JP2012028006A - Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012028006A
JP2012028006A JP2010162378A JP2010162378A JP2012028006A JP 2012028006 A JP2012028006 A JP 2012028006A JP 2010162378 A JP2010162378 A JP 2010162378A JP 2010162378 A JP2010162378 A JP 2010162378A JP 2012028006 A JP2012028006 A JP 2012028006A
Authority
JP
Japan
Prior art keywords
electrode plate
secondary battery
binder
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162378A
Other languages
Japanese (ja)
Inventor
Toshitaka Moriyama
利孝 森山
Takao Kuromiya
孝雄 黒宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010162378A priority Critical patent/JP2012028006A/en
Publication of JP2012028006A publication Critical patent/JP2012028006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which: although higher safety is requested as a lithium secondary battery has higher capacity, a mixture layer of a conventional electrode plate used for the lithium secondary battery falls.SOLUTION: The present invention relates to an electrode plate 4 for lithium secondary battery which has an electrode mixture layer, including a binder and an electrode active material, on a collector 1. The electrode mixture layer is sectioned into an inside region 2 and end regions 3, and a binding property of the end regions 3 is increased by making a weight ratio of the binder based upon the electrode active material larger in the end regions 3 than in the inside region 2, so that falling of mixture during cutting is suppressed. The weight ratio of the binder based upon the electrode active material is small in the inside region 2 of the electrode plate 4, so the lithium secondary battery using the electrode plate 4 has superior cycle characteristics. Further, the electrode plate 4 prevents mixture falling, so the lithium secondary battery using the electrode plate 4 is also superior in safety.

Description

本発明は、非水電解質二次電池用電極板に関するものである。   The present invention relates to an electrode plate for a non-aqueous electrolyte secondary battery.

近年、電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として、小型かつ軽量で、高エネルギー密度を有する二次電池への要望が高まっている。また、小型民生用途のみならず、電力貯蔵用や電気自動車といった長期に亘る耐久性や安全性が要求される大型の二次電池も要望されており、その技術展開も加速してきている。このような背景のもと、非水電解質二次電池は、高電圧で且つ高エネルギー密度を有するため、電子機器用、電力貯蔵用、および電気自動車の電源用として期待されている。   2. Description of the Related Art In recent years, electronic devices have become rapidly portable and cordless, and there is an increasing demand for secondary batteries that are small and lightweight and have high energy density as power sources for driving these devices. In addition to small-sized consumer applications, there is a demand for large-sized secondary batteries that require long-term durability and safety, such as for power storage and electric vehicles, and technological development has been accelerated. Under such circumstances, non-aqueous electrolyte secondary batteries have high voltage and high energy density, and are therefore expected to be used for electronic devices, for power storage, and for electric vehicle power supplies.

非水電解質二次電池は、正極、負極、それらの間に介在するセパレータおよび非水電解質を具備しており、実用化されているリチウム二次電池(非水電解質二次電池の一例)では、セパレータに主としてポリオレフィン製の微多孔膜が用いられ、非水電解質にLiBF、LiPFなどのリチウム塩を非プロトン性の有機溶媒に溶解した液状非水電解質(非水電解液)が用いられている。また、正極活物質には、リチウムに対する電位が高く安全性に優れ、比較的合成が容易であるリチウムコバルト酸化物(例えばLiCoO)が用いられ、負極活物質には、黒鉛などの種々の炭素剤料が用いられている。 A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator interposed between them, and a nonaqueous electrolyte. In a lithium secondary battery that is put into practical use (an example of a nonaqueous electrolyte secondary battery), A microporous membrane made of polyolefin is mainly used for the separator, and a liquid nonaqueous electrolyte (nonaqueous electrolyte) in which a lithium salt such as LiBF 4 or LiPF 6 is dissolved in an aprotic organic solvent is used for the nonaqueous electrolyte. Yes. In addition, a lithium cobalt oxide (for example, LiCoO 2 ) that has a high potential with respect to lithium, is excellent in safety, and is relatively easy to synthesize is used as the positive electrode active material, and various carbons such as graphite are used as the negative electrode active material. Agents are used.

このようなリチウム二次電池は、製造工程中に発生した金属粉やその他の異物が電池内部に混入して、前記セパレータを突き破ることにより内部短絡を誘引し、安全性を阻害すると言った課題を有している。   Such a lithium secondary battery has a problem that metal powder and other foreign matters generated during the manufacturing process are mixed in the battery, and an internal short circuit is induced by breaking through the separator, thereby impairing safety. Have.

前記金属粉や異物を発生させる要因としては種々あるが、その一例として、リチウム二次電池の製造時における裁断工程で、電極板の両縁部に発生する集電体のバリなど合剤層の脱落による裁断くずの発生などが挙げられる。   There are various factors that generate the metal powder and foreign matter. For example, in the cutting process at the time of manufacturing a lithium secondary battery, a mixture layer such as a burr of a current collector generated at both edges of the electrode plate is used. For example, cutting scraps due to dropping off.

なお、リチウム二次電池の製造方法としては、通常、まず、電極活物質と結着剤および溶媒とを混練分散して調整した電極塗液を、幅広集電体の片面もしくは両面に塗布して乾燥させた後、所定の厚みになるように圧延するとともに、長尺状に巻いた幅広電極板の原反を製作する。その後、裁断工程に移り、前記幅広電極板の原反を、スリッター装置に配設されている複数の裁断刃で、所定の寸法を有する複数の幅狭電極板に裁断する。これにより、捲回した複数のフープが得られる。また、前記幅広電極板から幅狭電極板への裁断には、通常、シアー方式、ギャング方式などの裁断刃が用いられる。   As a method for producing a lithium secondary battery, usually, an electrode coating liquid prepared by kneading and dispersing an electrode active material, a binder and a solvent is first applied to one or both sides of a wide current collector. After drying, the sheet is rolled to a predetermined thickness, and an original sheet of a wide electrode plate wound in a long shape is manufactured. Then, it moves to a cutting process, and the raw material of the wide electrode plate is cut into a plurality of narrow electrode plates having a predetermined dimension by a plurality of cutting blades arranged in a slitter device. Thereby, a plurality of wound hoops are obtained. For cutting from the wide electrode plate to the narrow electrode plate, a cutting blade such as a shear method or a gang method is usually used.

上述した裁断後の電極板の両縁部断面に発生する集電体のバリや裁断くずの問題を解決するために、レーザ光を利用して裁断する方法が提案されている(特許文献1参照)。この提案によれば、レーザ光の高密度熱源で電極板を裁断するので、前記電極板が高熱により溶断される。その結果、電極板の両縁部断面に発生する集電体のバリの発生が無く、内部短絡を防止できることが可能であると述べられている。   In order to solve the problems of the current collector burrs and cutting chips generated on the cross-sections of both edge portions of the electrode plate after cutting, a method of cutting using laser light has been proposed (see Patent Document 1). ). According to this proposal, since the electrode plate is cut by a high-density heat source of laser light, the electrode plate is blown by high heat. As a result, it is stated that there is no generation of burrs in the current collector that occurs in the cross-sections at both edges of the electrode plate, and that an internal short circuit can be prevented.

また、バリや裁断くずの問題を改善する目的で、切断面を含む電極板の周縁部に熱融着性樹脂で被覆する方法が例示されている(特許文献2参照)。
さらに、バリを抑制する目的で、裁断刃により複数の幅狭の電極板に裁断した後、前記幅狭の電極板の個々の両縁部のみを押圧ロールで押圧する方法が例示されている(特許文献3参照)。
Further, for the purpose of improving the problem of burrs and cutting chips, a method of covering the peripheral edge portion of the electrode plate including the cut surface with a heat-fusible resin is exemplified (see Patent Document 2).
Furthermore, for the purpose of suppressing burrs, there is exemplified a method in which after cutting into a plurality of narrow electrode plates with a cutting blade, only the respective edge portions of the narrow electrode plates are pressed with a pressing roll ( (See Patent Document 3).

特開昭61−66364号公報Japanese Patent Laid-Open No. 61-66364 特開平5−190200号公報JP-A-5-190200 特開2008−176939号公報JP 2008-176939 A

しかしながら、特許文献1に提案されているようなレーザ光による裁断方法では、電極板の裁断面のバリや裁断くずは軽減されるものの、熱溶融による裁断面の凹凸や、熱溶融時に発生する煤の汚れなどにより、その処理方法に関し新たな課題を有していた。   However, in the cutting method using laser light as proposed in Patent Document 1, burrs and cutting scraps on the cut surface of the electrode plate are reduced, but the unevenness of the cut surface due to heat melting and the wrinkles generated at the time of heat melting are reduced. Due to dirt and the like, there was a new problem regarding the processing method.

また、特許文献2に提案されているような技術を用いても、裁断面のバリや裁断くずを結着剤で被覆するだけであって、尖ったバリや裁断くずを抑えるものではないため、内部短絡の発生を十分に防止することが困難であった。   Moreover, even if the technique proposed in Patent Document 2 is used, only the burrs and cutting chips on the cut surface are covered with the binder, and the sharp burrs and cutting chips are not suppressed. It was difficult to sufficiently prevent the occurrence of an internal short circuit.

さらに、特許文献3に提案されている方法を用いても、裁断面のバリを抑制するだけであって、合剤脱落による裁断くずの発生を抑制することは困難であった。
これら特許文献2および3では、裁断くずの発生により安全性を確保できず、この裁断時の合剤脱落を結着剤量の増加により抑制しても、同時にサイクル特性が劣化するという課題が発生する。
Furthermore, even if the method proposed in Patent Document 3 is used, it is only difficult to suppress burrs on the cut surface, and it is difficult to suppress the generation of cutting waste due to the dropping of the mixture.
In these Patent Documents 2 and 3, safety cannot be ensured due to the generation of cutting waste, and even if the mixture dropping at the time of cutting is suppressed by increasing the amount of binder, there is a problem that the cycle characteristics deteriorate at the same time. To do.

これらに対して、本発明は前記従来の課題を解決するもので、裁断時の合剤脱落を抑制し、安全性、サイクル特性に優れた非水電解質二次電池用電極板を提供することを目的とする。   On the other hand, the present invention solves the above-described conventional problems, and provides an electrode plate for a nonaqueous electrolyte secondary battery that suppresses mixture dropping at the time of cutting and is excellent in safety and cycle characteristics. Objective.

上記目的を達成するために、本発明の請求項1に記載の発明は、結着剤および極活物質を含む極合剤層を集電体上に有する非水電解質二次電池用電極板であって、前記極合剤層は、内側領域と端部領域に区分され、極活物質を基準とする結着剤の重量比が、前記端部領域では前記内側領域よりも大きいことを特徴とする。   In order to achieve the above object, an invention according to claim 1 of the present invention is an electrode plate for a nonaqueous electrolyte secondary battery having an electrode mixture layer containing a binder and an electrode active material on a current collector. The electrode mixture layer is divided into an inner region and an end region, and the weight ratio of the binder based on the polar active material is larger in the end region than in the inner region. To do.

また、本発明の請求項2に記載の発明は、請求項1に記載の非水電解質二次電池用電極板において、極活物質を基準とする結着剤の重量比が、前記端部領域では前記内側領域の2倍以上で且つ5倍以下であるとともに、内側領域と端部領域の境界が、極板の端部から0.5mm以上10mm以下にあることを特徴とする。   The invention according to claim 2 of the present invention is the electrode plate for a nonaqueous electrolyte secondary battery according to claim 1, wherein the weight ratio of the binder based on the polar active material is the end region. Then, it is not less than 2 times and not more than 5 times the inner region, and the boundary between the inner region and the end region is not less than 0.5 mm and not more than 10 mm from the end of the electrode plate.

さらに、本発明の請求項3に記載の発明は、請求項1または2に記載の非水電解質二次電池用電極板において、結着剤は、フッ素系結着剤、アクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム、アクリル系重合体もしくはビニル系重合体、またはこれらの2種類以上の混合物もしくは共重合体であることを特徴とする。   Furthermore, the invention according to claim 3 of the present invention is the electrode plate for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the binder is a fluorine-based binder, acrylic rubber, modified acrylic rubber. Styrene-butadiene rubber, acrylic polymer or vinyl polymer, or a mixture or copolymer of two or more thereof.

また、本発明の請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の非水電解質二次電池用電極板において、極活物質は、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる1以上の金属と、リチウムとの複合金属酸化物であることを特徴とする。   The invention described in claim 4 of the present invention is the electrode plate for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the active material is cobalt, manganese, nickel, chromium. It is a composite metal oxide of lithium and one or more metals selected from iron and vanadium.

一方、本発明の請求項5に記載の発明は、非水電解質二次電池であって、請求項1乃至4のいずれか1項に記載の非水電解質二次電池用電極板を用いて電池を構成したことを特徴とする。   On the other hand, the invention according to claim 5 of the present invention is a non-aqueous electrolyte secondary battery using the electrode plate for non-aqueous electrolyte secondary battery according to any one of claims 1 to 4. It is characterized by comprising.

本発明の非水電解質二次電池用電極板によると、極活物質を基準とする結着剤の重量比が、端部領域では十分に大きいことから、裁断時の合成脱落を防止し、安全性に優れる。また、内側領域での結着剤の重量比が十分に小さいことから、電極板のイオン移動を阻害せず、サイクル特性に優れる。   According to the electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the weight ratio of the binder based on the polar active material is sufficiently large in the end region, so that the synthetic dropout at the time of cutting is prevented and safety is ensured. Excellent in properties. In addition, since the weight ratio of the binder in the inner region is sufficiently small, the ion migration of the electrode plate is not hindered and the cycle characteristics are excellent.

本発明の実施の形態1における正極板の拡大斜視図The expanded perspective view of the positive electrode plate in Embodiment 1 of this invention 同実施の形態における幅広正極板の拡大斜視図Enlarged perspective view of a wide positive electrode plate in the same embodiment 同実施の形態における負極板の拡大斜視図Enlarged perspective view of the negative electrode plate in the same embodiment

以下、本発明の一実施の形態について図面を参照しながら説明する。
本発明に係る非水電解質二次電池用電極板の一例である正極板を図1に示す。この正極板4の上下面の方向を厚さ方向、正極板4の奥行方向を長さ方向、これら長さ方向および厚さ方向と直交する方向を幅方向として説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a positive electrode plate which is an example of an electrode plate for a nonaqueous electrolyte secondary battery according to the present invention. The direction of the upper and lower surfaces of the positive electrode plate 4 will be described as the thickness direction, the depth direction of the positive electrode plate 4 as the length direction, and the direction perpendicular to the length direction and the thickness direction will be described as the width direction.

図1において、正極板4は、電気を取り出すための端子である集電体1の両面に、電気を蓄える正極合剤層を設けて構成されている。この正極合剤層は、その成分の違いによって、正極板4の幅方向の両端からそれぞれ幅Aの端部領域3と、これら端部領域3の間にある内側領域2とに区分される。なお、端部領域3では、幅Aが0.5mm〜10mmであり、正極合剤層の正極活物質を基準とする結着剤の重量比が、内側領域2での正極活物質を基準とする結着剤の重量比よりも大きい。   In FIG. 1, the positive electrode plate 4 is configured by providing positive electrode mixture layers for storing electricity on both surfaces of a current collector 1 which is a terminal for taking out electricity. The positive electrode mixture layer is divided into an end region 3 having a width A from both ends in the width direction of the positive electrode plate 4 and an inner region 2 between the end regions 3 depending on the difference in the components. In the end region 3, the width A is 0.5 mm to 10 mm, and the weight ratio of the binder based on the positive electrode active material of the positive electrode mixture layer is based on the positive electrode active material in the inner region 2. It is larger than the weight ratio of the binder.

この正極板4は、図2に示す幅広正極板40を、長さ方向の裁断線Cで幅方向に複数に裁断して得られるものである。
図3に負極板5を示す。この負極板5も、正極板4と同様の構成であり、幅広負極板を裁断して得られるものである。
The positive electrode plate 4 is obtained by cutting the wide positive electrode plate 40 shown in FIG. 2 into a plurality of pieces in the width direction along a cutting line C in the length direction.
FIG. 3 shows the negative electrode plate 5. This negative electrode plate 5 has the same configuration as that of the positive electrode plate 4 and is obtained by cutting a wide negative electrode plate.

次に、正極板4および負極板5の作製方法について具体的に説明する。
正極板4については、アルミニウム製の箔やラス加工やエッチング処理された厚み10μm〜60μmの箔からなる集電体1の両面に、正極活物質と結着剤、必要に応じて導電剤、増粘剤を溶剤に混練分散させたペーストを塗着、乾燥、圧延して、内側領域2および端部領域3となる正極合剤層を設けて、作製される。
Next, a method for producing the positive electrode plate 4 and the negative electrode plate 5 will be specifically described.
As for the positive electrode plate 4, a positive electrode active material and a binder, and optionally a conductive agent, an increase in the number of both sides of the current collector 1 made of an aluminum foil, a lath processed or etched foil having a thickness of 10 μm to 60 μm. A paste prepared by kneading and dispersing a viscous agent in a solvent is applied, dried, and rolled to provide a positive electrode mixture layer that becomes the inner region 2 and the end region 3.

前記正極活物質としては、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物などが用いられる。例えば、LiCoO、LiMnO、LiNiO、LiCoNi(1−x)(0<x<1)、LiCrO、αLiFeO、LiVOなどが用いられる。 As the positive electrode active material, for example, a lithium-containing transition metal compound that can accept lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron, and vanadium and lithium is used. For example, LiCoO 2, LiMnO 2, LiNiO 2, LiCo x Ni (1-x) O 2 (0 <x <1), LiCrO 2, αLiFeO 2, LiVO 2 and the like are used.

前記結着剤としては、溶剤に混練分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着剤やアクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム(SBR)、アクリル系重合体もしくはビニル系重合体などを単独、または二種類以上の混合物もしくは共重合体で用いる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンの共重合体や、ポリテトラフルオロエチレン結着剤のディスパージョン、エチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、メチルセルロースなどが用いられる。   The binder is not particularly limited as long as it can be kneaded and dispersed in a solvent. For example, a fluorine binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), acrylic A polymer or vinyl polymer is used alone, or two or more kinds of mixtures or copolymers are used. Examples of the fluorine-based binder include polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, a dispersion of a polytetrafluoroethylene binder, an ethylene-vinyl alcohol copolymer, carboxymethyl cellulose, Methyl cellulose or the like is used.

内側領域2および端部領域3の正極活物質および結着剤には、前述したように、必要に応じて導電剤を加えることができ、導電剤としてはアセチレンブラック、グラファイト、炭素繊維などを単独または二種類以上の混合物が好ましい。   As described above, a conductive agent can be added to the positive electrode active material and the binder in the inner region 2 and the end region 3 as necessary. As the conductive agent, acetylene black, graphite, carbon fiber, etc. are used alone. Or a mixture of two or more types is preferred.

前記増粘剤としては、ポリエチレンオキシド(PEO)やポリビニルアルコール(PVA)などの水溶液として粘性を有する剤料であれば特に限定されないが、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂およびその変性体が、合剤塗料の分散性、増粘性の観点から好ましい。   The thickening agent is not particularly limited as long as it is an agent having viscosity as an aqueous solution such as polyethylene oxide (PEO) or polyvinyl alcohol (PVA), but a cellulose resin such as carboxymethyl cellulose (CMC) and its modification. The body is preferable from the viewpoint of dispersibility and thickening of the mixture paint.

前記溶剤としては、結着剤が溶解可能なものが用いられ、有機系結着剤の場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトンなどの有機溶剤を単独またはこれらを混合した混合溶剤が好ましく、水系結着剤の場合は水または温水が好ましい。   As the solvent, a solvent in which a binder can be dissolved is used. In the case of an organic binder, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexa An organic solvent such as methylsulfuramide, tetramethylurea, acetone, or methyl ethyl ketone is preferably used alone or a mixed solvent thereof. In the case of an aqueous binder, water or warm water is preferred.

内側領域2に塗布する正極合剤中の正極活物質、導電剤および結着剤の配合割合は、それぞれ、正極活物質が80〜97重量%、導電剤が1〜20重量%、結着剤量が2〜5重量%の範囲とされる。   The mixing ratio of the positive electrode active material, the conductive agent and the binder in the positive electrode mixture applied to the inner region 2 is 80 to 97% by weight for the positive electrode active material, 1 to 20% by weight for the conductive agent, and the binder. The amount is in the range of 2-5% by weight.

端部領域3に塗布する正極合剤では、正極活物質および導電剤の配合割合を内側領域2と同等とし、結着剤の配合割合のみ内側領域2よりも大きくする。具体的には、正極活物質基準の重量比で、端部領域3では内側領域2の2倍以上5倍以下とする。   In the positive electrode mixture applied to the end region 3, the mixing ratio of the positive electrode active material and the conductive agent is made equal to that of the inner region 2, and only the mixing ratio of the binder is made larger than that of the inner region 2. Specifically, the weight ratio based on the positive electrode active material is 2 to 5 times that of the inner region 2 in the end region 3.

このように、端部領域3において結着剤の配合割合のみ内側領域2の2倍以上とすることで、裁断時の合剤脱落を抑制できる。
また、端部領域3において結着剤の配合割合のみ内側領域2の5倍以下とすることで、結着剤の正極活物質への被覆を抑制してLiイオン移動を阻害せず、電解液の浸透性が悪化しないため、サイクル特性の影響を抑制できる。
Thus, in the edge part area | region 3, the mixture omission at the time of cutting can be suppressed by making only the compounding ratio of a binder into 2 times or more of the inner side area | region 2.
In addition, by setting the blending ratio of the binder in the end region 3 to 5 times or less that of the inner region 2, the coating of the binder on the positive electrode active material is suppressed, Li ion migration is not inhibited, and the electrolyte solution Therefore, the influence of cycle characteristics can be suppressed.

前記正極活物質、結着剤、必要に応じて加える導電剤を溶剤に混練分散させてペースト状合剤を作製する方法は、特に限定されるものではなく、例えば、プラネタリーミキサー、ホモミキサー、ピンミキサー、ニーダー、ホモジナイザーなどを用いることができる。これらを単独または組み合わせて使用することもできる。また、上記ペースト状合剤の混練分散時に、各種分散剤、界面活性剤、安定剤などを必要に応じて添加することもできる。   The method for preparing the paste mixture by kneading and dispersing the positive electrode active material, the binder, and a conductive agent added as necessary in a solvent is not particularly limited. For example, a planetary mixer, a homomixer, A pin mixer, kneader, homogenizer, or the like can be used. These can be used alone or in combination. In addition, various dispersants, surfactants, stabilizers, and the like can be added as necessary during the kneading dispersion of the paste mixture.

集電体1の上に合剤を塗着乾燥する工程は、特に限定されるものではなく、上記のように混錬分散させたペースト状合剤を、例えば、数種類のスリットダイコーターを用いて、内側領域2との境界が端部から0.5mm以上10mm以下となる端部領域3を、内側領域2とは別々に塗着する。その後、自然乾燥に近い乾燥を行うのが好ましいが、生産性を考慮すると70℃〜300℃の温度で5時間〜1分間乾燥させるのが好ましい。内側領域2との境界が端部から0.5mm以上となる端部領域3を内側領域2とは別々に塗着することにより、裁断時の合剤脱落を抑制できる。   The process of applying and drying the mixture on the current collector 1 is not particularly limited, and the paste mixture mixed and dispersed as described above is used, for example, by using several types of slit die coaters. The end region 3 whose boundary with the inner region 2 is 0.5 mm or more and 10 mm or less from the end portion is applied separately from the inner region 2. Thereafter, it is preferable to perform drying close to natural drying, but considering productivity, it is preferable to dry at a temperature of 70 ° C. to 300 ° C. for 5 hours to 1 minute. By coating the end region 3 whose boundary with the inner region 2 is 0.5 mm or more from the end portion separately from the inner region 2, it is possible to suppress the dropping of the mixture during cutting.

また、内側領域2では極板中の空気が抜けにくいが、内側領域2と端部領域3を別々に塗着することにより、内側領域2の電解液の浸透性が多量の結着剤により悪化することなく、電解液量が低下しないため、サイクル特性の劣化を抑制できる。   Further, in the inner region 2, the air in the electrode plate is difficult to escape, but by separately applying the inner region 2 and the end region 3, the permeability of the electrolyte solution in the inner region 2 is deteriorated by a large amount of binder. Therefore, since the amount of the electrolytic solution does not decrease, deterioration of cycle characteristics can be suppressed.

圧延工程は、ロールプレス機によって所定の厚みになるまで、線圧102〜204N/cm(1000〜2000kgf/cm)で数回圧延を行うか、各回で線圧を変えて圧延するのが好ましい。   In the rolling step, it is preferable to perform rolling several times at a linear pressure of 102 to 204 N / cm (1000 to 2000 kgf / cm) or to change the linear pressure at each time until a predetermined thickness is obtained by a roll press.

次に、以上のようにして得られた幅広正極板40を裁断工程にて所定の寸法に裁断するのであるが、ここで用いる裁断刃には、シアー刃方式、ギャング刃方式のいずれを用いても差し支えはない。   Next, the wide positive electrode plate 40 obtained as described above is cut into a predetermined size in a cutting step. The cutting blade used here is either a shear blade method or a gang blade method. There is no problem.

負極板5は、集電体1の両面に、負極活物質、結着剤、必要に応じて導電助剤、増粘剤を有機溶剤に混練分散させたペースト状の合剤を塗着、乾燥し、集電体1の他面にも塗着、乾燥した後、圧延して作成される。   The negative electrode plate 5 is coated with a negative electrode active material, a binder, and, if necessary, a paste-like mixture obtained by kneading and dispersing a conductive additive and a thickener in an organic solvent, and then dried. In addition, it is prepared by applying and drying the other surface of the current collector 1 and then rolling it.

負極板5の集電体1としては、銅製の箔、ラス加工を施した箔、またはエッチング加工を施した箔からなり、厚みは5μm〜50μmの範囲とされる。
負極活物質としては、特に限定されるものではないが、例えば、有機高分子化合物(フェノール結着剤、ポリアクリロニトリル、セルロースなど)を焼成することにより得られる炭素剤料、コークスやピッチを焼成することにより得られる炭素剤料、または人造グラファイトもしくは天然グラファイトなどを、その形状としては、球状、鱗片状、塊状のものを用いることができる。
The current collector 1 of the negative electrode plate 5 is made of a copper foil, a lathed foil, or an etched foil, and has a thickness in the range of 5 μm to 50 μm.
Although it does not specifically limit as a negative electrode active material, For example, the carbon agent material, coke, and pitch which are obtained by baking an organic polymer compound (A phenol binder, polyacrylonitrile, cellulose, etc.) are baked. As the shape of the carbon agent material obtained by this, artificial graphite or natural graphite, a spherical shape, a scale shape, or a lump shape can be used.

負極活物質および結着剤の配合割合は、それぞれ、負極活物質が93〜99重量%、結着剤が1〜5重量%の範囲とされる。
端部領域3に塗布する負極合剤では、負極活物質および導電剤の配合割合を内側領域2と同等とし、結着剤の配合割合のみ、活物質基準の重量比で、端部領域3では内側領域2の2倍以上5倍以下とする。他は正極板4と同様にして作製することができる。
The mixing ratios of the negative electrode active material and the binder are 93 to 99% by weight for the negative electrode active material and 1 to 5% by weight for the binder, respectively.
In the negative electrode mixture applied to the end region 3, the mixing ratio of the negative electrode active material and the conductive agent is made equal to that of the inner region 2, and only the mixing ratio of the binder is based on the weight ratio based on the active material. The inner region 2 is 2 times or more and 5 times or less. Others can be manufactured in the same manner as the positive electrode plate 4.

ここで、上述した正負極板4,5を用いたリチウム二次電池について説明する。
このリチウム二次電池は、上記正極板4と負極板5の間に挟まれたセパレータと、この正負極板4,5とセパレータの間に充填された電解液とを具備するものである。
Here, a lithium secondary battery using the above-described positive and negative electrode plates 4 and 5 will be described.
The lithium secondary battery includes a separator sandwiched between the positive electrode plate 4 and the negative electrode plate 5 and an electrolyte filled between the positive and negative electrode plates 4 and 5 and the separator.

セパレータについては、リチウム二次電池の使用範囲に耐え得る組成であれば特に限定されないが、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一または複合して用いるのが一般的であるとともに、態様として好ましい。このセパレータの厚みは特に限定されないが、10〜25μmとされる。   The separator is not particularly limited as long as it is a composition that can withstand the range of use of the lithium secondary battery, but a microporous film of an olefin resin such as polyethylene or polypropylene is generally used singly or in combination. And it is preferable as an aspect. The thickness of the separator is not particularly limited, but is 10 to 25 μm.

さらに、電解液については、電解質塩としてLiPFおよびLIBFなどの各種リチウム化合物を用いることができる。また、溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独または組み合わせて用いることができる。また、正負極板4,5上への良好な皮膜の形成、または過充電時の安定性の確保のために、溶媒としてビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、またはその変性体が用いられる。 Moreover, for the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as an electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. In addition, vinylene carbonate (VC), cyclohexylbenzene (CHB), or a modified product thereof is used as a solvent to form a good film on the positive and negative electrode plates 4 and 5 or to ensure stability during overcharge. It is done.

以下、本発明の具体的な実施例について図面を参照しながら、さらに詳しく説明する。   Hereinafter, specific embodiments of the present invention will be described in more detail with reference to the drawings.

内側領域2に塗布するスラリーを、正極活物質としてLiNi1/3Mn1/3Co1/3粉末を100重量部、導電剤としてアセチレンブラックを2.5重量部、結着剤としてポリフッ化ビニリデン(PVDF)を3重量部、および分散媒を混練することで、作製した。 The slurry applied to the inner region 2 is 100 parts by weight of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder as the positive electrode active material, 2.5 parts by weight of acetylene black as the conductive agent, and polyfluoride as the binder. It was produced by kneading 3 parts by weight of vinylidene chloride (PVDF) and a dispersion medium.

さらに、端部領域3に塗布するスラリーを、正極活物質としてLiNi1/3Mn1/3Co1/3粉末を100重量部、導電剤としてアセチレンブラックを2.5重量部、結着剤としてポリフッ化ビニリデン(PVDF)を6重量部、および分散媒を混練することで、作製した。 Furthermore, 100 parts by weight of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder as the positive electrode active material and 2.5 parts by weight of acetylene black as the conductive agent were bound to the slurry applied to the end region 3. It was prepared by kneading 6 parts by weight of polyvinylidene fluoride (PVDF) as an agent and a dispersion medium.

このようにして作製した正極板用合剤スラリーを、数種類のスリットダイコーターを用いて、後工程で幅54mmの正極板4に裁断された状態において内側領域2と端部領域3が形成されるよう、内側領域2との境界が裁断後の端部から10mmとなる端部領域3を、内側領域2とは別々に集電体1に塗布した。その後、この集電体1を乾燥させて、図2に示す幅広正極板40を作製した。   The inner region 2 and the end region 3 are formed in a state in which the positive electrode plate mixture slurry thus prepared is cut into a positive electrode plate 4 having a width of 54 mm in a later process using several types of slit die coaters. Thus, the end region 3 whose boundary with the inner region 2 is 10 mm from the end after cutting was applied to the current collector 1 separately from the inner region 2. Thereafter, the current collector 1 was dried to produce a wide positive electrode plate 40 shown in FIG.

この幅広正極板40を平板ロールプレスで幅方向において合剤密度3.00g/cm、厚みが150μmとなるように圧延し、裁断工程にて裁断装置を用いて幅54mmの正極板4を得た。なお、裁断工程において、正極板4の長さ方向1000mにおける合剤脱落の個数を表1に示す。 The wide positive electrode plate 40 is rolled with a flat plate roll press so that the mixture density is 3.00 g / cm 3 and the thickness is 150 μm in the width direction, and a positive electrode plate 4 having a width of 54 mm is obtained using a cutting device in a cutting process. It was. In addition, in the cutting process, Table 1 shows the number of the mixture dropouts in the length direction 1000 m of the positive electrode plate 4.

一方、内側領域2に塗布するスラリーを、負極活物質として黒鉛を100重量部、増粘剤としてカルボキシメチルセルロースを1重量部、結着剤としてスチレン−ブタジエンゴム(SBR)を1重量部、および分散媒を混練することで、作製した。   On the other hand, the slurry applied to the inner region 2 is 100 parts by weight of graphite as a negative electrode active material, 1 part by weight of carboxymethyl cellulose as a thickener, 1 part by weight of styrene-butadiene rubber (SBR) as a binder, and dispersed. It was produced by kneading the medium.

さらに、端部領域3に塗布するスラリーを、負極活物質として黒鉛を100重量部、増粘剤としてカルボキシメチルセルロースを1重量部、結着剤としてスチレン−ブタジエンゴム(SBR)を2重量部、および分散媒を混練することで、作製した。   Furthermore, 100 parts by weight of graphite as a negative electrode active material, 1 part by weight of carboxymethyl cellulose as a thickener, 2 parts by weight of styrene-butadiene rubber (SBR) as a binder, and slurry applied to the end region 3; It was produced by kneading the dispersion medium.

これらスラリーを長尺の集電体1である厚み10μmの銅箔の両面に、正極板4と同様に塗布して乾燥させ、合剤密度1.52g/cc、厚みが156μmとなるように圧延し、裁断工程にてスリッター装置を用いて幅56mmに裁断して負極板5を得た。   These slurries are applied to both sides of a 10 μm-thick copper foil, which is a long current collector 1, dried in the same manner as the positive electrode plate 4, and rolled so that the mixture density is 1.52 g / cc and the thickness is 156 μm. And it cut | judged to width 56mm using the slitter apparatus at the cutting process, and the negative electrode plate 5 was obtained.

以上のようにして作製した正極板4および負極板5を組み合わせて、正極板4および負極板5の各集電体1の露出領域に集電用のリードを溶接し、さらに、空孔率40%の20μmのポリエチレン製セパレータを正極板4および負極板5の間にはさみ、渦巻状に捲回して極板群を構成し、この群を、厚さ25μmの電池ケースとしてのステンレス製の有底円筒状容器内に収納して、電池缶外径18mm、高さ65mmの円筒型リチウム二次電池を作製した。これらの電池の特性評価は他の実施例、比較例の電池とともに後で説明する。   The positive electrode plate 4 and the negative electrode plate 5 produced as described above are combined, and current collecting leads are welded to the exposed regions of the current collectors 1 of the positive electrode plate 4 and the negative electrode plate 5. % Of a 20 μm polyethylene separator is sandwiched between the positive electrode plate 4 and the negative electrode plate 5 and wound into a spiral shape to form an electrode plate group. This group is made of stainless steel bottom as a battery case with a thickness of 25 μm. A cylindrical lithium secondary battery having a battery can outer diameter of 18 mm and a height of 65 mm was prepared by being housed in a cylindrical container. The characteristics evaluation of these batteries will be described later together with the batteries of other examples and comparative examples.

上記のリチウム二次電池を、20℃雰囲気下において、0.3Cで充電し、1Cで3Vまで放電する充放電サイクルを3回繰り返した後、25℃雰囲気下において、0.3Cで4.2Vまで充電し、1Cで3Vまで放電する充放電サイクルを複数回繰り返した。25℃雰囲気下での1サイクル目の容量を100%とした場合の500サイクル目の容量をパーセンテージで表1に示す。   The above lithium secondary battery was charged at 0.3 C in a 20 ° C. atmosphere and charged and discharged three times at 1 C to 3 V. After that, the lithium secondary battery was 4.2 V at 0.3 C in a 25 ° C. atmosphere. The charge / discharge cycle of charging to 1 V and discharging to 3 V at 1 C was repeated a plurality of times. Table 1 shows the capacity at the 500th cycle as a percentage when the capacity at the first cycle in an atmosphere of 25 ° C. is 100%.

実施例1を実施した際に、内側領域2と端部領域3との境界を端部から5mmとした以外は、実施例1と全く同様にして正極板4を得て、実施例2とした。   A positive electrode plate 4 was obtained in the same manner as in Example 1 except that the boundary between the inner region 2 and the end region 3 was changed to 5 mm from the end when Example 1 was carried out. .

実施例1を実施した際に、内側領域2と端部領域3との境界を端部から0.5mmとした以外は、実施例1と全く同様にして正極板4を得て、実施例3とした。   When Example 1 was carried out, a positive electrode plate 4 was obtained in the same manner as Example 1 except that the boundary between the inner region 2 and the end region 3 was 0.5 mm from the end, and Example 3 was obtained. It was.

実施例1を実施した際に、端部領域3に塗布したスラリーを、正極活物質としてLiNi1/3Mn1/3Co1/3粉末を100重量部、導電剤としてアセチレンブラックを2.5重量部、結着剤としてポリフッ化ビニリデン(PVDF)を15重量部、および分散媒を混練して作製した以外は、実施例1と全く同様にして、正極板4を得て、実施例4とした。 When Example 1 was carried out, 100 parts by weight of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder was used as the positive electrode active material, and 2 acetylene blacks were used as the conductive agent. A positive electrode plate 4 was obtained in the same manner as in Example 1 except that it was prepared by kneading 5 parts by weight, 15 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and a dispersion medium. It was set to 4.

実施例2を実施した際に、端部領域3に塗布したスラリーを、正極活物質としてLiNi1/3Mn1/3Co1/3粉末を100重量部、導電剤としてアセチレンブラックを2.5重量部、結着剤としてポリフッ化ビニリデン(PVDF)を15重量部、および分散媒を混練して作製した以外は、実施例2と全く同様にして、正極板4を得て、実施例5とした。 When Example 2 was performed, the slurry applied to the end region 3 was 100 parts by weight of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder as the positive electrode active material, and 2 acetylene blacks as the conductive agent. A positive electrode plate 4 was obtained in the same manner as in Example 2 except that it was prepared by kneading 5 parts by weight, 15 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and a dispersion medium. It was set to 5.

実施例3を実施した際に、端部領域3に塗布したスラリーを、正極活物質としてLiNi1/3Mn1/3Co1/3粉末を100重量部、導電剤としてアセチレンブラックを2.5重量部、結着剤としてポリフッ化ビニリデン(PVDF)を15重量部、および分散媒を混練して作製した以外は、実施例3と全く同様にして、正極板4を得て、実施例6とした。 When Example 3 was performed, the slurry applied to the end region 3 was 100 parts by weight of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder as the positive electrode active material, and 2 acetylene blacks as the conductive agent. A positive electrode plate 4 was obtained in the same manner as in Example 3 except that it was prepared by kneading 5 parts by weight, 15 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and a dispersion medium. It was set to 6.

比較例1Comparative Example 1

実施例1を実施した際に端部領域3をなくしたこと以外は、実施例1と全く同様にして、正極板4を得て、比較例1とした。   Except that the end region 3 was eliminated when Example 1 was carried out, a positive electrode plate 4 was obtained in the same manner as Example 1 to obtain Comparative Example 1.

比較例2Comparative Example 2

比較例1を実施した際に、集電板1に塗布したスラリーを、正極活物質としてLiNi1/3Mn1/3Co1/3粉末を100重量部、導電剤としてアセチレンブラックを2.5重量部、結着剤としてポリフッ化ビニリデン(PVDF)を6重量部、および分散媒を混練して作製した以外は、比較例1と全く同様にして、正極板4を得て、比較例2とした。 When Comparative Example 1 was performed, the slurry applied to the current collector plate 1 was 100 parts by weight of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder as the positive electrode active material and 2 acetylene blacks as the conductive agent. A positive electrode plate 4 was obtained in the same manner as in Comparative Example 1 except that it was prepared by kneading 5 parts by weight, 6 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and a dispersion medium. 2.

比較例3Comparative Example 3

実施例1を実施した際に、内側領域2と端部領域3との境界を端部から0.3mmとした以外は、実施例1と全く同様にして、正極板4を得て、比較例3とした。   When Example 1 was carried out, a positive electrode plate 4 was obtained in the same manner as Example 1 except that the boundary between the inner region 2 and the end region 3 was set to 0.3 mm from the end, and a comparative example was obtained. It was set to 3.

比較例4Comparative Example 4

実施例1を実施した際に、内側領域2と端部領域3との境界を端部から12mmとした以外は、実施例1と全く同様にして、正極板4を得て、比較例4とした。   When Example 1 was carried out, a positive electrode plate 4 was obtained in exactly the same manner as Example 1 except that the boundary between the inner region 2 and the end region 3 was set to 12 mm from the end, and Comparative Example 4 and did.

比較例5Comparative Example 5

実施例1を実施した際に、端部領域3に塗布したスラリーは、正極活物質としてLiNi1/3Mn1/3Co1/3粉末を100重量部、導電剤としてアセチレンブラックを2.5重量部、結着剤としてポリフッ化ビニリデン(PVDF)を18重量部、および分散媒とを混練して作製したものである。 When Example 1 was carried out, the slurry applied to the end region 3 was 100 parts by weight of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder as the positive electrode active material and 2 acetylene blacks as the conductive agent. 0.5 parts by weight, 18 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and a dispersion medium were prepared by kneading.

このようにして作製した正極板用合剤スラリーを数種類のスリットダイコーターを用いて、後工程で裁断された状態において内側領域2との境界が端部から7mmとなる端部領域3を、内側領域2とは別々に塗布した後に乾燥させて、幅広正極板40を作製した。   The end region 3 whose boundary with the inner region 2 is 7 mm from the end in a state where the mixture slurry for the positive electrode plate thus produced is cut in a later process using several types of slit die coaters, The wide positive electrode plate 40 was produced by coating separately from the region 2 and then drying.

これら以外は、実施例1と全く同様にして、正極板4を得て、比較例5とした。
―合剤脱落の評価―
比較例1では、端部領域3の結着剤が少ない場合に、合剤と集電体1の接着が低下して、合剤脱落が生じた。また、比較例3のように、端部領域3の幅Aが0.3mm、すなわち、内側領域2と端部領域3との境界が端部から0.3mmとなる場合には、端部領域3よりも内側の内側領域2から破壊がはじまるので、合剤脱落を防ぐことができない。以上の結果から、端部領域3の結着剤量が、正極活物質基準の重量比で内側領域2の2倍以上であり、かつ内側領域2と端部領域3との境界を端部から0.5mm以上とすることが望ましい。
―電池の評価―
サイクル特性は、リチウム二次電池としての実用面から80%以上であることが望ましく、各実施例でのサイクル特性が80%以上と、全て良好であった。
Except for these, a positive electrode plate 4 was obtained in the same manner as in Example 1 to obtain Comparative Example 5.
―Evaluation of mix omission―
In Comparative Example 1, when the amount of the binder in the end region 3 was small, the adhesion between the mixture and the current collector 1 was lowered, and the mixture was dropped. Further, as in Comparative Example 3, when the width A of the end region 3 is 0.3 mm, that is, when the boundary between the inner region 2 and the end region 3 is 0.3 mm from the end, the end region Since the breakage starts from the inner region 2 on the inner side than 3, it is not possible to prevent the mixture from falling off. From the above results, the amount of the binder in the end region 3 is twice or more that of the inner region 2 in terms of the weight ratio based on the positive electrode active material, and the boundary between the inner region 2 and the end region 3 extends from the end. It is desirable to be 0.5 mm or more.
-Battery evaluation-
The cycle characteristics are desirably 80% or more in terms of practical use as a lithium secondary battery, and the cycle characteristics in each example were 80% or more, all being good.

比較例2,5では結着剤が多いため、正極活物質に被覆してLiイオン移動を阻害し、電解液の浸透性が悪化するため、サイクル特性が劣化した。比較例4では、内側領域2と端部領域3との境界が端部から12mmで、かつ端部領域3の結着剤量が多いため、正極板4中の空気が抜けにくい内側領域2では、その電解液の浸透性が多量の結着剤により悪化し、電解液量が低下したためにサイクル特性が劣化した。実施例の正極板4では、内側領域2と端部領域3との境界は端部から10mm以下であるため、空気の抜けが良好で、電解液の浸透性も高いため、サイクル特性が優れている。以上の結果より、端部領域3の結着剤量が、正極活物質基準の重量比で内側領域2の5倍以下であり、かつ内側領域2と端部領域3との境界を端部から10mm以下とすることが望ましい。   In Comparative Examples 2 and 5, since there were many binders, the positive electrode active material was coated to inhibit Li ion migration, and the permeability of the electrolytic solution was deteriorated, so that the cycle characteristics were deteriorated. In Comparative Example 4, since the boundary between the inner region 2 and the end region 3 is 12 mm from the end, and the amount of the binder in the end region 3 is large, in the inner region 2 where the air in the positive electrode plate 4 is difficult to escape. The permeability of the electrolyte was deteriorated by a large amount of the binder, and the cycle characteristics were deteriorated because the amount of the electrolyte was reduced. In the positive electrode plate 4 of the example, since the boundary between the inner region 2 and the end region 3 is 10 mm or less from the end, the air escape is good and the electrolyte permeability is high, so that the cycle characteristics are excellent. Yes. From the above results, the amount of the binder in the end region 3 is 5 times or less that of the inner region 2 in terms of the weight ratio of the positive electrode active material, and the boundary between the inner region 2 and the end region 3 extends from the end. It is desirable to be 10 mm or less.

Figure 2012028006

本発明は、上述した正極板4だけでなく、負極板5にも適用でき、同様の効果が生じる。
Figure 2012028006

The present invention can be applied not only to the positive electrode plate 4 described above but also to the negative electrode plate 5, and the same effect is produced.

以上の結果より、本発明の非水電解質二次電池用電極板では、極活物質を基準とする結着剤の重量比が、端部領域では十分に大きいことから、裁断時の合成脱落を防止できる。また、この電極板を用いた非水電解質二次電池では、電極板における内側領域での結着剤の重量比が十分に小さくイオン移動が阻害されないので、サイクル特性に優れ、また電極板の合成脱落を防止できることから、安全性にも優れる。   From the above results, in the electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the weight ratio of the binder based on the polar active material is sufficiently large in the end region, so that the synthetic omission at the time of cutting is eliminated. Can be prevented. In addition, in the nonaqueous electrolyte secondary battery using this electrode plate, the weight ratio of the binder in the inner region of the electrode plate is sufficiently small and ion migration is not inhibited, so that the cycle characteristics are excellent, and the electrode plate synthesis Since it can be prevented from falling off, it is excellent in safety.

ところで、上記実施例では、集電体1の両面に正極合剤層を有するものとして説明したが、両面に限定されるものではなく、片面であってもよい。
また、上記実施例では、非水電解質二次電池の例としてリチウム二次電池について説明したが、これに限定されるものではなく、ニッケル水素電池、燃料電池またはセラミックコンデンサーであってもよい。
By the way, in the said Example, although demonstrated as what has a positive mix layer on both surfaces of the electrical power collector 1, it is not limited to both surfaces, A single side may be sufficient.
Moreover, in the said Example, although the lithium secondary battery was demonstrated as an example of a nonaqueous electrolyte secondary battery, it is not limited to this, A nickel hydride battery, a fuel cell, or a ceramic capacitor may be sufficient.

本発明に係る非水電解質二次電池用電極板を用いた非水電解質二次電池は、高容量で高出力電池の安全性、サイクル特性に優れているので、ポータブル機器などの電源として有用である。   The nonaqueous electrolyte secondary battery using the electrode plate for a nonaqueous electrolyte secondary battery according to the present invention is useful as a power source for portable equipment and the like because of its high capacity and high power battery safety and cycle characteristics. is there.

1 集電体
2 内側領域
3 端部領域
4 正極板
5 負極板
40 幅広正極板
DESCRIPTION OF SYMBOLS 1 Current collector 2 Inner area | region 3 End part area | region 4 Positive electrode plate 5 Negative electrode plate 40 Wide positive electrode plate

Claims (5)

結着剤および極活物質を含む極合剤層を集電体上に有する非水電解質二次電池用電極板であって、
前記極合剤層は、内側領域と端部領域に区分され、
極活物質を基準とする結着剤の重量比が、前記端部領域では前記内側領域よりも大きいことを特徴とする非水電解質二次電池用電極板。
An electrode plate for a non-aqueous electrolyte secondary battery having an electrode mixture layer containing a binder and an electrode active material on a current collector,
The electrode mixture layer is divided into an inner region and an end region,
An electrode plate for a non-aqueous electrolyte secondary battery, wherein a weight ratio of a binder based on a polar active material is larger in the end region than in the inner region.
極活物質を基準とする結着剤の重量比が、前記端部領域では前記内側領域の2倍以上で且つ5倍以下であるとともに、
内側領域と端部領域の境界が、極板の端部から0.5mm以上10mm以下にあることを特徴とする請求項1に記載の非水電解質二次電池用電極板。
The weight ratio of the binder based on the polar active material is not less than 2 times and not more than 5 times the inner region in the end region,
2. The electrode plate for a nonaqueous electrolyte secondary battery according to claim 1, wherein a boundary between the inner region and the end region is 0.5 mm or more and 10 mm or less from an end of the electrode plate.
結着剤は、フッ素系結着剤、アクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム、アクリル系重合体もしくはビニル系重合体、またはこれらの2種類以上の混合物もしくは共重合体であることを特徴とする請求項1または2に記載の非水電解質二次電池用電極板。   The binder is a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymer or vinyl polymer, or a mixture or copolymer of two or more of these. The electrode plate for nonaqueous electrolyte secondary batteries according to claim 1 or 2. 極活物質は、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる1以上の金属と、リチウムとの複合金属酸化物であることを特徴とする請求項1乃至3のいずれか1項に記載の非水電解質二次電池用電極板。   The polar active material is a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium and lithium, according to any one of claims 1 to 3. The electrode plate for a nonaqueous electrolyte secondary battery as described. 請求項1乃至4のいずれか1項に記載の非水電解質二次電池用電極板を用いて電池を構成したことを特徴とする非水電解質二次電池。

A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte secondary battery electrode plate according to claim 1.

JP2010162378A 2010-07-20 2010-07-20 Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Pending JP2012028006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162378A JP2012028006A (en) 2010-07-20 2010-07-20 Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162378A JP2012028006A (en) 2010-07-20 2010-07-20 Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2012028006A true JP2012028006A (en) 2012-02-09

Family

ID=45780738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162378A Pending JP2012028006A (en) 2010-07-20 2010-07-20 Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2012028006A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206743A (en) * 2012-03-28 2013-10-07 Gs Yuasa Corp Power storage element
JP2015215988A (en) * 2014-05-09 2015-12-03 川崎重工業株式会社 Square battery
JP2016201327A (en) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 Separator for nonaqueous electrolyte secondary battery and manufacturing method for the same
JP2016225310A (en) * 2016-08-09 2016-12-28 株式会社Gsユアサ Power storage element
CN106374083A (en) * 2016-10-19 2017-02-01 吉安市优特利科技有限公司 Silicon-based negative electrode, preparation method thereof and lithium ion battery
CN108511690A (en) * 2018-03-06 2018-09-07 深圳前海优容科技有限公司 A kind of battery core and its manufacturing method, battery and electronic device
WO2019169559A1 (en) * 2018-03-06 2019-09-12 深圳前海优容科技有限公司 Battery cell and manufacturing method therefor, battery, and electronic device
DE102018203937A1 (en) * 2018-03-15 2019-09-19 Robert Bosch Gmbh Method for producing an electrode foil for a battery
JPWO2018088204A1 (en) * 2016-11-10 2019-09-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
WO2022196445A1 (en) * 2021-03-17 2022-09-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206743A (en) * 2012-03-28 2013-10-07 Gs Yuasa Corp Power storage element
JP2015215988A (en) * 2014-05-09 2015-12-03 川崎重工業株式会社 Square battery
US10128482B2 (en) 2015-04-14 2018-11-13 Toyota Jidosha Kabushiki Kaisha Separator for non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2016201327A (en) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 Separator for nonaqueous electrolyte secondary battery and manufacturing method for the same
JP2016225310A (en) * 2016-08-09 2016-12-28 株式会社Gsユアサ Power storage element
CN106374083A (en) * 2016-10-19 2017-02-01 吉安市优特利科技有限公司 Silicon-based negative electrode, preparation method thereof and lithium ion battery
CN106374083B (en) * 2016-10-19 2019-02-05 吉安市优特利科技有限公司 Silicon substrate negative electrode and preparation method thereof and lithium ion battery
JPWO2018088204A1 (en) * 2016-11-10 2019-09-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP7102348B2 (en) 2016-11-10 2022-07-19 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery containing liquid electrolyte and non-aqueous electrolyte secondary battery containing liquid electrolyte
CN108511690A (en) * 2018-03-06 2018-09-07 深圳前海优容科技有限公司 A kind of battery core and its manufacturing method, battery and electronic device
WO2019169559A1 (en) * 2018-03-06 2019-09-12 深圳前海优容科技有限公司 Battery cell and manufacturing method therefor, battery, and electronic device
DE102018203937A1 (en) * 2018-03-15 2019-09-19 Robert Bosch Gmbh Method for producing an electrode foil for a battery
WO2022196445A1 (en) * 2021-03-17 2022-09-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2012028006A (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
JP5220273B2 (en) Electrode and non-aqueous secondary battery using the same
US9172083B2 (en) Lithium ion secondary battery
CN113871566A (en) Dry electrode film, preparation method and application thereof
JP2009123715A (en) Lithium ion secondary battery
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2012190625A (en) Nonaqueous secondary battery
KR102161591B1 (en) Positive electrode for lithium secondary battery having improved capacity and safety and lithium secondary battery comprising the same
JP2011096539A (en) Lithium secondary battery
JP2007234277A (en) Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP6541035B2 (en) Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery
JP2007080583A (en) Electrode for secondary battery, and secondary battery
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014056728A (en) Nonaqueous electrolyte secondary battery
JP4151459B2 (en) Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method
JP2007242348A (en) Lithium-ion secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
KR20130096139A (en) Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same
JP5838952B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack