の負荷最大値となる分散媒の添加量を正確に求めることができず、せん断をかけた状態で混練することができない。
【0044】
なお、前記分散媒の添加量としては、あらかじめ分散媒に溶解または分散させた結着剤および必要に応じて添加する増粘剤を用いた場合には、これらの分散媒の量を含むものとする。
【0045】
このようにして求めた分散媒の添加量に対して、さらに0.005倍〜0.05倍の分散媒を添加して10分間〜60分間混練した後、さらに分散媒を添加して所定の粘度になるまで混練したペーストを作製する。
【0046】
ところで、正極ペーストと同様に、あらかじめ分散媒に溶解または分散させた結着剤及び必要に応じて添加する増粘剤を用いる場合には、活物質、導電助剤と分散媒とを、せん断力をかけた状態で混練した後に添加し、さらに分散媒を添加して所定の粘度になるまで混練してペーストを作製しても同様の結果が得られる。
【0047】
また、このような方法によって、練合機の負荷最大値となる分散媒の添加量をあらかじめ求めておき、この分散媒の添加量の1.00倍〜1.05倍の分散媒を正極活物質、結着剤及び必要に応じて添加する導電助剤、増粘剤からなる混合物に添加しながら30分〜60分間混練した後、さらに分散媒を添加して所定の粘度になるまで混練しても同様の結果が得られる。
【0048】
セパレータ15としては、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエーテル(ポリエチレンオキシドやポリプロピレンオキシド)、セルロース(カルボキシメチルセルロースやヒドロキシプロピルセルロース)、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル等の高分子からなる微多孔フィルムが好ましく用いられる。また、これらの微多孔フィルムを重ね合わせた多層フィルムも用いられる。なかでもポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等からなる微多孔フィルムが好適であり、厚みは15μm〜30μmが好ましい。
【0049】
電池ケース11の材質としては、アルミニウム合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼などを用いることができる。これらの材料に絞り加工、DI加工等を施して電池ケース11の形状にすることができる。ケースの防蝕性を高めるために、加工後の電池ケース11にメッキ処理を施しても良い。
【0050】
非水電解液としては、非水溶媒と溶質からなり、非水溶媒としては、主成分として環状カーボネートおよび鎖状カーボネートが含有される。前記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一種であることが好ましい。また、前記鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一種であることが好ましい。
【0051】
溶質としては、例えば、電子吸引性の強いリチウム塩を使用し、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3等が挙げられる。これらの電解質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの溶質は、前記非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。
【0052】
【実施例】
以下、本発明を実施例および比較例を用いて詳細に説明するが、これらは本発明を何ら限定するものではない。
【0053】
(実施例1)
正極ペーストは次のようにして作製した。まず、プラネタリーミキサー中に正極活物質としてコバルト酸リチウムを100質量部に導電剤としてアセチレンブラック2質量部を添加して10分間混合した。次に、結着剤としてポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に溶解させ、固形分が12%のものを16.7質量部、プラネタリーミキサーで混合しながら添加した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒としてN−メチル−2−ピロリドン(NMP)を1分間に前記正極活物質100質量部に対して1.0質量部の割合で、16.0質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.05倍に相当するNMPを0.8質量部添加した後、30分間せん断力をかけた状態で混練した。さらに、NMPを10.0質量部添加し、粘度が20Pa・sの正極ペーストを作製した。
【0054】
この正極ペーストを厚さ15μmのアルミニウム箔からなる正極集電体上にドクターブレード方式で195μmの厚さになるように両面塗布して乾燥後、厚さ150μmに圧延し、所定寸法に切断して幅42mm、長さ460mmの正極板13を作製した。
【0055】
(実施例2)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。次に、実施例1で求めたプラネタリーミキサーの負荷電力の最大値を示した分散媒であるNMPの添加量の1.00倍に相当するNMPを16.0質量部添加した後、60分間せん断力をかけた状態で混練した。さらに、NMPを10.4質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0056】
(実施例3)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。次に、実施例1で求めたプラネタリーミキサーの負荷電力の最大値を示した分散媒であるNMPの添加量の1.05倍に相当するNMPを16.8質量部添加した後、60分間せん断力をかけた状態で混練した。さらに、NMPを10.0質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0057】
(実施例4)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒としてN−メチル−2−ピロリドン(NMP)を1分間に前記正極活物質100質量部に対して0.05質量部の割合で、15.9質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.005倍に相当するNMPを0.0795質量部添加した後、30分間せん断力をかけた状態で混練した。さらに、NMPを10.4質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0058】
(実施例5)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒としてN−メチル−2−ピロリドン(NMP)を1分間に前記正極活物質100質量部に対して1.5質量部の割合で、16.4質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.05倍に相当するNMPを0.82質量部添加した後、30分間せん断力をかけた状態で混練した。さらに、NMPを10.4質量部添加し、粘度が21Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0059】
(実施例6)
実施例1と同様のロット、配合比にて、正極活物質と導電剤のみを混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒としてN−メチル−2−ピロリドン(NMP)を1分間に前記正極活物質100質量部に対して1.0質量部の割合で、28.5質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.005倍に相当するNMPを0.1425質量部添加した後、40分間せん断力をかけた状態で混練した。
【0060】
次に、結着剤として実施例1と同じロットのポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に溶解させ、固形分が12%のものを16.7質量部、プラネタリーミキサーで混合しながら添加した。さらに、NMPを0.01質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0061】
(実施例7)
正極活物質、導電剤、結着剤の配合比は実施例1と同じであるが、ロットが異なり平均粒径が実施例1よりも小さい正極活物質と導電剤を混合後、結着剤を添加混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒としてN−メチル−2−ピロリドン(NMP)を1分間に前記正極活物質100質量部に対して1.0質量部の割合で、16.2質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.05倍に相当するNMPを0.81質量部添加した後、30分間せん断力をかけた状態で混練した。さらに、NMPを10.2質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0062】
(実施例8)
正極活物質、導電剤、結着剤の配合比は実施例1と同じであるが、ロットが異なり平均粒径が実施例1よりも大きい正極活物質と導電剤を混合後、結着剤を添加混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒としてN−メチル−2−ピロリドン(NMP)を1分間に前記正極活物質100質量部に対して1.0質量部の割合で、15.8質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.05倍に相当するNMPを0.79質量部添加した後、30分間せん断力をかけた状態で混練した。さらに、NMPを9.8質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0063】
(実施例9)
負極ペーストは次のようにして作製した。まず、プラネタリーミキサー中に負極活物質として人造塊状黒鉛を100質量部に、導電助剤として気相成長炭素を2質量部、結着剤として平均粒径0.4μmのスチレン−ブタジエンゴムの水ディスパージョン(固形分48%)を4.2質量部、プラネタリーミキサーで混合しながら添加した。
【0064】
そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、増粘剤としてカルボキシメチルセルロース(CMC)を40℃の温水に溶解させ、固形分が1%の分散媒を1分間に前記負極活物質100質量部に対して0.1質量部の割合で、67.0質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.005倍に相当する前記分散媒を0.335質量部添加した後、20分間せん断力をかけた状態で混練した。
【0065】
次に、前記CMCの固形分が1%の分散媒を26.0質量部、プラネタリーミキサーで混合分散しながら添加した。さらに、40℃の温水のみからなる分散媒を4.9質量部添加し、粘度が18Pa・sの負極ペーストを作製した。
【0066】
この負極ペーストを厚さ12μmの銅箔からなる負極集電体上にドクターブレード方式で厚さ200μmに両面塗布して乾燥後、厚さ155μmに圧延し、所定寸法に切断して幅44mm、長さ445mmの負極板14を作製した。
【0067】
(実施例10)
実施例9と同様のロット、配合比にて、負極活物質と導電助剤のみを混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒として実施例9と同じロットのカルボキシメチルセルロース(CMC)を40℃の温水に溶解させ、固形分が1%の分散媒を1分間に前記正極活物質100質量部に対して0.1質量部の割合で、65.0質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.005倍に相当する前記分散媒を0.325質量部添加した後、20分間混練した。
【0068】
次に、結着剤として実施例9と同様のロットである平均粒径0.4μmのスチレン−ブタジエンゴムの水ディスパージョン(固形分48%)を4.2質量部、プラネタリーミキサーで混合しながら添加した。
【0069】
さらに、前記CMCの固形分が1%の分散媒を25.0質量部、プラネタリーミキサーで混合分散しながら添加した後、40℃の温水のみからなる分散媒を7.1質量部添加し、粘度が18Pa・sの負極ペーストを作製した以外は、実施例9と同様にして負極板14を作製した。
【0070】
(比較例1)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。次に、分散媒としてN−メチル−2−ピロリドン(NMP)を29.0質量部添加した後、60分間プラネタリーミキサーを用いて混練して、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0071】
(比較例2)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、分散媒としてN−メチル−2−ピロリドン(NMP)を1分間に前記正極活物質100質量部に対して1.0質量部の割合で、16.0質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.10倍に相当するNMPを1.6質量部添加した後、30分間混練した。さらに、NMPを11.0質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0072】
(比較例3)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。次に、実施例1で求めたプラネタリーミキサーの負荷電力の最大値を示した分散媒であるNMPの添加量の1.10倍に相当するNMPを17.6質量部添加した後60分間混練した。さらに、NMPを11.0質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0073】
(比較例4)
実施例1と同様のロット、配合比にて、正極活物質と導電剤を混合後、結着剤を添加混合した。次に、実施例1で求めたプラネタリーミキサーの負荷電力の最大値を示した分散媒であるNMPの添加量の0.95倍に相当するNMPを15.2質量部添加した後60分間混練した。さらに、NMPを13.0質量部添加し、粘度が20Pa・sの正極ペーストを作製した以外は、実施例1と同様にして正極板13を作製した。
【0074】
(比較例5)
実施例9と同様のロット、配合比にて、負極活物質と導電助剤を混合後、結着剤を添加混合した。そして、プラネタリーミキサーの負荷電力のモニターを観察しながら、実施例9と同じロットのカルボキシメチルセルロース(CMC)を40℃の温水に溶解させ、固形分が1%の分散媒を1分間に前記正極活物質100質量部に対して0.1質量部の割合で、67.0質量部添加したところで、プラネタリーミキサーの負荷電力の最大値を示したので、その0.10倍に相当する前記分散媒を6.7質量部添加した後、30分間せん断力をかけた状態で混練した。
【0075】
次に、前記CMCの固形分が1%の分散媒を20.0質量部、プラネタリーミキサーで混合分散しながら添加した。さらに、40℃の温水のみからなる分散媒を4.9質量部添加し、粘度が18Pa・sの負極ペーストを作製した以外は、実施例9と同様にして負極板14を作製した。
【0076】
このようにして実施例1〜実施例10、比較例1〜比較例5で作製した正極板13または負極板14の厚みの均一性と混練分散状態を評価した。
【0077】
厚みの均一性は、マイクロメータを用いて幅方向の下端部、中央部、上端部について、長さ方向の始端部、中央部、終端部の各5点合計30点の厚みの平均値と標準偏差を算出して評価した結果を表1に示す。
【0078】
混練分散状態は、極板断面のSEM写真を撮り、活物質、導電剤等の30μm以上の二次凝集物の有無から混練分散状態を評価した結果を表1に示す。
【0079】
【表1】
【0080】
表1より明らかなように、実施例の製造方法によれば、最もせん断力のかかる状態で混練分散させることができ、ペースト中に二次凝集物がなく、粘度を一定にすることができるので、極板の厚みの標準偏差値が小さく、均一でばらつきの少ない極板を得ることができることがわかり、特に実施例1、7、8より、使用する活物質、導電剤、導電助剤、結着剤、増粘剤などのロットが異なっても、最もせん断力のかかる状態で混練分散できる製造方法であることがわかった。
【0081】
また、実施例1、3から、活物質、導電剤、結着剤のロットが同じであればこれらを混合した後、練合機にて分散媒を添加しながら混練分散したときの前記練合機の負荷最大値となる分散媒の添加量を求め、さらに0.005倍〜0.05倍の分散媒を添加した状態で混練分散しても、あらかじめ求めた前記分散媒の添加量の1.00倍〜1.05倍の分散媒を前記混合物に添加した状態で混練分散しても、最もせん断力のかかる状態で混練分散させることができることがわかった。
【0082】
そして、実施例1、実施例2、比較例1、比較例2の比較から、練合機にて分散媒を添加して混練分散したときの前記練合機の負荷最大値となる分散媒の添加量を求め、さらに0.005倍〜0.05倍の分散媒を添加し、せん断力のかかった状態で混練する必要があることがわかった。
【0083】
また、実施例1と実施例6及び実施例9と実施例10の比較から、あらかじめ分散媒に溶解または分散させた結着剤を用いた場合には、活物質、導電助剤と分散媒とをせん断力をかけた状態で混練した後に添加し、さらに分散媒を添加して所定の粘度になるまで混練してペーストを作製しても、ペースト中に二次凝集物がなく、粘度を一定にすることができるので、極板の厚みの標準偏差値が小さく、均一でばらつきの少ない極板を得ることができることがわかった。
【0084】
比較例4の練合機の負荷最大値となる分散媒の添加量を求め、その0.95倍の分散媒を添加した場合、極板の厚みばらつきがあり、表面に光沢がないのは、せん断力がかかった状態で混練できるが、分散媒が活物質や導電剤(導電助剤)表面を完全に濡らした状態にできない為、粘度調整しても均一なペーストが得られなかった為と思われる。
【0085】
さらに、実施例1、4、5より、練合機の負荷最大値となる分散媒の添加量は、1分間に活物質100質量部に対して0.1質量部〜1.0質量部を添加しながら求めることが好ましいことがわかった。
【0086】
次に、このようにして作製した正極板13と負極板14とを表2に示すように組み合わせ、厚さ25μmのポリエチレン樹脂製の微多孔膜フィルムからなるセパレータ15を介して扁平状に巻回した極板群を、長辺面からのプレス加工により長円状の極板群を作製し、上部が開口している有底のアルミニウム合金製の電池ケース11内に収納した後、封口板12を電池ケース11に嵌合し、レーザ溶接にて前記嵌合部を封止密閉した。
【0087】
その後、封口板12の注液孔より、エチレンカーボネート、エチルメチルカーボネートの混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF6)を1モル/lの濃度で溶解した電解液を所定量注入し、封栓16と前記封口板12とをレーザ溶接することによって注液孔を封止密閉して、幅6.3mm、長さ34mm、高さ50mmの寸法で、電池容量1000mAhの扁平型リチウム二次電池を作製して、実施例11〜実施例17、比較例11の電池とした。
【0088】
これらの電池を各20セル用いて、放電レート特性と充放電サイクル特性を評価した。
【0089】
放電レート特性は、3.0Vの終止電圧まで2000mA(1.0ItA)の定電流で残存放電した後、電池電圧が4.2Vに達するまでは1400mA(0.7ItA)の定電流充電を行い、その後、電流値が減衰して100mA(0.05ItA)になるまで充電した満充電の電池を、200mA(0.2ItA)の定電流で3.0Vの放電終止電圧まで放電させた場合の放電容量に対する2000mA(2.0ItA)の定電流で放電させた場合の放電レートを算出し、その平均値を求めた結果を表2に示す。
【0090】
充放電サイクル特性は、3.0Vの終止電圧まで2000mA(1.0ItA)の定電流で残存放電した後、電池電圧が4.2Vに達するまでは1400mA(0.7ItA)の定電流充電を行い、その後、3.0Vの終止電圧まで2000mA(1.0ItA)の定電流で放電するサイクルを500サイクル繰り返したときの容量を測定し、3サイクル目を100%としたときの500サイクル目の容量維持率を算出し、その平均値を求めた結果を表2に示す。
【0091】
【表2】
【0092】
表2から明らかなように、実施例の非水電解液二次電池によれば、厚みが均一でばらつきの少ない極板を用いているので、放電レート特性、充放電サイクル特性に優れた非水電解液二次電池が得られることがわかった。特に、正極板および負極板の両方に用いた場合、正極板と相対する負極板との単位面積当たりの容量が一定になるので、放電レート特性、充放電サイクル特性がさらによくなることがわかった。
【0093】
【発明の効果】
以上のように本発明によれば、厚みが均一でばらつきの少ない極板を製造することができ、放電レート特性、充放電特性に優れた非水電解液二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る非水電解液二次電池の縦断面図
【符号の説明】
11 電池ケース
12 封口板
13 正極板
14 負極板
15 セパレータ
16 封栓[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an electrode plate having a uniform thickness and little variation, and a non-aqueous electrolyte secondary battery using the electrode plate obtained by this manufacturing method.
[0002]
[Prior art]
In recent years, the performance of portable electronic devices such as mobile phones and personal digital assistants depends largely on the performance of not only semiconductor elements and electronic circuits to be mounted but also rechargeable sealed secondary batteries. In addition to increasing the capacity of sealed secondary batteries, it is desirable to simultaneously realize light weight and compact size. As a sealed secondary battery that meets these demands, a nickel metal hydride storage battery having an energy density approximately twice that of a nickel cadmium storage battery has been developed, and then a lithium ion battery exceeding this has been developed and has become mainstream.
[0003]
These sealed secondary batteries have a cylindrical, square or flat battery case with an electrode plate group in which a positive electrode plate and a negative electrode plate are spirally wound or stacked with a separator interposed therebetween and an electrolyte. It is configured by storing and sealing by caulking or laser sealing.
[0004]
The electrode plate used in this battery generally has an active material (positive electrode active material or negative electrode active material), a binder (binder), and a conductive agent, a conductive aid, a thickener, etc. as a dispersion medium as required. The kneaded and dispersed paste is applied to and dried on one or both sides of a current collector, and then rolled to a predetermined thickness and slit into a predetermined dimensional shape.
[0005]
Here, the method of kneading and dispersing the paste is a very important point in order to obtain an electrode plate having a uniform electrode plate thickness and little variation.
[0006]
Conventionally, a paste is prepared by adding a predetermined amount of solvent to a mixture of a predetermined amount of an active material, a binder, and a conductive agent, a conductive aid, a thickener, etc., if necessary, and kneading with a kneader. However, since the paste kneading state, viscosity, and the like are not stable, it is difficult to obtain an electrode plate having a uniform electrode plate thickness and little variation.
[0007]
Proposal of kneading conductive agent, binder and solvent, then adding active material and kneading (see, for example, Patent Document 1), kneading conductive agent and solvent, then adding active material and binder (For example, refer to Patent Document 2), after kneading a binder and a solvent, a proposal for adding an active material and a conductive agent (for example, refer to Patent Document 3), a conductive agent and a solvent. After kneading, there is a proposal of adding an active material and kneading, and further adding a binder and kneading (see, for example, Patent Document 4). These methods all include a solvent and a conductive agent and / or In this method, the active material is added and kneaded after kneading with the binder, and the kneading state, viscosity and the like of the paste could not be stabilized because kneading was performed without applying a shearing force.
[0008]
Therefore, after kneading the conductive agent, the binder and the active material, the amount of solvent is adjusted and added and kneaded, and by further adding a solvent to produce a paste, the required amount of solvent is reduced and the drying time is reduced. Proposals for shortening (see, for example, Patent Document 5), proposals for improving dispersibility and adhesion between current collectors by the same method (for example, see Patent Document 6), and actives in which a binder is dissolved in a solvent. This is a proposal for adding a material and a conductive agent and mixing them, adding a small amount of solvent in several batches and kneading, and further adding a solvent to make a paste (see, for example, Patent Document 7), and shearing It is disclosed that after kneading in a state where force is applied, a paste having a predetermined viscosity is prepared by further adding a solvent, so that the kneading state, viscosity and the like of the paste can be stabilized.
[0009]
However, even if these methods are used, if the lot to be used is different, in the case of powders such as active materials, conductive agents, conductive assistants, etc., in the case of binders, thickeners, etc. due to variations in particle size and particle size distribution However, due to the variation in molecular weight, it was impossible to knead in the state where the most shear force was applied, and the kneading state, viscosity and the like of the paste could not be made constant.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 09-213309
[Patent Document 2]
JP-A-10-144302
[Patent Document 3]
Japanese Patent Laid-Open No. 11-144714
[Patent Document 4]
Japanese Patent Application Laid-Open No. 11-213989
[Patent Document 5]
JP 07-161350 A
[Patent Document 6]
JP 2000-353516 A
[Patent Document 7]
JP 2001-167756 A
[0011]
[Problems to be solved by the invention]
In order to solve the above problems, the present invention provides a paste that is kneaded in the state where the most shear force is applied, even if the active material, the conductive agent, the conductive auxiliary agent, the binder, the thickener and the like to be used are different. To provide a non-aqueous electrolyte secondary battery using an electrode plate obtained by this manufacturing method, and a method of manufacturing an electrode plate having a uniform thickness and less variation Main purpose.
[0012]
[Means for Solving the Problems]
The present invention for solving the above problems is an electrode plate obtained by adding a dispersion medium to a mixture of at least an active material and a binder, and applying and drying a paste kneaded and dispersed in a kneader. The amount of dispersion medium added to be the maximum load of the kneader when kneading and dispersing while adding a dispersion medium to the mixture, With respect to the addition amount of the dispersion medium, Further, after kneading in a state in which 0.005 to 0.05 times the dispersion medium is added, an electrode plate obtained by further applying the dispersion medium and applying and drying the paste kneaded until a predetermined viscosity is obtained. It is a manufacturing method.
[0013]
Further, a method for producing an electrode plate comprising adding a dispersion medium to a mixture comprising at least an active material and a binder, and applying and drying a paste kneaded and dispersed by a kneader on a current collector. The amount of dispersion medium added to be the maximum load of the kneader when the dispersion medium is added and dispersed is determined in advance, and the dispersion amount is 1.00 times to 1.05 times the amount of dispersion medium added. A method for producing an electrode plate, wherein the paste is kneaded in a state where a medium is added to the mixture, and further kneaded until a predetermined viscosity is obtained by adding a dispersion medium.
[0014]
And in these manufacturing methods, the addition amount of the dispersion medium which becomes the load maximum value of the kneader is 0.1 part by mass to 1.0 part by mass with respect to 100 parts by mass of the active material per minute. It is preferable to obtain it.
[0015]
Moreover, the electrode plate obtained by any of the manufacturing methods described above is a positive electrode plate and / or a negative electrode plate, and is a non-aqueous electrolyte solution in which an electrode plate group in an insulating state is housed in a battery case via a separator. It is a secondary battery.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery of the present invention. An electrode plate group in which a
[0018]
For example, the
[0019]
Although it does not specifically limit as a positive electrode active material used for a positive electrode paste, For example, the lithium containing transition metal compound which can accept a lithium ion as a guest is used. For example, a composite metal oxide of at least one transition metal selected from cobalt, manganese, nickel, chromium, iron and vanadium and lithium is used. Above all, Li x CoO 2 , Li x MnO 2 , Li x NiO 2 , LiCrO 2 , ΑLiFeO 2 , LiVO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1-y M y O z , Li x Mn 2 O Four , Li x Mn 2-y M y O Four (Where M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, x = 0 to 1 .2, y = 0 to 0.9, z = 2.0 to 2.3), transition metal chalcogenides, lithiated vanadium oxides, lithiated niobium oxides, and the like. These may be used alone or in combination of two or more. In addition, said x value increases / decreases by charging / discharging. The average particle diameter of the positive electrode active material is preferably 1 μm to 30 μm.
[0020]
The binder, conductive agent, and thickener that can be added as necessary can be the same as those used in the past.
[0021]
The binder is not particularly limited as long as it can be dissolved or dispersed in a paste dispersion medium. For example, a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR). An acrylic polymer, a vinyl polymer, or the like can be used. These may be used alone or in combination of two or more. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, polytetrafluoroethylene, and the like are preferable, and these can be used as a dispersion.
[0022]
As the conductive agent, acetylene black, graphite, carbon fiber, or the like can be used. These may be used alone or in combination of two or more.
[0023]
As the thickener, ethylene-vinyl alcohol copolymer, carboxymethyl cellulose, methyl cellulose and the like are preferable.
[0024]
The dispersion medium is not particularly limited as long as it can dissolve or disperse the binder and, if necessary, the thickener added. However, when an organic solvent is used, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexamethylsulfuramide, tetramethylurea, acetone, methyl ethyl ketone and the like are preferably used alone or in combination. Moreover, when using an aqueous solvent, water and warm water are preferable.
[0025]
The positive electrode paste is produced as follows.
[0026]
Of the above-described positive electrode active material, binder, conductive agent, dispersion medium, and thickener added if necessary, remove the dispersion medium and mix with a mixer, but add binder and if necessary. As the thickening agent, a more uniform paste can be produced by using a thickener previously dissolved or dispersed in a dispersion medium.
[0027]
That is, a powdered positive electrode active material and a conductive agent are mixed in a mixer, and then kneaded in a kneader and previously dissolved or dispersed in a dispersion medium, and a thickener added as necessary. Add agent. Next, the addition amount of the dispersion medium which becomes the maximum load value of the kneader is obtained while adding the dispersion medium. The amount of the dispersion medium added is determined while adding 0.1 parts by mass to 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material per minute. When the amount is less than 0.1 parts by mass, the time required to obtain the amount of dispersion medium added, which is the maximum load of the kneader, becomes long. On the other hand, when the amount exceeds 1.0 part by mass, the addition amount of the dispersion medium that becomes the maximum load value of the kneader cannot be accurately determined, and kneading cannot be performed in a sheared state.
[0028]
The addition amount of the dispersion medium includes the amount of the dispersion medium when a binder previously dissolved or dispersed in the dispersion medium and a thickener added as necessary are used.
[0029]
After adding 0.005 to 0.05 times the dispersion medium and kneading for 10 to 60 minutes with respect to the addition amount of the dispersion medium thus obtained, the dispersion medium is further added to the predetermined amount. A paste is prepared by kneading until the viscosity is reached.
[0030]
By the way, when using a binder previously dissolved or dispersed in a dispersion medium and a thickener added as necessary, the active material, the conductive agent and the dispersion medium are kneaded in a state where shearing force is applied. A similar result can be obtained by adding a dispersion medium later and further kneading until a predetermined viscosity is obtained to prepare a paste.
[0031]
Further, by such a method, the addition amount of the dispersion medium that is the maximum load value of the kneader is obtained in advance, and a dispersion medium that is 1.00 times to 1.05 times the addition amount of the dispersion medium is activated. Kneading for 30 to 60 minutes while adding to a mixture consisting of the substance, binder, conductive agent, and thickener added as necessary, then kneading until a predetermined viscosity is obtained by adding a dispersion medium. However, similar results can be obtained.
[0032]
Although it does not specifically limit as what is used for mixing and kneading | mixing, For example, a planetary mixer, a homomixer, a pin mixer, a kneader, a homogenizer etc. can be used. These may be used alone or in combination of two or more.
[0033]
The positive electrode paste obtained in this way is used in different lots and has different particle sizes of active materials, conductive agents, conductive assistants, etc., particle size distribution variations, and binders, thickeners, and other molecular weights. The kneading machine is kneaded in the state where the most shearing force is applied by determining the amount of the dispersion medium to be added to the maximum load of the kneader and kneading in the state of adding 0.005 to 0.05 times the dispersion medium. Furthermore, since a dispersion medium is added and kneaded until a predetermined viscosity is obtained, a positive paste having a uniform kneaded state can be obtained.
[0034]
Next, the positive electrode paste can be easily applied to the positive electrode current collector using, for example, a slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip coater, or the like. The positive electrode paste applied to the positive electrode current collector is preferably dried close to natural drying, but considering productivity, it is preferably dried at a temperature of 80 ° C. to 200 ° C. for 10 minutes to 5 hours.
[0035]
Rolling is preferably performed several times at a linear pressure of 1000 to 2000 kg / cm or by changing the linear pressure until the positive electrode plate has a predetermined thickness of 130 μm to 200 μm by a roll press.
[0036]
The
[0037]
The
[0038]
Although it does not specifically limit as a negative electrode active material used for a negative electrode paste, It is preferable to use the carbon material which can discharge | release and occlude lithium ion by charge / discharge. For example, carbon materials obtained by firing organic polymer compounds (phenolic resin, polyacrylonitrile, cellulose, etc.), carbon materials obtained by firing coke and pitch, artificial graphite, natural graphite, pitch-based carbon fibers, A PAN-based carbon fiber or the like is preferable, and the shape thereof can be a fibrous shape, a spherical shape, a scale shape, or a lump shape.
[0039]
The binder used for the negative electrode paste, the conductive auxiliary agent used as necessary, and the thickener can be the same as those used conventionally, and the same binder, conductive agent and thickener as the positive electrode plate. Can also be used.
[0040]
The negative electrode paste is prepared by dispersing a negative electrode active material, a binder, and optionally a conductive agent and a thickener in a dispersion medium. The negative electrode plate is provided with a plain portion having no active material layer, and the negative electrode lead is welded thereto.
[0041]
The negative electrode paste is prepared as follows.
[0042]
The negative electrode active material, the binder, the dispersion medium, and the conductive additive and the thickener added as necessary are mixed in a mixer except for the dispersion medium. As the thickener to be added, a more uniform paste can be prepared by using one previously dissolved or dispersed in a dispersion medium.
[0043]
That is, a powdered negative electrode active material and a conductive additive to be added as necessary are mixed in a mixer, and then kneaded in a kneader and previously dissolved or dispersed in a dispersion medium and necessary Add the thickener to be added according to. Next, the addition amount of the dispersion medium which becomes the maximum load value of the kneader is obtained while adding the dispersion medium. The amount of the dispersion medium added is determined by adding 0.1 part by mass to 1.0 part by mass with respect to 100 parts by mass of the negative electrode active material in 1 minute as in the positive electrode paste. When the amount is less than 0.1 parts by mass, the time required to obtain the amount of dispersion medium added, which is the maximum load of the kneader, becomes long. On the other hand, when the amount exceeds 1.0 part by mass, the addition amount of the dispersion medium that becomes the maximum load value of the kneader cannot be accurately determined, and kneading cannot be performed in a sheared state.
[0044]
The addition amount of the dispersion medium includes the amount of the dispersion medium when a binder previously dissolved or dispersed in the dispersion medium and a thickener added as necessary are used.
[0045]
After adding 0.005 to 0.05 times the dispersion medium and kneading for 10 to 60 minutes with respect to the addition amount of the dispersion medium thus obtained, the dispersion medium is further added to the predetermined amount. A kneaded paste is prepared until the viscosity is reached.
[0046]
By the way, as in the case of the positive electrode paste, when using a binder previously dissolved or dispersed in a dispersion medium and a thickener to be added as necessary, the active material, the conductive auxiliary agent and the dispersion medium are sheared. The same result can be obtained by adding a dispersion medium after kneading and adding a dispersion medium and kneading until a predetermined viscosity is obtained.
[0047]
Further, by such a method, the addition amount of the dispersion medium that is the maximum load value of the kneader is obtained in advance, and a dispersion medium that is 1.00 times to 1.05 times the addition amount of the dispersion medium is activated. Kneading for 30 to 60 minutes while adding to the mixture consisting of the substance, binder and conductive auxiliary agent and thickener as necessary, then kneading until a predetermined viscosity is obtained by adding a dispersion medium. However, similar results can be obtained.
[0048]
As the
[0049]
As a material of the
[0050]
The non-aqueous electrolyte is composed of a non-aqueous solvent and a solute, and the non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.
[0051]
As the solute, for example, a lithium salt having a strong electron withdrawing property is used, for example, LiPF. 6 , LiBF Four LiClO Four , LiAsF 6 , LiCF Three SO Three , LiN (SO 2 CF Three ) 2 , LiN (SO 2 C 2 F Five ) 2 , LiC (SO 2 CF Three ) Three Etc. These electrolytes may be used alone or in combination of two or more. These solutes are preferably dissolved at a concentration of 0.5 to 1.5 M in the non-aqueous solvent.
[0052]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, these do not limit this invention at all.
[0053]
(Example 1)
The positive electrode paste was produced as follows. First, lithium cobaltate as a positive electrode active material was added to 100 parts by mass in a planetary mixer, and 2 parts by mass of acetylene black as a conductive agent was added and mixed for 10 minutes. Next, polyvinylidene fluoride as a binder was dissolved in N-methyl-2-pyrrolidone (NMP), and 16.7 parts by weight of a solid content of 12% was added while mixing with a planetary mixer. And while observing the monitor of the load power of the planetary mixer, N-methyl-2-pyrrolidone (NMP) as a dispersion medium at a rate of 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material per minute. When 16.0 parts by mass was added, the maximum value of the load power of the planetary mixer was shown. Therefore, after adding 0.8 parts by mass of NMP corresponding to 0.05 times, a shearing force was applied for 30 minutes. Kneaded in the state. Further, 10.0 parts by mass of NMP was added to prepare a positive electrode paste having a viscosity of 20 Pa · s.
[0054]
This positive electrode paste was applied onto a positive electrode current collector made of aluminum foil having a thickness of 15 μm on both sides by a doctor blade method so as to have a thickness of 195 μm, dried, rolled to a thickness of 150 μm, and cut to a predetermined size. A
[0055]
(Example 2)
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. Next, after adding 16.0 parts by mass of NMP corresponding to 1.00 times the addition amount of NMP, which is the dispersion medium showing the maximum load power of the planetary mixer obtained in Example 1, 60 minutes It knead | mixed in the state which applied the shear force. Furthermore, a
[0056]
(Example 3)
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. Next, after adding 16.8 parts by mass of NMP corresponding to 1.05 times the addition amount of NMP, which is the dispersion medium showing the maximum load power of the planetary mixer obtained in Example 1, 60 minutes It knead | mixed in the state which applied the shear force. Further, a
[0057]
Example 4
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. While observing the monitor of the load power of the planetary mixer, N-methyl-2-pyrrolidone (NMP) as a dispersion medium at a rate of 0.05 part by mass with respect to 100 parts by mass of the positive electrode active material per minute. When 15.9 parts by mass was added, the maximum value of the load power of the planetary mixer was shown, so 0.0795 parts by mass of NMP corresponding to 0.005 times that amount was added, and then a shear force was applied for 30 minutes. Kneaded in the state. Furthermore, a
[0058]
(Example 5)
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. Then, while observing the load power monitor of the planetary mixer, N-methyl-2-pyrrolidone (NMP) as a dispersion medium at a rate of 1.5 parts by mass with respect to 100 parts by mass of the positive electrode active material per minute. When 16.4 parts by mass was added, the maximum value of the load power of the planetary mixer was shown. Therefore, after adding 0.82 parts by mass of NMP corresponding to 0.05 times, shear force was applied for 30 minutes. Kneaded in the state. Furthermore, a
[0059]
(Example 6)
In the same lot and mixing ratio as in Example 1, only the positive electrode active material and the conductive agent were mixed. And while observing the monitor of the load power of the planetary mixer, N-methyl-2-pyrrolidone (NMP) as a dispersion medium at a rate of 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material per minute. When 28.5 parts by mass were added, the maximum value of the load power of the planetary mixer was shown. Therefore, after adding 0.1425 parts by mass of NMP corresponding to 0.005 times that, a shearing force was applied for 40 minutes. Kneaded in the state.
[0060]
Next, polyvinylidene fluoride of the same lot as that of Example 1 was dissolved in N-methyl-2-pyrrolidone (NMP) as a binder, and 16.7 parts by mass of a solid content of 12% was obtained with a planetary mixer. Added with mixing. Further, a
[0061]
(Example 7)
The mixing ratio of the positive electrode active material, the conductive agent, and the binder is the same as in Example 1. However, after mixing the positive electrode active material and the conductive agent with different lots and an average particle size smaller than that of Example 1, the binder is added. Added and mixed. And while observing the monitor of the load power of the planetary mixer, N-methyl-2-pyrrolidone (NMP) as a dispersion medium at a rate of 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material per minute. When 16.2 parts by mass was added, the maximum value of the load power of the planetary mixer was shown. Therefore, after adding 0.81 parts by mass of NMP corresponding to 0.05 times, shear force was applied for 30 minutes. Kneaded in the state. Further, a
[0062]
(Example 8)
The mixing ratio of the positive electrode active material, the conductive agent, and the binder is the same as in Example 1. However, after mixing the positive electrode active material and the conductive agent with different lots and an average particle size larger than that of Example 1, the binder is added. Added and mixed. And while observing the monitor of the load power of the planetary mixer, N-methyl-2-pyrrolidone (NMP) as a dispersion medium at a rate of 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material per minute. When 15.8 parts by mass were added, the maximum value of the load power of the planetary mixer was shown. Therefore, after adding 0.79 parts by mass of NMP corresponding to 0.05 times, shear force was applied for 30 minutes. Kneaded in the state. Furthermore, a
[0063]
Example 9
The negative electrode paste was produced as follows. First, in a planetary mixer, 100 parts by mass of artificial graphite as a negative electrode active material, 2 parts by mass of vapor-grown carbon as a conductive additive, and water of styrene-butadiene rubber having an average particle size of 0.4 μm as a binder. Dispersion (solid content 48%) was added in an amount of 4.2 parts by mass while mixing with a planetary mixer.
[0064]
Then, while observing the load power monitor of the planetary mixer, carboxymethyl cellulose (CMC) as a thickener is dissolved in 40 ° C. warm water, and a dispersion medium having a solid content of 1% is added to the negative electrode active material 100 per minute. When 67.0 parts by mass were added at a ratio of 0.1 parts by mass with respect to parts by mass, the maximum value of the load power of the planetary mixer was shown. After adding 335 parts by mass, the mixture was kneaded with a shearing force applied for 20 minutes.
[0065]
Next, 26.0 parts by mass of a dispersion medium having a CMC solid content of 1% was added while mixing and dispersing with a planetary mixer. Furthermore, 4.9 parts by mass of a dispersion medium consisting only of warm water at 40 ° C. was added to prepare a negative electrode paste having a viscosity of 18 Pa · s.
[0066]
This negative electrode paste was coated on a negative electrode current collector made of 12 μm thick copper foil to a thickness of 200 μm by a doctor blade method, dried and then rolled to a thickness of 155 μm. A
[0067]
(Example 10)
Only the negative electrode active material and the conductive additive were mixed in the same lot and mixing ratio as in Example 9. While observing the load power monitor of the planetary mixer, the same lot of carboxymethylcellulose (CMC) as in Example 9 was dissolved in 40 ° C. warm water as a dispersion medium, and the dispersion medium having a solid content of 1% was dissolved for 1 minute. When 65.0 parts by mass was added at a rate of 0.1 parts by mass with respect to 100 parts by mass of the positive electrode active material, the maximum value of the load power of the planetary mixer was shown. After adding 0.325 parts by mass of the dispersion medium, kneading was performed for 20 minutes.
[0068]
Next, 4.2 parts by weight of a water dispersion (solid content 48%) of styrene-butadiene rubber having an average particle size of 0.4 μm, which is the same lot as in Example 9, was mixed as a binder with a planetary mixer. While adding.
[0069]
Furthermore, after adding 25.0 parts by weight of the dispersion medium having a solid content of 1% by CMC while mixing and dispersing with a planetary mixer, 7.1 parts by weight of a dispersion medium consisting only of warm water at 40 ° C. is added, A
[0070]
(Comparative Example 1)
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. Next, 29.0 parts by mass of N-methyl-2-pyrrolidone (NMP) was added as a dispersion medium, and then kneaded for 60 minutes using a planetary mixer to produce a positive electrode paste having a viscosity of 20 Pa · s. Produced the
[0071]
(Comparative Example 2)
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. And while observing the monitor of the load power of the planetary mixer, N-methyl-2-pyrrolidone (NMP) as a dispersion medium at a rate of 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material per minute. When 16.0 parts by mass were added, the maximum value of the load power of the planetary mixer was shown. Therefore, 1.6 parts by mass of NMP corresponding to 0.10 times that amount was added, and then kneaded for 30 minutes. Further, a
[0072]
(Comparative Example 3)
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. Next, 17.6 parts by mass of NMP corresponding to 1.10 times the addition amount of NMP, which is the dispersion medium showing the maximum load power of the planetary mixer obtained in Example 1, was added and then kneaded for 60 minutes. did. Further, a
[0073]
(Comparative Example 4)
After mixing the positive electrode active material and the conductive agent in the same lot and mixing ratio as in Example 1, a binder was added and mixed. Next, 15.2 parts by mass of NMP corresponding to 0.95 times the addition amount of NMP, which is the dispersion medium showing the maximum load power of the planetary mixer obtained in Example 1, was added and then kneaded for 60 minutes. did. Further, a
[0074]
(Comparative Example 5)
The negative electrode active material and the conductive additive were mixed in the same lot and mixing ratio as in Example 9, and then the binder was added and mixed. Then, while observing the load power monitor of the planetary mixer, carboxymethylcellulose (CMC) of the same lot as in Example 9 was dissolved in warm water at 40 ° C., and a dispersion medium having a solid content of 1% was added to the positive electrode per minute. When 67.0 parts by mass were added at a ratio of 0.1 parts by mass with respect to 100 parts by mass of the active material, the maximum value of the load power of the planetary mixer was shown. After adding 6.7 parts by mass of the medium, the mixture was kneaded with a shearing force applied for 30 minutes.
[0075]
Next, 20.0 parts by mass of a dispersion medium having a CMC solid content of 1% was added while mixing and dispersing with a planetary mixer. Further, a
[0076]
Thus, the thickness uniformity and kneading dispersion state of the
[0077]
Thickness uniformity is the average value of 30 points in total using the micrometer for the lower end portion, the central portion, and the upper end portion in the width direction, each of the five points of the start end portion, the center portion, and the end portion in the length direction. The results of calculating and evaluating the deviation are shown in Table 1.
[0078]
Table 1 shows the result of evaluating the kneading and dispersing state based on the presence or absence of secondary aggregates of 30 μm or more such as the active material and the conductive agent by taking a SEM photograph of the cross section of the electrode plate.
[0079]
[Table 1]
[0080]
As is apparent from Table 1, according to the production method of the example, it can be kneaded and dispersed in the state where the most shear force is applied, and there is no secondary aggregate in the paste, and the viscosity can be made constant. It can be seen that an electrode plate having a small standard deviation value of the electrode plate thickness and uniform and less variation can be obtained. In particular, from Examples 1, 7, and 8, the active material to be used, the conductive agent, the conductive auxiliary, It was found that the production method can knead and disperse in the state where the most shearing force is applied even if the lots of the adhesive and the thickener are different.
[0081]
Further, from Examples 1 and 3, if the lots of the active material, the conductive agent, and the binder are the same, after mixing these, kneading and dispersing when adding a dispersion medium in a kneader Even if the addition amount of the dispersion medium which is the maximum load value of the machine is obtained and kneaded and dispersed in a state where 0.005 times to 0.05 times of the dispersion medium is further added, 1 of the previously obtained dispersion medium addition amount It was found that even when kneaded and dispersed in a state where 0.000 to 1.05 times of the dispersion medium was added to the mixture, it could be kneaded and dispersed in the most shearing state.
[0082]
And from the comparison of Example 1, Example 2, Comparative Example 1 and Comparative Example 2, the dispersion medium which becomes the maximum load value of the kneader when the dispersion medium is added and kneaded and dispersed by the kneader. The addition amount was determined, and it was found that 0.005 times to 0.05 times the dispersion medium was added and kneading was necessary in a state where shearing force was applied.
[0083]
Further, from the comparison of Example 1, Example 6, Example 9 and Example 10, when a binder previously dissolved or dispersed in a dispersion medium was used, the active material, the conductive auxiliary agent and the dispersion medium Is added after kneading in a state where shear force is applied, and even if a dispersion medium is added and kneaded until a predetermined viscosity is obtained, there is no secondary aggregate in the paste, and the viscosity is constant. Therefore, it was found that a standard electrode plate with a small standard deviation value of the electrode plate thickness can be obtained, and a uniform electrode plate with little variation can be obtained.
[0084]
When the amount of dispersion medium added, which is the maximum load of the kneader of Comparative Example 4, was determined, and 0.95 times the dispersion medium was added, the thickness of the electrode plate was uneven and the surface was not glossy. Kneading can be performed in a state where shear force is applied, but the dispersion medium cannot completely wet the surface of the active material or conductive agent (conductive auxiliary agent), and a uniform paste cannot be obtained even after adjusting the viscosity. Seem.
[0085]
Furthermore, from Examples 1, 4, and 5, the addition amount of the dispersion medium that becomes the maximum load of the kneader is 0.1 part by mass to 1.0 part by mass with respect to 100 parts by mass of the active material per minute. It was found that it is preferable to obtain while adding.
[0086]
Next, the
[0087]
Thereafter, lithium hexafluorophosphate (LiPF) as an electrolyte in a mixed solvent of ethylene carbonate and ethyl methyl carbonate from the injection hole of the sealing plate 12. 6 ) Is dissolved at a concentration of 1 mol / l, a predetermined amount is injected, and the liquid injection hole is hermetically sealed by laser welding the sealing
[0088]
Using each of these 20 cells, the discharge rate characteristics and the charge / discharge cycle characteristics were evaluated.
[0089]
The discharge rate characteristic is that after a residual discharge at a constant current of 2000 mA (1.0 ItA) to a final voltage of 3.0 V, a constant current charge of 1400 mA (0.7 ItA) is performed until the battery voltage reaches 4.2 V, Thereafter, a fully charged battery charged until the current value decays to 100 mA (0.05 ItA) is discharged at a constant current of 200 mA (0.2 ItA) to a discharge end voltage of 3.0 V. Table 2 shows the result of calculating the discharge rate when discharging at a constant current of 2000 mA (2.0 ItA) with respect to the average value.
[0090]
The charge / discharge cycle characteristics are that after a residual discharge with a constant current of 2000 mA (1.0 ItA) to a final voltage of 3.0 V, a constant current charge of 1400 mA (0.7 ItA) is performed until the battery voltage reaches 4.2 V. Then, the capacity when the cycle of discharging at a constant current of 2000 mA (1.0 ItA) to a final voltage of 3.0 V was repeated 500 times, and the capacity at the 500th cycle when the third cycle was taken as 100%. Table 2 shows the results of calculating the maintenance ratio and obtaining the average value.
[0091]
[Table 2]
[0092]
As is clear from Table 2, according to the nonaqueous electrolyte secondary battery of the example, since the electrode plate having a uniform thickness and little variation is used, the nonaqueous electrolyte has excellent discharge rate characteristics and charge / discharge cycle characteristics. It was found that an electrolyte secondary battery can be obtained. In particular, when used for both the positive electrode plate and the negative electrode plate, the capacity per unit area between the positive electrode plate and the negative electrode plate opposite to the positive electrode plate is constant, and it has been found that the discharge rate characteristics and the charge / discharge cycle characteristics are further improved.
[0093]
【The invention's effect】
As described above, according to the present invention, an electrode plate having a uniform thickness and little variation can be manufactured, and a nonaqueous electrolyte secondary battery excellent in discharge rate characteristics and charge / discharge characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
[Explanation of symbols]
11 Battery case
12 Sealing plate
13 Positive electrode plate
14 Negative electrode plate
15 Separator
16 Sealing
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003094959A JP4151459B2 (en) | 2003-03-31 | 2003-03-31 | Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003094959A JP4151459B2 (en) | 2003-03-31 | 2003-03-31 | Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004303572A JP2004303572A (en) | 2004-10-28 |
JP4151459B2 true JP4151459B2 (en) | 2008-09-17 |
Family
ID=33407404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003094959A Expired - Lifetime JP4151459B2 (en) | 2003-03-31 | 2003-03-31 | Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4151459B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010044871A (en) * | 2008-08-08 | 2010-02-25 | Panasonic Corp | Method of manufacturing slurry for electrode mixture |
JP2013157257A (en) * | 2012-01-31 | 2013-08-15 | Toyota Motor Corp | Secondary battery manufacturing method |
JP5699951B2 (en) * | 2012-02-01 | 2015-04-15 | トヨタ自動車株式会社 | Manufacturing method of secondary battery |
JP6048161B2 (en) * | 2013-01-24 | 2016-12-21 | トヨタ自動車株式会社 | Manufacturing method of secondary battery |
US10559828B2 (en) | 2013-02-04 | 2020-02-11 | Zeon Corporation | Slurry for lithium ion secondary battery positive electrodes |
JP6119547B2 (en) * | 2013-10-09 | 2017-04-26 | 株式会社豊田自動織機 | Electrode slurry manufacturing equipment |
KR20170114418A (en) | 2016-04-04 | 2017-10-16 | 주식회사 엘지화학 | Device and method of manufacturing slurry used for secondary battery |
JP6365599B2 (en) * | 2016-06-29 | 2018-08-01 | トヨタ自動車株式会社 | Production apparatus and production method for wet granulation for electrode |
-
2003
- 2003-03-31 JP JP2003094959A patent/JP4151459B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004303572A (en) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102017214200B4 (en) | GEL ELECTROLYTES AND PREPROGRAMS THEREOF | |
DE102015121342B4 (en) | ELECTROLYTE, NEGATIVE ELECTRODE STRUCTURE AND METHOD FOR PRODUCING A SOLID ELECTROLYTE INTERFACE LAYER ON A SURFACE OF A LITHIUM ELECTRODE | |
US10637097B2 (en) | Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly | |
CN101128949B (en) | Secondary battery of improved lithium ion mobility and cell capacity | |
JP5259268B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3692965B2 (en) | Lithium secondary battery and method for producing positive electrode thereof | |
JP5220273B2 (en) | Electrode and non-aqueous secondary battery using the same | |
EP2424014A2 (en) | Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery | |
JP2012190625A (en) | Nonaqueous secondary battery | |
CN113812020B (en) | Electrode for all-solid-state battery, method for manufacturing the same, and secondary battery | |
WO2019156031A1 (en) | Lithium ion secondary battery electrode, production method for same, and lithium ion secondary battery | |
CN102027624A (en) | Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same | |
KR100485204B1 (en) | Cathode for Lithium Secondary Battery | |
JP2012028006A (en) | Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
DE102019111559A1 (en) | SILICON ANODE MATERIALS | |
JP2015037008A (en) | Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same | |
CN101494302A (en) | Battery | |
JP3157079B2 (en) | Manufacturing method of lithium secondary battery | |
JP2007080583A (en) | Electrode for secondary battery, and secondary battery | |
EP4199158A1 (en) | Negative current collector for all-solid-state battery and negative electrode for all-solid-state battery comprising same | |
KR101170172B1 (en) | Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries | |
JP4026351B2 (en) | Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector | |
JP4151459B2 (en) | Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method | |
JP2007172879A (en) | Battery and its manufacturing method | |
JP6698374B2 (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051202 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080610 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080623 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4151459 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140711 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |