JP6541035B2 - Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6541035B2
JP6541035B2 JP2015254956A JP2015254956A JP6541035B2 JP 6541035 B2 JP6541035 B2 JP 6541035B2 JP 2015254956 A JP2015254956 A JP 2015254956A JP 2015254956 A JP2015254956 A JP 2015254956A JP 6541035 B2 JP6541035 B2 JP 6541035B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
aqueous electrolyte
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015254956A
Other languages
Japanese (ja)
Other versions
JP2017117748A (en
Inventor
光 尾崎
光 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015254956A priority Critical patent/JP6541035B2/en
Publication of JP2017117748A publication Critical patent/JP2017117748A/en
Application granted granted Critical
Publication of JP6541035B2 publication Critical patent/JP6541035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水系電解質二次電池の特性評価方法に関し、より詳しくは、非水系電解質コイン型電池を用いた電池特性評価方法と、その評価方法を用いた非水系電解質二次電池用正極活物質の電池特性評価方法に関する。   The present invention relates to a method of evaluating the characteristics of a non-aqueous electrolyte secondary battery, and more specifically, a method of evaluating battery characteristics using a non-aqueous electrolyte coin type battery and a positive electrode active for a non-aqueous electrolyte secondary battery using the evaluation method The present invention relates to a method for evaluating battery characteristics of a substance.

非水系電解質二次電池の中で、リチウムイオン二次電池は高いエネルギー密度をもつため、近年小型化や軽量化を要求される携帯電話やノートパソコンのような携帯電子機器に広く使用されており、また自動車用途ではクリーンなエネルギー源として開発が盛んであり、小型、軽量、高容量、高出力などの高性能化や低コスト化が求められている。   Among non-aqueous electrolyte secondary batteries, lithium ion secondary batteries have a high energy density, and are widely used in portable electronic devices such as mobile phones and laptop computers, which are recently required to be smaller and lighter. Also, in automotive applications, development has been brisk as a clean energy source, and high performance and cost reduction such as small size, light weight, high capacity and high output are required.

このリチウムイオン二次電池に使用される各材料に対する要求、とりわけ正極材料には、例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)またはマンガン酸リチウム(LiMnO)などに対する高性能化の開発要求はますます高まってきている。
ところで、コバルト酸リチウムは、埋蔵量が少ないため高価であり、かつ供給不安定で価格の変動も大きいコバルトを主成分として含有しているという問題点があったため、比較的安価なニッケルまたはマンガンを主成分として含有するリチウムニッケル複合酸化物またはリチウムマンガン複合酸化物がコストの観点から注目されている。
The requirements for each material used in this lithium ion secondary battery, in particular, for the positive electrode material, for example, high performance for lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ) or lithium manganate (LiMnO 4 ), etc. The development requirements of are increasingly increasing.
By the way, lithium cobaltate is expensive because it has little reserves, and it has the problem that it contains cobalt as the main component, which is unstable due to supply instability and price fluctuations, so relatively inexpensive nickel or manganese is used. Lithium nickel composite oxide or lithium manganese composite oxide contained as a main component has attracted attention from the viewpoint of cost.

しかしながら、マンガン酸リチウムについては、熱安定性ではコバルト酸リチウムに比べて優れているものの、充放電容量が他の材料に比べ非常に小さく、かつ寿命を示す充放電サイクル特性も非常に短いことから、電池としての実用上の課題が多い。
一方、ニッケル酸リチウムは、コバルト酸リチウムよりも大きな充放電容量を示すことから、安価で高エネルギー密度の電池を製造することができる正極活物質として期待されている。かかるニッケル酸リチウムは、充電状態での熱安定性がコバルト酸リチウムに劣るという欠点があった。すなわち、純粋なニッケル酸リチウムでは、熱安定性や充放電サイクル特性等に問題があり、実用電池として使用することができなかった。これは、充電状態における結晶構造の安定性がコバルト酸リチウムに比べて低いためである。
However, although lithium manganate is superior in thermal stability to lithium cobaltate, its charge and discharge capacity is very small compared to other materials, and its charge and discharge cycle characteristics showing a life are also very short. , There are many practical problems as a battery.
On the other hand, lithium nickel oxide is expected as a positive electrode active material which can produce a battery with high energy density at low cost, since lithium nickel oxide exhibits a charge / discharge capacity larger than lithium cobaltate. Such lithium nickelate has the disadvantage that its thermal stability in the charged state is inferior to lithium cobaltate. That is, pure lithium nickel oxide has problems in thermal stability, charge / discharge cycle characteristics and the like, and can not be used as a practical battery. This is because the stability of the crystal structure in the charged state is lower than that of lithium cobaltate.

このため、充電でリチウムが抜けた状態での結晶構造の安定化を図り、正極活物質として熱安定性および充放電サイクル特性が良好なリチウムニッケル複合酸化物を得るために、リチウムニッケル複合酸化物におけるニッケルの一部を他の物質と置換することが一般的に行われている。例えば、ニッケルの一部を、コバルト、マンガン、鉄等の遷移金属元素や、アルミニウム、バナジウム、スズ等の異種元素などで置換すること行われている(例えば、特許文献1参照)。
しかしながら、リチウムニッケル複合酸化物におけるニッケルの一部を他の物質と置換する場合、多量の元素置換(言い換えればニッケル比率を低くした状態)を行った場合、熱安定性は高くなるものの、電池容量の低下が生じる。
For this reason, in order to stabilize the crystal structure in a state where lithium is removed by charging, and to obtain a lithium nickel composite oxide having good thermal stability and charge-discharge cycle characteristics as a positive electrode active material, lithium nickel composite oxide It is a common practice to replace some of the nickel in with other substances. For example, part of nickel is replaced with a transition metal element such as cobalt, manganese, or iron, or a different element such as aluminum, vanadium, or tin (see, for example, Patent Document 1).
However, when a part of nickel in the lithium-nickel composite oxide is replaced with another substance, when a large amount of element substitution (in other words, a state in which the nickel ratio is lowered) is performed, the thermal stability increases, but the battery capacity Decrease in

一方、電池容量の低下を防ぐために、少量の元素置換(言い換えればニッケル比率を高くした状態)を行った場合には、熱安定性が十分に改善されない。しかも、ニッケル比率が高くなれば、焼成時にカチオンミキシングを生じやすく合成が困難であるという問題点もある。
したがって、ニッケルの一部を他の物質と置換したリチウムニッケル複合酸化物は種々開発されているものの、非水系電解質二次電池における高容量化や高出力化の要求に十分に対応しているとはいえない。このような現状から、高容量化や高出力化の要求に十分に対応できるリチウムニッケル複合酸化物からなる正極活物質が求められている。
On the other hand, when a small amount of element substitution (in other words, a state in which the nickel ratio is increased) is performed to prevent a decrease in battery capacity, the thermal stability is not sufficiently improved. Furthermore, if the nickel ratio is high, there is also a problem that cation mixing easily occurs at the time of firing and synthesis is difficult.
Therefore, although various lithium-nickel composite oxides in which part of nickel is replaced with another substance have been developed, it is considered that they sufficiently correspond to the demand for higher capacity and higher output in non-aqueous electrolyte secondary batteries. I can not say. Under such circumstances, there is a demand for a positive electrode active material composed of a lithium nickel composite oxide that can sufficiently meet the demand for higher capacity and higher power.

上記課題に対応して、X線回折のリートベルト解析から得られるc軸の長さを調整することによって、正極活物質として使用した場合の熱安定性等を維持でき、さらにリチウムニッケル複合酸化物粒子の空隙率を制御してリチウムイオンの脱挿入の容易性を高めることで高容量化や高出力化を実現することができるようにした、高いニッケル比率を有する非水系電解質二次電池用正極活物質と、その製造方法が提案されている(特許文献3参照)。   By adjusting the length of the c-axis obtained from Rietveld analysis of X-ray diffraction in response to the above problems, the thermal stability etc. when used as a positive electrode active material can be maintained, and lithium nickel complex oxide is further obtained. A positive electrode for a non-aqueous electrolyte secondary battery having a high nickel ratio, in which high capacity and high output can be realized by controlling the porosity of particles to enhance the ease of lithium ion removal / insertion. An active material and a method for producing the same have been proposed (see Patent Document 3).

この特許文献3で例示されているような、高いニッケル比率を有する非水系電解質二次電池用正極活物質の開発を迅速かつ低コストで進めるためには、その評価手段は重要な開発要素の一つであり、その評価方法の希求性が高まっている。
その具体的な評価方法としては、組成分析やXRD、SEM−EDX、XPSなどの所謂分析評価方法があるが、非水系電解質二次電池用正極活物質の開発を進めていく上では、電池を実際に作製して電池特性の評価を行うことは不可欠である。
In order to advance the development of a positive electrode active material for a non-aqueous electrolyte secondary battery having a high nickel ratio as exemplified in Patent Document 3 rapidly and at low cost, the evaluation means is one of the important development factors. The need for evaluation methods is increasing.
Specific evaluation methods include so-called analytical evaluation methods such as composition analysis, XRD, SEM-EDX, and XPS, but in order to advance development of a positive electrode active material for a non-aqueous electrolyte secondary battery, the battery should be used. It is essential to actually manufacture and evaluate battery characteristics.

この電池評価においては、「充放電容量特性」と「電流出力特性」は正極活物質の抵抗評価として特に重要である。
電池の出力特性の評価方法には、直流法と交流法があり、直流法は電池に大電流を印可し、その際の電圧の降下量と印可した電流の大きさから抵抗を求める方法で、交流法は微小な電流を重畳印可し、周波数を変化させることで抵抗を分離する方法(交流インピーダンス法)である。
In the battery evaluation, the “charge / discharge capacity characteristics” and the “current output characteristics” are particularly important as the resistance evaluation of the positive electrode active material.
There are two methods for evaluating the output characteristics of a battery: direct current method and alternating current method. Direct current method applies a large current to the battery and determines the resistance from the amount of voltage drop and the applied current at that time. The AC method is a method (AC impedance method) in which a minute current is superimposed and applied, and the resistance is separated by changing the frequency.

この直流法による測定では、電池全体の抵抗(出力)評価となり、電池メーカーなどで用いられることが多い。一方、交流インピーダンス法による測定は、周波数を変えることで各抵抗成分の分離ができることから、正極活物質や、負極活物質の解析に用いられ、研究機関や、正極、負極、電解液メーカーなどで用いられている。   In this measurement by the direct current method, the resistance (output) of the entire battery is evaluated and often used by a battery maker or the like. On the other hand, in the measurement by the alternating current impedance method, since each resistance component can be separated by changing the frequency, it is used for analysis of the positive electrode active material and the negative electrode active material, and it is used in research institutes, positive electrodes, negative electrodes, electrolyte solution manufacturers, etc. It is used.

出力特性を評価する電池の作製において、負極にカーボンを用いる場合は、カーボン粒子をバインダーとともに溶媒を使ってスラリー化し混練、塗工、乾燥する作製方法が一般的であるが工程が煩雑となる。さらに、均一な分散、塗工膜厚や空隙構造も求められるため、金属リチウムシートを所望のサイズに切り抜いたものを使用する方法が簡易かつ速度的にもリーズナブルである。
しかし、電極にかかる圧力や電極間の電解液量、正、負極のサイズ、サイズ比などにより負極表面のデンドライトの生成状態が変化することから、特に電池の状態に過敏に反応する交流インピーダンス法などでは、再現性のあるデータを得ることが難しいといった問題もある。
When carbon is used for the negative electrode in the production of a battery for evaluating output characteristics, the carbon particles are slurried with a binder, using a solvent, kneaded, coated, and dried, but the process is complicated. Further, since uniform dispersion, coating film thickness and void structure are also required, a method using a metal lithium sheet cut out in a desired size is simple and reasonable in speed.
However, since the generation state of dendrite on the negative electrode surface changes depending on the pressure applied to the electrodes, the amount of electrolyte between the electrodes, positive, size of negative electrode, etc., the AC impedance method etc. However, there is also a problem that it is difficult to obtain reproducible data.

さらに正極の作製方法では、正極活物質を導電材、結着材、溶媒とともに混練、塗工、乾燥し、所望のサイズに打ち抜く、塗工法(例えば、特許文献2など)や、同様の部材を乾式混合し、ロールプレスなどを使ってシートを作製し、所望のサイズに打ち抜く、シート法が提案されている。
前者の塗工法は、塗工厚みを薄くすることが可能である特徴を有し、リチウムイオンの拡散が律速となるリチウムイオン二次電池において塗工厚みを薄く、リチウムの拡散距離を短くすることで、高レートでの充放電を可能とするもので、直流法による抵抗評価が可能なリチウムイオン二次電池を得ることができるが、負極作製と同様に工程が煩雑で、研究開発などの少量多品種の評価が必要な開発用電池作製には適当ではない。
Furthermore, in the method of manufacturing the positive electrode, the positive electrode active material is kneaded, coated and dried with a conductive material, a binder, and a solvent, and then coated and dried to a desired size (for example, Patent Document 2 etc.) A sheet method has been proposed in which the dry mixing is performed, a sheet is produced using a roll press or the like, and the sheet is punched into a desired size.
The former coating method is characterized in that the thickness of the coating can be reduced, and the thickness of the coating is reduced and the diffusion distance of lithium is shortened in a lithium ion secondary battery in which the diffusion of lithium ions is limited. Therefore, it is possible to obtain a lithium ion secondary battery that can be charged and discharged at a high rate and that can be evaluated for resistance by the direct current method, but the process is complicated as in the negative electrode production, and a small amount such as research and development It is not suitable for the development of a battery for development that requires evaluation of many varieties.

後者の乾式混合によるシート法では、塗工による電極作製法と比べ、手早く電極が作製できるメリットを有するが、電極が厚くなることから高レートを印可する直流法による抵抗評価は難しい。このような電極が厚い電池の場合は、印可する電流が微小な交流インピーダンス法による抵抗評価が好ましい。   The latter dry mixing sheet method has an advantage that the electrode can be prepared quickly compared to the electrode preparation method by coating, but since the electrode becomes thick, it is difficult to evaluate the resistance by the direct current method in which a high rate is applied. In the case of a battery in which such an electrode is thick, resistance evaluation by an alternating current impedance method in which a current to be applied is minute is preferable.

セパレーターには、厚み数十ミクロンのポリプロピレン、あるいはポリエチレン製多孔膜を用いることが一般的である。これらのセパレーターは、短絡の際、発生する熱により収縮し、細孔を閉じることで電池としての機能を停止することが出来、これにより電池としての安全性を向上させることができる。
しかし、これらのセパレーターは安全性の面ではメリットがあるものの電解液の保液性や濡れ性が悪く、電極間の電解液量が安定せず、測定再現性が不安定になる。という問題もある。特にセルの小さな抵抗変化に敏感に反応する交流インピーダンス法においては、測定再現性の面で評価セル用部材として用いるのは難しい。
It is common to use a porous film made of polypropylene or polyethylene having a thickness of several tens of microns as the separator. These separators shrink due to heat generated during a short circuit, and the pores can be closed to stop the function as a battery, thereby improving the safety as a battery.
However, although these separators have merits in terms of safety, they have poor liquid retention and wettability of the electrolytic solution, the amount of the electrolytic solution between the electrodes is not stable, and measurement reproducibility becomes unstable. There is also the problem of. In particular, in an AC impedance method sensitively responding to a small resistance change of a cell, it is difficult to use as a member for an evaluation cell in terms of measurement reproducibility.

電池の各部分の作製において常に安定した品質を維持し、電池の組立精度を高く保つ事はもちろんであるが、組立後の温度制御や通電によるコンディショニングは抵抗測定のためには特に重要である。
この中でも特に充電終了後間もない初期の交流インピーダンスは、条件の変動に敏感であり、その測定データの信頼性が課題となっている。このように従来の電池作製および測定方法では、開発の評価や生産品の出荷前検査を目的とした場合、安定性、作業性、即応性そしてコスト的に適切に対処されているとは言い難いものであった。
While maintaining stable quality at all times in the preparation of each part of the battery and keeping the assembly accuracy of the battery high, of course, temperature control after assembly and conditioning by energization are particularly important for resistance measurement.
Among these, the AC impedance in the early stage especially after the end of charging is sensitive to the fluctuation of the condition, and the reliability of the measurement data is an issue. As described above, it is difficult to say that conventional battery preparation and measurement methods are appropriately dealt with in terms of stability, workability, quick response, and cost for the purpose of development evaluation and pre-shipment inspection of products. It was a thing.

特開平5−242891号公報Unexamined-Japanese-Patent No. 5-242891 特開2014−103107号公報JP, 2014-103107, A 国際公開2015/008582号公報International Publication 2015/008582

そこで、本発明は、上記問題点に鑑み、高いニッケル比率を有する非水系電解質二次電池用正極活物質の開発を迅速かつ低コストで進めるためには、その評価条件を制御でき、安定、且つ精度良く交流インピーダンス測定と初期充放電容量測定を同時に評価可能とする非水系電解質コイン型電池を用いた電池特性評価方法及び、その評価方法を用いた非水系電解質二次電池用正極活物質の電池特性評価方法の提供を目的とするものである。   Therefore, in view of the above problems, the present invention can control its evaluation conditions in order to accelerate the development of the positive electrode active material for non-aqueous electrolyte secondary batteries having a high nickel ratio at low cost, and be stable and A method for evaluating battery characteristics using a non-aqueous electrolyte coin-type battery capable of simultaneously evaluating AC impedance measurement and initial charge / discharge capacity measurement accurately and a battery of a positive electrode active material for a non-aqueous electrolyte secondary battery using the evaluation method The purpose is to provide a characterization method.

本発明者は、高いニッケル比率を有する非水系電解質二次電池用正極活物質の開発を迅速かつ低コストで進める上で、重要な評価指標となる、初期充放電容量測定と交流インピーダンス測定による電流出力特性とを同時に、その評価条件を制御でき、安定、且つ精度良く評価可能とする、非水系電解質コイン型電池を用いた電池特性評価方法として、
特に、交流インピーダンス測定を行う場合に、コイン電池を作製して所定の時間静置した後に、充電および放電を行ない、定電流充放電サイクルを実施して初期充放電容量を測定し、その後、所定の休止時間を経て、定電流定電圧充電を行ない、前記定電流定電圧充電の終了後、所定の時間内に交流インピーダンス法による抵抗測定を行うことで、安定した抵抗測定が可能となり、初期充放電容量測定をも連続して行えることから、電池特性測定時間を短縮するため効率的な電池評価が可能となることを見出し、本発明を完成した。
The inventor of the present invention has made it possible to quickly and inexpensively develop a positive electrode active material for a non-aqueous electrolyte secondary battery having a high nickel ratio, which is an important evaluation index, an electric current by initial charge / discharge capacity measurement and AC impedance measurement. As a battery characteristic evaluation method using a non-aqueous electrolyte coin type battery, which can control the evaluation conditions simultaneously and can evaluate the output characteristics stably and accurately.
In particular, when AC impedance measurement is performed, a coin battery is produced and allowed to stand for a predetermined time, then charging and discharging are performed, a constant current charge and discharge cycle is performed, and an initial charge and discharge capacity is measured. The constant current constant voltage charging is performed after the rest time, and after the termination of the constant current constant voltage charging, the resistance measurement by the AC impedance method is performed within a predetermined time, which makes stable resistance measurement possible, and the initial charging is performed. Since discharge capacity measurement can also be continuously performed, it has been found that efficient battery evaluation can be performed in order to shorten the battery characteristic measurement time, and the present invention has been completed.

本発明の第1の発明は、正極活物質を含む正極膜と、負極膜とがセパレーターを介し対向配置された電極部を有する非水系電解質コイン型電池を用いた電池特性評価方法であって、正極活物質が、「一般式:LiNiCo・・・(1)」(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、bは0.95≦b≦1.03、c=1−x−y、0.84≦c<1.00、xは0<x≦0.15、yは0<y≦0.07、x+y≦0.16)で表されるニッケル含有率が高いリチウムニッケル複合酸化物であり、前記正極活物質を含む正極膜と、負極膜とがセパレーターを介し対向配置された電極部を有する非水系電解質コイン型電池の作製、静置後に、定電流充電、休止、定電流放電を行う定電流充放電サイクルを実施して初期充放電容量を測定し、その後、休止時間を経て、定電流定電圧充電を行ない、前記定電流定電圧充電の終了後1時間以内に交流インピーダンス法による抵抗測定を実施することを特徴とする非水系電解質コイン型電池を用いた電池特性評価方法である。 A first invention of the present invention is a battery characteristic evaluation method using a non-aqueous electrolyte coin type battery having an electrode part in which a positive electrode film containing a positive electrode active material and an negative electrode film are disposed opposite to each other with a separator interposed. The positive electrode active material is “general formula: Li b Ni C Co x M y O 2 (1)” (wherein, M represents at least one element selected from Al, Ti, Mn and W) , B is 0.95 ≦ b ≦ 1.03, c = 1−x−y, 0.84 ≦ c <1.00, x is 0 <x ≦ 0.15, y is 0 <y ≦ 0.07 And x + y ≦ 0.16), and the positive electrode film containing the positive electrode active material and the negative electrode film have an electrode portion in which the positive electrode film and the negative electrode film face each other with a separator interposed therebetween. Preparation of water-based electrolyte coin type battery, constant current charge, rest, constant current discharge after standing Conduct the current charge and discharge cycle to measure the initial charge and discharge capacity, and after the rest time, perform constant current constant voltage charging, and measure the resistance by the AC impedance method within one hour after the completion of the constant current constant voltage charging. A method of evaluating battery characteristics using a non-aqueous electrolyte coin cell according to claim 1.

本発明の第2の発明は、第1の発明における抵抗測定が、前記定電流定電圧充電終了後、0.05時間以上、1時間以内に実施されることを特徴とする非水系電解質コイン型電池を用いた電池特性評価方法である。   A second invention of the present invention is the non-aqueous electrolyte coin type, wherein the resistance measurement in the first invention is carried out within 0.05 hours or more and within 1 hour after the termination of the constant current constant voltage charging. It is a battery characteristic evaluation method using a battery.

本発明の第3の発明は、第1及び第2の発明における負極膜が、金属リチウム又はリチウムを主成分とする金属であることを特徴とする非水系電解質コイン型電池を用いた電池特性評価方法である。   A third invention of the present invention is the battery characteristic evaluation using a non-aqueous electrolyte coin type battery characterized in that the negative electrode film in the first and second inventions is metal lithium or a metal containing lithium as a main component. It is a method.

本発明の第4の発明は、第1から第3の発明におけるコイン型電池が、2032型、あるいは、2016型コイン電池であることを特徴とする非水系電解質コイン型電池を用いた電池特性評価方法である。   According to a fourth aspect of the present invention, there is provided a non-aqueous electrolyte coin type cell characterized in that the coin type cell of the first to third aspects is a 2032 type or 2016 type coin cell. It is a method.

本発明の第5の発明は、第1から第4の発明のいずれか1項に記載の非水系電解質コイン型電池を用いた電池特性評価方法を用いて、「一般式:LiNiCo・・・(1)」(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、bは0.95≦b≦1.03、c=1−x−y、0.84≦c<1.00、xは0<x≦0.15、yは0<y≦0.07、x+y≦0.16)で表されるニッケル含有率が高いリチウムニッケル複合酸化物である非水系電解質二次電池用正極活物質の特性を把握することを特徴とする非水系電解質二次電池用正極活物質の電池特性評価方法である。 According to a fifth aspect of the present invention, there is provided a battery according to any one of the first to fourth aspects of the present invention, characterized in that “the general formula: Li b Ni C Co” is used. x M y O 2 (1) (wherein, M represents at least one element selected from Al, Ti, Mn and W, and b is 0.95 ≦ b ≦ 1.03, c Nickel content represented by: 1−x−y, 0.84 ≦ c <1.00, x is 0 <x ≦ 0.15, y is 0 <y ≦ 0.07, x + y ≦ 0.16) A method of evaluating battery characteristics of a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by grasping the characteristics of the positive electrode active material for a non-aqueous electrolyte secondary battery, which is a lithium nickel composite oxide having a high

本発明によれば、ニッケル含有率の高いリチウムを含む非水系電解質二次電池用正極活物質を用いた正極と、金属リチウムまたはリチウムを主成分とする金属からなる負極とがセパレーターを挟んで向かい合うように配置された電極部を、非水系電解液に浸漬した形の2032型、あるいは、2016型コイン電池を用いた電池特性評価方法において、特に、交流インピーダンス測定を行う場合に、コイン電池を作製して所定の時間静置した後に、充電および放電を行ない、定電流充放電サイクルを実施して初期充放電容量を測定し、その後、所定の休止時間を経て、定電流定電圧充電を行ない、前記定電流定電圧充電の終了後、所定の時間内に交流インピーダンス法による抵抗測定を行うことで、安定した抵抗測定が可能とするものである。上記非水系電解質コイン型電池を用いた電池特性評価方法を用いることにより、この評価方法を用いた非水系電解質二次電池用正極活物質の電池特性評価が行われ、正極活物質の開発並びに高性能な電池開発に対して、工業的に顕著な効果を奏するものである。   According to the present invention, a positive electrode using a positive electrode active material for a non-aqueous electrolyte secondary battery containing lithium having a high nickel content and a negative electrode consisting of metal lithium or a metal containing lithium as a main component face each other with a separator interposed therebetween. In the battery characteristics evaluation method using the 2032 type or 2016 type coin battery in which the electrode portions arranged as described above are immersed in a non-aqueous electrolyte solution, a coin battery is manufactured particularly when AC impedance measurement is performed. Then, after standing for a predetermined time, charge and discharge are performed, a constant current charge / discharge cycle is performed to measure an initial charge / discharge capacity, and then constant current / constant voltage charge is performed after a predetermined rest time. After the termination of the constant current / constant voltage charging, by performing the resistance measurement by the AC impedance method within a predetermined time, stable resistance measurement is made possible.By using the above battery performance evaluation method using the non-aqueous electrolyte coin type battery, the battery performance evaluation of the positive electrode active material for a non-aqueous electrolyte secondary battery using this evaluation method is carried out, development of the positive electrode active material and high performance. It has an industrially significant effect on high-performance battery development.

さらに、この構成を用いた評価用電池の評価方法は、電池間の抵抗値のバラつきが少ない安定した評価結果が得られる利点を有するものである。   Furthermore, the evaluation method of a battery for evaluation using this configuration has the advantage that stable evaluation results with less variation in resistance value among the batteries can be obtained.

実施例で用いた評価用2032型コイン電池を示す断面図である。It is sectional drawing which shows the 2032 type coin battery for evaluation used in the Example. インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。It is a schematic explanatory drawing of the equivalent circuit used for the measurement example of impedance evaluation, and analysis. 本発明の電池評価フロー図である。It is a battery evaluation flowchart of this invention.

本発明は、非水系電解質コイン型電池を用いた電池特性評価方法と、その評価方法を用いた非水系電解質二次電池用正極活物質の電池特性評価方法に関するものであり、正極活物質を含む正極膜と、負極膜とがセパレーターを介し対向配置された電極部を有する非水系電解質コイン型電池を用いた電池特性評価方法で、その正極活物質が、ニッケル含有率が高いリチウムニッケル複合酸化物であり、正極活物質を含む正極膜と、負極膜とがセパレーターを介し対向配置された電極部を有する非水系電解質コイン型電池の作製、静置後に、定電流充電、休止、定電流放電を行う定電流充放電サイクルを実施して初期充放電容量を測定し、その後、休止時間を経て、定電流定電圧充電を行ない、その定電流定電圧充電の終了後1時間以内に交流インピーダンス法による抵抗測定を実施することを特徴とする非水系電解質コイン型電池を用いた電池特性評価方法である。   The present invention relates to a method for evaluating battery characteristics using a non-aqueous electrolyte coin type battery, and a method for evaluating battery characteristics of a positive electrode active material for a non-aqueous electrolyte secondary battery using the evaluation method, including a positive electrode active material A battery characteristic evaluation method using a non-aqueous electrolyte coin type battery having an electrode part in which a positive electrode film and a negative electrode film are disposed opposite to each other with a separator interposed therebetween, the positive electrode active material is lithium nickel composite oxide having a high nickel content Preparation of a non-aqueous electrolyte coin-type battery having an electrode part in which a positive electrode film containing a positive electrode active material and a negative electrode film are disposed opposite to each other with a separator interposed. After standing, constant current charge, pause, constant current discharge Conduct the constant current charge and discharge cycle to measure the initial charge and discharge capacity, and after the rest time, perform constant current constant voltage charging, and within 1 hour of the termination of the constant current constant voltage charging A battery characteristic evaluation method using the non-aqueous electrolyte coin type battery which comprises carrying out the resistance measurement by impedance method.

即ち、本発明に係る非水系電解質コイン型電池を用いた電池特性評価方法は図3に示すフローのとおりで、上記非水系電解質コイン型電池の作製、静置後に、定電流充電、休止、定電流放電を行う定電流充放電サイクルを実施して初期充放電容量を測定し、その後、休止時間を経て、定電流定電圧充電を行ない、ついで休止時間を経て、交流インピーダンス法による抵抗測定を実施するが、定電流定電圧充電後から抵抗測定までの休止時間が、ニッケル含有率の高い正極活物質の上記交流インピーダンス法による抵抗測定結果に影響を与えることを見出した結果、発明したものである。   That is, the method for evaluating the battery characteristics using the non-aqueous electrolyte coin battery according to the present invention is as shown in the flow of FIG. 3, and the above non-aqueous electrolyte coin battery is manufactured. Conduct a constant current charge / discharge cycle to conduct current discharge to measure the initial charge / discharge capacity, and then perform constant current constant voltage charging after a rest time, then perform resistance measurement by AC impedance method after a rest time However, it was invented as a result of finding that the rest time from the constant current constant voltage charging to the resistance measurement affects the resistance measurement result of the positive electrode active material having a high nickel content by the above-mentioned AC impedance method. .

上記交流インピーダンス法による抵抗測定までの休止時間を1時間以内とすることにより、交流インピーダンス測定(以下、インピーダンス測定とも称す。)で得られる抵抗値を精度よく安定して得ることができる。
その理由としては、上記交流インピーダンス法による抵抗測定までの休止時間は、図3に示す通り、高電圧充電状態で電池を放置することになる。
本発明で評価する正極活物質は、ニッケル含有率が高いリチウムニッケル複合酸化物であるため、ニッケル含有率が高いほどコバルト含有率が低くなる。上記コバルトは、サイクル劣化を抑える作用を有し、結晶構造を安定化させていることから、ニッケル含有率が高いほど、不安定な結晶構造となり、高電位のまま放置されることによって結晶構造が変異する現象が起きやすくなり、休止時間の経過とともに交流インピーダンス測定で得られる抵抗が増すと考えられる。
By setting the rest time to the resistance measurement by the AC impedance method within one hour, the resistance value obtained by the AC impedance measurement (hereinafter also referred to as impedance measurement) can be accurately and stably obtained.
The reason for this is that, as shown in FIG. 3, the battery is left in the high voltage charging state as the rest time until the resistance measurement by the AC impedance method is performed.
Since the positive electrode active material evaluated in the present invention is a lithium nickel composite oxide having a high nickel content, the cobalt content decreases as the nickel content increases. The above cobalt has the effect of suppressing cycle deterioration and stabilizes the crystal structure. Therefore, the higher the nickel content, the more unstable the crystal structure becomes, and the crystal structure becomes stable by being left at high potential. It is thought that the phenomenon of mutation is likely to occur, and the resistance obtained in the AC impedance measurement increases with the elapse of the pause time.

さらに、ニッケル含有率が高いほどこの傾向は顕著となるため、休止時間は短い方がより精度高く安定した測定結果を得ることができるので好ましい。
一方、ニッケル含有率が低くなると休止時間が1時間を超えても、インピーダンス測定で得られる抵抗値のバラつきは小さくなる。
Furthermore, since the tendency becomes more remarkable as the nickel content is higher, it is preferable that the shorter the pause time, the more accurate and stable measurement result can be obtained.
On the other hand, when the nickel content decreases, the variation in resistance obtained in impedance measurement decreases even if the rest time exceeds one hour.

1.正極活物質
次に、本発明の電池特性評価方法に用いる非水系電解質コイン型電池では、評価に用いる正極活物質は、一般式:LiNiCo(Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、bは0.95≦b≦1.03、c=1−x−y、0.84≦c<1.00、xは0<x≦0.15、yは0<y≦0.07、x+y≦0.16)で表されるリチウムニッケル複合酸化物である。
1. Cathode Active Material Next, in the non-aqueous electrolyte coin-type battery used for the battery characteristics evaluation method of the present invention, the cathode active material used for evaluation has a general formula: Li b Ni C Co x M y O 2 (M is Al, At least one element selected from Ti, Mn and W, b is 0.95 ≦ b ≦ 1.03, c = 1−x−y, 0.84 ≦ c <1.00, x is 0 < It is a lithium nickel composite oxide represented by x ≦ 0.15, y is 0 <y ≦ 0.07, x + y ≦ 0.16).

[Ni含有量]
本発明の正極活物質は、六方晶系のリチウムニッケル複合酸化物であって、上記一般式においてニッケル(Ni)の含有量を示す下付き添え字「c」が、0.84以上である。
本発明の正極活物質におけるニッケルの含有量の上限は、ニッケル含有量が多いほど正極活物質として使用した場合に高容量化が可能となる一方、多くなり過ぎると、熱安定性が十分得られなくなったり、焼成時にカチオンミキシングが発生しやすくなったりするために1.0未満とする。
逆に、ニッケルの含有量が少なくなると、容量が低下し、0.84よりも少なくなると、正極の充填性を高めても電池容積当たりの容量が十分に得られないなどの問題も生じる。
したがって、本発明の正極活物質において、ニッケルの含有量は、0.84以上1.00未満、さらに0.84以上0.98以下とすることが好ましく、0.845以上0.950以下がより好ましく、0.85以上0.95以下がさらに好ましい。
[Ni content]
The positive electrode active material of the present invention is a hexagonal lithium nickel complex oxide, and the subscript "c" indicating the content of nickel (Ni) in the above general formula is 0.84 or more.
The upper limit of the content of nickel in the positive electrode active material of the present invention can be high capacity when it is used as a positive electrode active material as the nickel content is large, but when it is too large, sufficient thermal stability is obtained It is less than 1.0 in order to eliminate or to make cation mixing more likely to occur during firing.
On the other hand, when the content of nickel decreases, the capacity decreases, and when the content is less than 0.84, problems such as a sufficient capacity per battery volume can not be obtained even if the chargeability of the positive electrode is increased.
Therefore, in the positive electrode active material of the present invention, the content of nickel is preferably 0.84 or more and less than 1.00, more preferably 0.84 or more and 0.98 or less, and more preferably 0.845 or more and 0.950 or less. Preferably, 0.85 or more and 0.95 or less are more preferable.

[Co含有量]
本発明の正極活物質は、コバルト(Co)を含有している。このコバルトが含まれていることによって、正極活物質のサイクル特性を改善することができる。
本発明の正極活物質において、コバルトの含有量が増えることによって正極活物質のサイクル特性を改善することができる一方、コバルトの含有量が0.15を超えると、正極活物質の高容量化が困難となる。
[Co content]
The positive electrode active material of the present invention contains cobalt (Co). By including this cobalt, the cycle characteristics of the positive electrode active material can be improved.
In the positive electrode active material of the present invention, the cycle characteristics of the positive electrode active material can be improved by increasing the content of cobalt, while when the content of cobalt exceeds 0.15, the capacity of the positive electrode active material is increased. It will be difficult.

したがって、本発明の正極活物質のサイクル特性を向上させつつ高容量化を実現する上では、コバルトの含有量(上記一般式ではx)を0<x≦0.15とする。
一方、コバルトの含有量が少なすぎると、コバルトを含有させてもサイクル特性を十分に改善できない可能性があるので、本発明の正極活物質におけるコバルトの含有量xは、0.03≦x≦0.15以上がより好ましく、0.05≦x≦0.12がより好ましい。
Therefore, in order to increase the capacity while improving the cycle characteristics of the positive electrode active material of the present invention, the cobalt content (x in the above general formula) is set to 0 <x ≦ 0.15.
On the other hand, when the content of cobalt is too small, the cycle characteristics may not be sufficiently improved even when cobalt is contained, so the content x of cobalt in the positive electrode active material of the present invention is 0.03 ≦ x ≦ 0.15 or more are more preferable, and 0.05 <= x <= 0.12 are more preferable.

[添加元素の含有]
本発明の正極活物質は、電池特性を改善する効果を得るために、コバルト以外にも、他の元素を含有させてもよい。
例えば、添加元素(上記一般式ではM)として、Al、Ti、MnおよびWから選ばれる少なくとも1種の添加元素を添加すれば、熱安定性などの電池特性を改善することが可能となる。
[Containment of additional elements]
The positive electrode active material of the present invention may contain other elements in addition to cobalt in order to obtain the effect of improving the battery characteristics.
For example, when at least one additive element selected from Al, Ti, Mn and W is added as an additive element (M in the above general formula), battery characteristics such as thermal stability can be improved.

本発明の正極活物質における添加元素の含有量は、その含有量(上記一般式ではy)が0.07を超えると、正極活物質の高容量化が困難となる。添加元素の含有による十分な電池特性の改善効果を得るためには、添加元素の含有量を0.01以上とすることが好ましい。
したがって、本発明の正極活物質の電池特性の改善しつつ高容量化を実現するには、0<y≦0.07であり、0.01≦y≦0.05がより好ましい。
When the content of the additive element in the positive electrode active material of the present invention (y in the above general formula) exceeds 0.07, it is difficult to increase the capacity of the positive electrode active material. In order to obtain a sufficient improvement effect on battery characteristics by the addition of the additive element, it is preferable to set the content of the additive element to 0.01 or more.
Therefore, in order to achieve high capacity while improving the battery characteristics of the positive electrode active material of the present invention, 0 <y ≦ 0.07, and 0.01 ≦ y ≦ 0.05 is more preferable.

[Li含有量]
本発明の正極活物質におけるリチウム(Li)の含有量(上記一般式ではb)は、0.95以上、1.03以下である。
リチウムの含有量が0.95未満になると、層状化合物におけるリチウム層にNiなどの金属元素が混入してLiの挿抜性が低下するため、電池容量が低下するとともに出力特性が悪化する。一方、リチウムの含有量が1.03を超えても層状化合物におけるメタル層にLiが混入するため、電池容量が低下する。
したがって、本発明の正極活物質におけるリチウムの含有量は、電池容量および出力特性を維持する上では、0.95≦b≦1.03であり、0.95≦b≦1.01がより好ましい。
[Li content]
The content (b in the above general formula) of lithium (Li) in the positive electrode active material of the present invention is 0.95 or more and 1.03 or less.
When the lithium content is less than 0.95, a metal element such as Ni is mixed in the lithium layer in the layered compound to lower the lithium insertion / removal property, so the battery capacity is lowered and the output characteristics are deteriorated. On the other hand, even if the lithium content exceeds 1.03, Li is mixed in the metal layer in the layered compound, so the battery capacity is reduced.
Therefore, the content of lithium in the positive electrode active material of the present invention is 0.95 ≦ b ≦ 1.03, and more preferably 0.95 ≦ b ≦ 1.01, in order to maintain the battery capacity and the output characteristics. .

このように公知の技術を用いて、成分組成、粒度、表面などの正極活物質の特性に影響する各因子を考慮して作製した正極活物質を用いる。
さらに、正極は、正極活物質の他に、導電材やバインダー(結着材)などの助剤を混合した正極合材を構成して用いられる。
電池の評価にも、これらの助材の影響を受けることから適正なものを用いて評価用電池を作製する。
As described above, using a known technique, a positive electrode active material manufactured in consideration of each factor affecting the characteristics of the positive electrode active material such as the component composition, the particle size, and the surface is used.
Furthermore, the positive electrode is used by forming a positive electrode mixture in which auxiliary agents such as a conductive material and a binder (binder) are mixed in addition to the positive electrode active material.
For the evaluation of the battery, a battery for evaluation is manufactured using an appropriate one because it is affected by these additives.

導電材は、正極活物質粒子間の電気伝導性を高め、正極の充放電反応を効率的に行うためのものであり、一般的な非水系電解質二次電池で使用されている導電材であればよく、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラック(登録商標)などのカーボンブラック系材料などの炭素材料を単体、もしくは複合して用いることができる。   The conductive material is for enhancing the electrical conductivity between the positive electrode active material particles and efficiently performing the charge / discharge reaction of the positive electrode, and may be a conductive material used in general non-aqueous electrolyte secondary batteries. For example, carbon materials such as graphite (natural graphite, artificial graphite, expanded graphite and the like) and carbon black materials such as acetylene black and ketjen black (registered trademark) can be used alone or in combination.

バインダー(結着材)は、正極活物質粒子をつなぎ止める役割を果たすもので、一般的な非水系電解質二次電池で使用されているものであればよく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴムなどの含フッ素樹脂、ポリプロピレン、ポリエチレンなどの熱加塑性樹脂、エチレンプロプレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。   The binder (binding material) plays the role of connecting and keeping the positive electrode active material particles, and may be one used in a general non-aqueous electrolyte secondary battery, for example, polytetrafluoroethylene, polyvinylidene fluoride A fluorine-containing resin such as fluorine rubber, a heat plasticity resin such as polypropylene and polyethylene, ethylene propylene rubber, styrene butadiene, a cellulose resin, polyacrylic acid and the like can be used.

さらに、正極膜の作製には乾式による混合処理が含まれており、その混合具合によっては正極膜の特性に悪影響を及ぼす恐れもあり、そこで乾式混合に用いる装置は、乾式ボールミル、乾式ビーズミル、ブレード遊星運動型の混合機、容器回転型の遊星運動混合機、攪拌機、ホモジナイザーなどが挙げられるが、容器回転型の遊星運動混合機が好ましい。
遊星運動混合機は、短時間で均一な混合が可能であり、高い生産性で均一な混合物を得られることができる。
Furthermore, the preparation of the positive electrode film involves dry mixing treatment, which may adversely affect the characteristics of the positive electrode film depending on the degree of mixing, and devices used for dry mixing there are dry ball mills, dry bead mills, blades. A planetary motion type mixer, a container rotational type planetary motion mixer, a stirrer, a homogenizer, etc. may be mentioned, but a container rotational type planetary motion mixer is preferable.
The planetary motion mixer can perform uniform mixing in a short time, and can obtain a high productivity and a uniform mixture.

このようにして得られる正極は、その作製が簡易且つ迅速であり、迅速な電池作製が求められる評価用電池の作製に好適である。その際には、正極中に含まれる正極活物質を負極と対向する正極面積あたり、50〜60mg/cmの範囲で制御することが好ましい。 The positive electrode thus obtained is simple and quick in its production, and is suitable for producing a battery for evaluation in which rapid battery production is required. In that case, it is preferable to control the positive electrode active material contained in the positive electrode in the range of 50 to 60 mg / cm 2 per positive electrode area facing the negative electrode.

2.負極
さらに、本発明の電池特性評価方法に用いる非水系電解質コイン型電池を構成する際には、負極に、金属リチウム、リチウムを主成分とする合金等を使用することが好ましい。上記金属リチウム箔、あるいは、リチウムを主成分とする合金箔を、打ち抜くことで負極を得ることができる。
2. Negative Electrode Furthermore, when configuring the non-aqueous electrolyte coin-type battery used in the battery characteristics evaluation method of the present invention, it is preferable to use metallic lithium, an alloy containing lithium as a main component, or the like for the negative electrode. The negative electrode can be obtained by punching out the metal lithium foil or an alloy foil containing lithium as a main component.

3.セパレーター
また、本発明の電池特性評価方法に用いる非水系電解質コイン型電池を構成する際には、正極と負極との間にセパレーターを挟み込んで配置する。
上記セパレーターは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い樹脂膜で、微小な穴を多数有する樹脂膜を用いることができる。ただ、これらの樹脂膜は撥油性が高いため抵抗評価結果のばらつき原因となる。
3. Separator Further, when configuring a non-aqueous electrolyte coin-type battery used in the battery characteristics evaluation method of the present invention, a separator is interposed between a positive electrode and a negative electrode.
The separator separates the positive electrode and the negative electrode and holds the electrolyte, and may be a thin resin film of polyethylene, polypropylene or the like, and a resin film having many fine holes can be used. However, since these resin films have high oil repellency, they cause dispersion of the resistance evaluation results.

その厚みは樹脂膜より厚いが、電解液の吸液性が高いガラス繊維を用いることで、短時間に電極内部または電極間に十分な電解質の供給が可能となり、安定した電池評価をすることができるため好ましい。
またセパレーターの厚みが厚くなると、正極と負極の間の距離が広くなるため、20〜1000μmであることが好ましく、50〜800μmであることがより好ましい。
Although the thickness is thicker than the resin film, by using the glass fiber having high liquid absorbability of the electrolyte, sufficient electrolyte can be supplied in the electrode or between the electrodes in a short time, and stable battery evaluation can be performed. It is preferable because it can be done.
When the thickness of the separator is increased, the distance between the positive electrode and the negative electrode is increased. Therefore, the thickness is preferably 20 to 1000 μm, and more preferably 50 to 800 μm.

4.非水系電解液
さらに、本発明の電池特性評価方法に用いる非水系電解質コイン型電池を構成する際には、非水系電解液としては、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いることが好ましい。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらにテトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独であるいは2種以上を混合して用いることができる。
4. Nonaqueous Electrolyte Furthermore, when constructing the nonaqueous electrolyte coin type battery used for the battery characteristic evaluation method of the present invention, as nonaqueous electrolyte, what used lithium salt as a supporting salt dissolved in organic solvent is used. Is preferred.
As the organic solvent, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate, and further tetrahydrofuran, 2-methyl Use one or a mixture of two or more selected from ether compounds such as tetrahydrofuran and dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butanesultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate it can.

支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。さらに非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 and the like, and complex salts thereof can be used. Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.

5.非水系電解質コイン型電池 以上説明してきた正極、負極、セパレーター及び非水系電解液で構成される本発明に係わる非水系電解質コイン型電池の形状は、2032型、あるいは、2016型コイン電池であることが、作製の容易さ、評価の再現性などから望ましい。図1には2032型コイン電池の断面図を示す。
正極1および負極2を、セパレーター3を介して電極部8とし、上記電極体に上記した所定の非水系電解液を含浸させる。以上の構成のものをコイン電池に密閉して本発明に用いる非水系電解質コイン型電池を完成させることができる。
5. Nonaqueous Electrolyte Coin Type Battery The nonaqueous electrolyte coin type battery according to the present invention, which is composed of the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution described above, is a 2032 type or 2016 type coin battery However, it is desirable from the easiness of preparation, the reproducibility of evaluation, etc. FIG. 1 shows a cross-sectional view of a 2032 type coin battery.
The positive electrode 1 and the negative electrode 2 are made into the electrode part 8 through the separator 3, and the above-mentioned electrode body is impregnated with the above-mentioned predetermined non-aqueous electrolytic solution. The non-aqueous electrolyte coin-type battery used in the present invention can be completed by sealing the above configuration into a coin battery.

これまで説明してきた非水系電解質二次電池用正極活物質の特性評価用コイン型電池の作製法についてさらに詳しく説明する。
本発明における作製法は、少なくとも正極作製工程と、負極作製工程と、電極部形成工程と、電池組み立て工程を含み、その他公知の非水系電解質コイン型二次電池の作製工程に準拠して行われる。
The manufacturing method of the coin-type battery for characteristic evaluation of the positive electrode active material for non-aqueous electrolyte secondary batteries demonstrated so far is demonstrated in more detail.
The manufacturing method in the present invention includes at least a positive electrode manufacturing step, a negative electrode manufacturing step, an electrode portion forming step, and a battery assembling step, and is performed based on other known nonaqueous electrolyte coin type secondary battery manufacturing steps. .

[正極作製工程と負極作製工程]
正極作製工程は、正極活物質と導電材や結着材などの助材を、均質に混ぜ合わせて正極膜の基材となる正極活物質や助材が均質に分散した状態の正極合材を作製する混合処理を行う。
この混合処理は、乾式混合方式であれば、乾式ボールミル、乾式ビーズミル、ブレード遊星運動型の混合機、容器回転型の遊星運動混合機、攪拌機、ホモジナイザーなどが利用できるが、特に容器回転型の遊星運動混合機を用いると均質な正極合材が得られやすい。さらに、正極合材を作製した後、ロールプレスなどを使ったシート法により正極膜を作製し、所望のサイズに打ち抜くことが好ましい。
負極作製工程では、本発明で、負極に用いる、金属リチウム箔、あるいは、リチウムを主成分とする合金箔を、打ち抜くことで得る負極を得ることが好ましい。
[Positive electrode preparation process and negative electrode preparation process]
In the positive electrode preparation step, the positive electrode mixture in a state in which the positive electrode active material and the auxiliary material as the base material of the positive electrode film are uniformly dispersed by uniformly mixing the positive electrode active material and the auxiliary material such as the conductive material and the binder. Perform mixed processing to make.
For this mixing process, a dry ball mill, a dry bead mill, a blade planetary motion type mixer, a container rotation type planetary motion mixer, a stirrer, a homogenizer, etc. can be used if it is a dry mixing method. It is easy to obtain a homogeneous positive electrode mixture by using a motion mixer. Furthermore, after producing a positive electrode mixture, it is preferable to produce a positive electrode film by a sheet method using a roll press or the like and to punch it into a desired size.
In the negative electrode production step, it is preferable to obtain a negative electrode obtained by punching out a metal lithium foil or an alloy foil containing lithium as a main component, which is used in the present invention in the present invention.

この正極作製工程、及び負極作製工程で作製される正極膜、負極膜は、その両者が対向配置された場合の向き合う各面の形状が、円形若しくは回転対称軸を有する平面形状で、その正極膜径(φ)と負極膜径(φ)との寸法比(φ/φ)を、0.80〜0.90の範囲となるように関連付けられて作製されることが好ましい。
この正極膜と負極膜の電極サイズ比を、0.80〜0.90の範囲内で制御することにより、交流インピーダンス測定で得られる正極反応抵抗の円弧と負極反応抵抗の円弧の分離が可能で、正極だけの反応抵抗値を得ることができる。また、正極膜のサイズを小さくした方が組立の配置ズレを抑制することができる。
The positive electrode film and the negative electrode film produced in the positive electrode production step and the negative electrode production step have a circular shape or a plane shape having an axis of rotational symmetry, and the positive electrode film has a circular shape or a plane shape having a rotational symmetry axis. It is preferable that the dimensional ratio (φ C / φ A ) of the diameter (φ C ) to the diameter of the negative electrode film (φ A ) be related so as to be in the range of 0.80 to 0.90.
By controlling the electrode size ratio between the positive electrode film and the negative electrode film within the range of 0.80 to 0.90, it is possible to separate the arc of positive electrode reaction resistance and the arc of negative electrode reaction resistance obtained by AC impedance measurement. The reaction resistance value of only the positive electrode can be obtained. Further, the smaller the size of the positive electrode film, the more the positional deviation of the assembly can be suppressed.

正極膜と負極膜の電極サイズ比が、0.80未満になると、正極膜サイズが小さくなることから組立の配置ズレが生じにくくなるが、インピーダンス測定で得られる正極反応抵抗及び負極反応抵抗が1つの円弧となり、正極だけの反応抵抗値の分離ができない問題が発生する。
また正極膜と負極膜の電極サイズ比が0.90を超えると、インピーダンス測定で得られる反応抵抗の分離はできるが、正極膜と負極膜のサイズがほぼ同じ径となり、組立の配置ズレが生じやすくなり、抵抗のバラつきが大きくなる。
When the electrode size ratio between the positive electrode film and the negative electrode film is less than 0.80, the size of the positive electrode film is reduced, so assembly displacement is less likely to occur, but the positive electrode reaction resistance and the negative electrode reaction resistance obtained by impedance measurement are 1 As a result, the problem arises that the reaction resistance value of only the positive electrode can not be separated.
When the electrode size ratio between the positive electrode film and the negative electrode film exceeds 0.90, the reaction resistance obtained by impedance measurement can be separated, but the sizes of the positive electrode film and the negative electrode film become almost the same diameter, resulting in misalignment of assembly. It becomes easy, and the variance of resistance becomes large.

また、その電極サイズ比による効果を十分に得るには、電池の電極部として組み込まれた時に、セパレーターを介して対向配置される正極膜と負極膜の各対向面の形状も影響を与えることを見出している。即ち、各対向面は相似形であり、円形が望ましく、さらに回転対称軸を有する平面形でも良い。
このように各対向面の形状を限定することにより、電極部(図1、符号8)を構成した際に正極膜と負極膜の対向面での配置ズレの抑制ができ、且つ正極膜が負極膜からはみ出ないように配置することが容易になり、反応抵抗のバラツキを抑える効果を示す。
さらに、正極膜は負極膜からはみ出ないように配置することが望ましい。なお、向き合う各面は相似形であることが電極部の作製には容易であり好ましいが、正極膜が負極膜の外周からはみ出さないという条件を満たしていれば異形であっても良い。
Also, in order to sufficiently obtain the effect due to the electrode size ratio, the shapes of the opposite surfaces of the positive electrode film and the negative electrode film, which are disposed opposite to each other via the separator, also affect when incorporated as an electrode portion of the battery. I'm heading. That is, each opposing surface is similar, preferably circular, and may be planar having an axis of rotational symmetry.
By limiting the shape of each opposing surface in this manner, when the electrode portion (FIG. 1, reference numeral 8) is formed, positional deviation of the opposing surfaces of the positive and negative electrode films can be suppressed, and the positive electrode film is a negative electrode. It becomes easy to arrange so as not to go out of the film, and shows an effect of suppressing the variation of reaction resistance.
Furthermore, it is desirable to arrange the positive electrode film so as not to protrude from the negative electrode film. Although it is easy and preferable for the preparation of the electrode portion that the facing surfaces have similar shapes, it may be a different shape as long as the condition that the positive electrode film does not protrude from the outer periphery of the negative electrode film is satisfied.

[電極部作製工程]
この工程は、セパレーターを介して正極膜と負極膜を、前記正極膜が負極膜の外周からはみ出ないように対向配置して電極部を形成する工程である。
[Electrode part preparation process]
In this step, the positive electrode film and the negative electrode film are disposed opposite to each other through the separator so that the positive electrode film does not protrude from the outer periphery of the negative electrode film to form an electrode portion.

[電池組み立て工程]
電池組み立て工程は、電池筐体を構成する凹形の断面を有する正極缶4の凹形底部に、電極部を配置する電極部設置処理を有している。
この電極部設置処理は、先の正極膜径(φ)と負極膜径(φ)との寸法比(φ/φ)と共に、本発明の特性評価用コイン型電池の特性を満たす上で重要な条件である。
本発明においては、正極膜径(φ)と、その具体的な間隔である正極膜とガスケット4壁との空隙量(電極/筐体空隙量:B)との比(φ/B)が、1.5〜2.3の範囲であれば、上記他の特徴と相まって電池間のバラツキを抑制する効果をもたらすものである。なお、正極缶内側の空間形状は、上記関係から正極膜、負極膜の対向面形状と相似形を成す形状であることが望ましいが、円形(即ち、空間形状が円筒形形状)でも良い。
Battery assembly process
The battery assembly process has an electrode part installation process in which an electrode part is disposed on the concave bottom of the positive electrode can 4 having a concave cross section which constitutes a battery housing.
This electrode portion setting process satisfies the characteristics of the coin-type battery for characteristic evaluation of the present invention together with the dimensional ratio (φ C / φ A ) of the positive electrode membrane diameter (φ C ) and the negative electrode membrane diameter (φ A ). The above is an important condition.
In the present invention, the ratio (φ C / B) of the positive electrode membrane diameter (φ C ) to the specific amount of the gap between the positive electrode membrane and the wall of the gasket 4 (electrode / casing void amount: B S ) If S 2 ) is in the range of 1.5 to 2.3, it has the effect of suppressing the variation among the batteries in combination with the above other features. From the above relationship, the space shape inside the positive electrode can desirably has a shape similar to the facing surface shape of the positive electrode film and the negative electrode film, but may be circular (that is, the space shape is cylindrical).

6.非水系電解質コイン型電池を用いた電池特性評価方法
以下の方法で電池特性評価ができるが、測定条件を限定するものではない。
[初期充放電容量]
初期放電容量の測定には,マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いる。
まず、コイン型電池を作製してから12時間以上放置する。開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.4mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで定電流放電させる。そして、カットオフ電圧3.0Vまで放電させたときの容量を初期放電容量とする。
6. Battery Characteristic Evaluation Method Using Non-Aqueous Electrolyte Coin-Type Battery Although battery characteristic evaluation can be performed by the following method, measurement conditions are not limited.
[Initial charge and discharge capacity]
For measurement of the initial discharge capacity, a multi-channel voltage / current generator (manufactured by ADVANTEST CORPORATION, R6741A) is used.
First, a coin-type battery is produced and left for 12 hours or more. After the open circuit voltage OCV (Open Circuit Voltage) is stabilized, it is charged to a cutoff voltage of 4.3 V with a current density to the positive electrode of 0.4 mA / cm 2 , and after rest for 1 hour, the cutoff voltage is fixed to 3.0 V Discharge current. Then, the capacity when discharged to a cutoff voltage of 3.0 V is taken as an initial discharge capacity.

[交流インピーダンス測定]
正極抵抗は、以下の方法で算出できる。
まず、コイン型電池を充電電位4.0Vで充電して、1.6mA−0.2mAの電流で定電流定電圧充電をおこなった。
その後、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用し、交流インピーダンス法により測定する。すると、図2に示すナイキストプロットが得られる。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づく等価回路を用いてフィッティング計算を行い、正極反応抵抗の値を算出する。なお、正極抵抗は充電直後の交流抵抗値を1.00とした相対値を評価値とする。
[AC impedance measurement]
The positive electrode resistance can be calculated by the following method.
First, a coin-type battery was charged at a charge potential of 4.0 V, and constant current constant voltage charging was performed at a current of 1.6 mA-0.2 mA.
Thereafter, a frequency response analyzer and a potentiogalvanostat (manufactured by Solartron, 1255B) are used to measure by an AC impedance method. Then, the Nyquist plot shown in FIG. 2 is obtained. Since this Nyquist plot represents the solution resistance, the negative electrode resistance and its capacity, and the sum of the positive electrode resistance and its characteristic curve, the fitting calculation is performed using an equivalent circuit based on this Nyquist plot, and the positive electrode reaction is performed. Calculate the resistance value. In addition, let positive value resistance be a relative value which set the alternating current resistance value immediately after charge to 1.00 as an evaluation value.

以下、本発明を実施例に基づいて具体的に説明する。本発明は、下記実施例のみに限定されることはない。   Hereinafter, the present invention will be specifically described based on examples. The present invention is not limited to the following examples.

電池評価に使用する負極として、厚み1.0mmの金属リチウムを負極材に用い、直径13mmに打ち抜いた物を負極膜に用いた。正極材としては、Ni:Co:Alのモル比(%)が91:6:3のニッケル複合酸化物であるニッケル酸リチウムの粉末を75wt%と、導電材となるカーボン粉末としてアセチレンブラック粉末を、結着材のポリテトラフルオロエチレンと、2対1で混ぜ合わせた混合物、25wt%とを混ぜ合わせたものを、直径11mm、重さ75mgに形成した正極膜とした。この正極膜の活物質重量物は52.5mg相当である。   As a negative electrode used for battery evaluation, a 1.0 mm-thick metal lithium was used as a negative electrode material, and a material punched to a diameter of 13 mm was used as a negative electrode film. As the positive electrode material, 75 wt% of lithium nickelate powder, which is a nickel composite oxide with a Ni: Co: Al molar ratio (%) of 91: 6: 3, and acetylene black powder as a carbon powder to be a conductive material A mixture of 25 wt% of polytetrafluoroethylene as a binder and a mixture of 2 to 1 was used as a positive electrode film having a diameter of 11 mm and a weight of 75 mg. The weight of the active material of this positive electrode film is equivalent to 52.5 mg.

セパレーターは、JIS P 3801の保留粒子系0.3mμであり、厚み0.20mmであるガラス繊維製のフィルターを直径19mmに切り取ったものを用いた。
電解液は、電解質LiClO:1モル/Lを含有するエチレンカーボネート(EC)とジエチルメチルカーボネート(DEC)の等量混合液を用いた。
これらの材料を用いて露点−30℃未満のグローブボックスもしくはドライルームの中で2032型コイン電池を作製した。
The separator used was a glass fiber filter having a thickness of 0.20 mm and having a diameter of 19 mm, which was 0.3 mμ of the retention particle system of JIS P 3801.
The electrolyte used was an equivalent mixed solution of ethylene carbonate (EC) and diethyl methyl carbonate (DEC) containing 1 mol / L of electrolyte LiClO 4 .
These materials were used to make a 2032 coin cell in a glove box or dry room with a dew point below -30 ° C.

抵抗評価は、図3のフローに示すように、先ず作製した電池を12時間静置し、0.4mAで4.3Vまで定電圧充電を行い、1時間の休止の後、3.0Vまで放電するサイクルを1サイクル行い、「初期放電容量」を求めた。
電池は、1時間休止後4.0Vまで1.6mA−0.2mAの電流で定電流定電圧充電をおこなった。
4.0Vに充電した後、1時間経過後に交流インピーダンス法にて測定をおこない、コールコールプロットにて得られた曲線に対し、等価回路を用いて正極の交流抵抗測定値を計算した。
In the resistance evaluation, as shown in the flow of FIG. 3, first, the prepared battery is allowed to stand for 12 hours, constant voltage charging is performed to 4.3 V at 0.4 mA, and discharging to 3.0 V after 1 hour of rest One cycle of the above was performed to determine the "initial discharge capacity".
The battery was rested for 1 hour and then subjected to constant current constant voltage charging at a current of 1.6 mA to 0.2 mA up to 4.0 V.
After charging to 4.0 V, measurement was performed by an alternating current impedance method after one hour, and an alternating current resistance measurement value of a positive electrode was calculated using an equivalent circuit with respect to a curve obtained by Cole-Cole plot.

その結果を纏めて、表1に示す。
表1において、計算した正極の交流抵抗測定値が、4.0Vに充電した直後の正極の交流抵抗測定値に対して1.1倍以内の場合を判定「○」、1.1倍以上の場合を判定「×」と評価した。
The results are summarized and shown in Table 1.
In Table 1, the case where the calculated alternating current resistance measurement value of the positive electrode is within 1.1 times of the alternating current resistance measurement value of the positive electrode immediately after charging to 4.0 V is determined as “o”, 1.1 times or more The case was evaluated as "x".

4.0Vに充電した後、0.2時間経過後に交流インピーダンス法にて測定をおこなった以外は実施例1と同様の条件で評価用電池を作製して評価した。
結果を纏めて、表1に示す。
After charging to 4.0 V, an evaluation battery was manufactured and evaluated under the same conditions as in Example 1 except that measurement was performed by an AC impedance method after 0.2 hours had elapsed.
The results are summarized and shown in Table 1.

4.0Vに充電した後、0.5時間経過後に交流インピーダンス法にて測定をおこなった以外は実施例1と同様の条件で評価用電池を作製して評価した。
結果を纏めて、表1に示す。
A battery for evaluation was produced and evaluated under the same conditions as in Example 1 except that the battery was charged to 4.0 V and then measured by an alternating current impedance method after 0.5 hours.
The results are summarized and shown in Table 1.

正極材ニッケル含有率をNi:Co:Alのモル比が94:3:3とした以外は実施例3と同様の条件で評価用電池を作製して評価した。
結果を纏めて、表1に示す。
An evaluation battery was prepared and evaluated under the same conditions as in Example 3 except that the molar ratio of Ni: Co: Al in the positive electrode material was changed to 94: 3: 3.
The results are summarized and shown in Table 1.

4.0Vに充電した後、1.0時間経過後に交流インピーダンス法にて測定をおこなった以外は実施例4と同様の条件で評価用電池を作製して評価した。結果を纏めて、表1に示す。   After charging to 4.0 V, an evaluation battery was manufactured and evaluated under the same conditions as in Example 4 except that measurement was performed by an alternating current impedance method after 1.0 hour has elapsed. The results are summarized and shown in Table 1.

(比較例1)
4.0Vに充電した後、1.2時間経過後に交流インピーダンス法にて測定をおこなった以外は実施例1と同様の条件で評価用電池を作製して評価した。結果を纏めて、表1に示す。
(Comparative example 1)
After charging to 4.0 V, an evaluation battery was manufactured and evaluated under the same conditions as in Example 1 except that measurement was performed by an AC impedance method after 1.2 hours. The results are summarized and shown in Table 1.

(比較例2)
4.0Vに充電した後、2時間経過後に交流インピーダンス法にて測定をおこなった以外は実施例1と同様の条件で評価用電池を作製して評価した。
結果を纏めて、表1に示す。
(Comparative example 2)
After charging to 4.0 V, an evaluation battery was manufactured and evaluated under the same conditions as in Example 1 except that measurement was performed by an alternating current impedance method after 2 hours.
The results are summarized and shown in Table 1.

(比較例3)
4.0Vに充電した後、3時間経過後に交流インピーダンス法にて測定をおこなった以外は実施例1と同様の条件で評価用電池を作製して評価した。
結果を纏めて、表1に示す。
(Comparative example 3)
After charging to 4.0 V, an evaluation battery was produced and evaluated under the same conditions as in Example 1 except that measurement was performed by an AC impedance method after 3 hours.
The results are summarized and shown in Table 1.

(比較例4)
正極材ニッケル含有率をNi:Co:Alのモル比が82:15:3とした以外は実施例3と同様の条件で評価用電池を作製して評価した。
結果を纏めて、表1に示す。
(Comparative example 4)
An evaluation battery was prepared and evaluated under the same conditions as in Example 3 except that the molar ratio of Ni: Co: Al was 82: 15: 3 and the nickel content of the positive electrode material was changed.
The results are summarized and shown in Table 1.

(比較例5)
4.0Vに充電した後、3時間経過後に交流インピーダンス法にて測定をおこなった以外は比較例4と同様の条件で評価用電池を作製して評価した。結果を纏めて、表1に示す。
(Comparative example 5)
After charging to 4.0 V, an evaluation battery was manufactured and evaluated under the same conditions as in Comparative Example 4 except that measurement was performed by an AC impedance method after 3 hours. The results are summarized and shown in Table 1.

Figure 0006541035
Figure 0006541035

表1から明らかなように、本発明に係るNi含有量の高い実施例1〜5においては、1時間以内の休止時間後に、交流インピーダンス測定を実施することで、測定された正極反応抵抗は、充電直後の反応抵抗に対して、変化量が小さく、そのバラツキも少ないことが判る。
一方、Ni含有量の高い比較例1、2及び比較例3では、休止時間が1時間を超えると、測定された反応抵抗は大きく上昇しているのが見られ、Ni含有量の少ない比較例4、5では、休止時間の長短に影響されずに反応抵抗の測定が可能であった。
As is apparent from Table 1, in Examples 1 to 5 in which the Ni content is high according to the present invention, the positive electrode reaction resistance measured by performing AC impedance measurement after a rest time within one hour is It can be seen that the amount of change is small relative to the reaction resistance immediately after charging, and the variation is also small.
On the other hand, in Comparative Examples 1 and 2 with a high Ni content and Comparative Example 3, when the rest time exceeds 1 hour, it can be seen that the measured reaction resistance is greatly increased, and a comparative example with a low Ni content. In 4 and 5, it was possible to measure the reaction resistance without being influenced by the length of the pause time.

1 正極
2 Li金属負極
3 セパレーター
4 ガスケット
5 ウェーブワッシャー
6 正極缶
7 負極缶
8 電極部
1 positive electrode 2 Li metal negative electrode 3 separator 4 gasket 5 wave washer 6 positive electrode can 7 negative electrode can 8 electrode part

Claims (5)

正極活物質を含む正極膜と、負極膜とがセパレーターを介し対向配置された電極部を有する非水系電解質コイン型電池を用いた電池特性評価方法であって、
前記正極活物質が、「一般式:LiNiCo・・・(1)」(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、bは0.95≦b≦1.03、c=1−x−y、0.84≦c<1.00、xは0<x≦0.15、yは0<y≦0.07、x+y≦0.16)で表されるニッケル含有率が高いリチウムニッケル複合酸化物であり、
前記正極活物質を含む正極膜と、負極膜とがセパレーターを介し対向配置された電極部を有する非水系電解質コイン型電池の作製、静置後に、定電流充電、休止、定電流放電を行う定電流充放電サイクルを実施して初期充放電容量を測定し、
その後、休止時間を経て、定電流定電圧充電を行ない、前記定電流定電圧充電の終了後1時間以内に交流インピーダンス法による抵抗測定を実施することを特徴とする非水系電解質コイン型電池を用いた電池特性評価方法。
A battery characteristics evaluation method using a non-aqueous electrolyte coin type battery having an electrode part in which a positive electrode film containing a positive electrode active material and a negative electrode film are disposed opposite to each other with a separator interposed,
The positive electrode active material is “general formula: Li b Ni C Co x M y O 2 (1)” (wherein, M represents at least one element selected from Al, Ti, Mn and W) B is 0.95 ≦ b ≦ 1.03, c = 1−x−y, 0.84 ≦ c <1.00, x is 0 <x ≦ 0.15, y is 0 <y ≦ 0. Lithium nickel composite oxide having a high nickel content represented by 07, x + y ≦ 0.16),
Production of a non-aqueous electrolyte coin-type battery having an electrode part in which a positive electrode film containing the positive electrode active material and a negative electrode film are disposed opposite to each other with a separator interposed, constant current charge, rest, constant current discharge after standing Conduct the current charge and discharge cycle to measure the initial charge and discharge capacity,
After that, through a rest time, constant current constant voltage charging is performed, and resistance measurement by an AC impedance method is performed within one hour after the completion of the constant current constant voltage charging. How to evaluate battery characteristics.
前記抵抗測定が、前記定電流定電圧充電終了後、0.05時間以上、1時間以内に実施されることを特徴とする請求項1に記載の非水系電解質コイン型電池を用いた電池特性評価方法。   The battery characteristic evaluation using the non-aqueous electrolyte coin-type battery according to claim 1, wherein the resistance measurement is performed within 0.05 hours or more and within 1 hour after the termination of the constant current constant voltage charging. Method. 前記負極膜が、金属リチウム又はリチウムを主成分とする金属であることを特徴とする請求項1又は2に記載の非水系電解質コイン型電池を用いた電池特性評価方法。   The said negative electrode film is a metal which has metal lithium or lithium as a main component, The battery characteristics evaluation method using the non-aqueous electrolyte coin-type battery of Claim 1 or 2 characterized by the above-mentioned. 前記コイン型電池が、2032型、あるいは、2016型コイン電池であることを特徴とする請求項1〜3のいずれか1項に記載の非水系電解質コイン型電池を用いた電池特性評価方法。   The battery characteristic evaluation method using the non-aqueous electrolyte coin battery according to any one of claims 1 to 3, wherein the coin battery is a 2032 type or 2016 type coin battery. 請求項1〜4のいずれか1項に記載の非水系電解質コイン型電池を用いた電池特性評価方法を用いて、
「一般式:LiNiCo・・・(1)」(式中、Mは、Al、Ti、MnおよびWから選ばれる少なくとも1種の元素を示し、bは0.95≦b≦1.03、c=1−x−y、0.84≦c<1.00、xは0<x≦0.15、yは0<y≦0.07、x+y≦0.16)で表されるニッケル含有率が高いリチウムニッケル複合酸化物である非水系電解質二次電池用正極活物質の特性を把握することを特徴とする非水系電解質二次電池用正極活物質の電池特性評価方法。
A battery characteristic evaluation method using the non-aqueous electrolyte coin battery according to any one of claims 1 to 4,
In: "general formula Li b Ni C Co x M y O 2 ··· (1) " (wherein, M is, Al, Ti, represents at least one element selected from Mn and W, b is 0. 95 ≦ b ≦ 1.03, c = 1−x−y, 0.84 ≦ c <1.00, x is 0 <x ≦ 0.15, y is 0 <y ≦ 0.07, x + y ≦ 0. 16) A battery of a positive electrode active material for a non-aqueous electrolyte secondary battery characterized by grasping characteristics of the positive electrode active material for a non-aqueous electrolyte secondary battery which is a lithium nickel composite oxide having a high nickel content represented by 16). Characterization method.
JP2015254956A 2015-12-25 2015-12-25 Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery Active JP6541035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015254956A JP6541035B2 (en) 2015-12-25 2015-12-25 Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015254956A JP6541035B2 (en) 2015-12-25 2015-12-25 Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2017117748A JP2017117748A (en) 2017-06-29
JP6541035B2 true JP6541035B2 (en) 2019-07-10

Family

ID=59231993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015254956A Active JP6541035B2 (en) 2015-12-25 2015-12-25 Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6541035B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637322B2 (en) 2016-02-12 2023-04-25 Samsung Sdi Co., Ltd. Lithium battery
CN117747951A (en) * 2018-09-19 2024-03-22 三星Sdi株式会社 Lithium battery
KR102210696B1 (en) * 2020-07-29 2021-02-02 주식회사 피엠그로우 Apparatus and method for charging and discharging test scheduling
CN113253122A (en) * 2021-04-15 2021-08-13 同济大学 Rapid lithium analysis detection method for lithium ion battery
CN113359039A (en) * 2021-06-23 2021-09-07 万向一二三股份公司 Lithium ion power battery evaluation and recycling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256768B2 (en) * 2013-01-09 2018-01-10 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte for secondary battery and lithium secondary battery
JP6071600B2 (en) * 2013-02-05 2017-02-01 富士フイルム株式会社 Nonaqueous secondary battery electrolyte, nonaqueous secondary battery, electrolyte additive
JP5999208B2 (en) * 2014-04-25 2016-09-28 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Also Published As

Publication number Publication date
JP2017117748A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2017190572A1 (en) Secondary battery and preparation method therefor
JP5213103B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and electronic device
JP6541035B2 (en) Method of evaluating battery characteristics using non-aqueous electrolyte coin type battery and method of evaluating battery characteristics of positive electrode active material for non-aqueous electrolyte secondary battery
EP2597706B1 (en) Lithium ion secondary battery
JP2012028006A (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006059690A (en) Non-aqueous electrolyte secondary battery
JP5023261B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
KR20140132791A (en) Anode active material for lithium secondary battery and lithium secondary battery comprising the same
JP6627621B2 (en) Output evaluation method of lithium ion secondary battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2008108462A (en) Lithium secondary battery and its manufacturing method
JP6222372B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2018185974A (en) Lithium ion secondary battery and output characteristic evaluation method thereof
JP7131923B2 (en) Electrolyte for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
TWI620370B (en) Lithium battery, solid electrolyte membrane and their manufacturing methods thereof
JP2009176598A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2005071712A (en) Manufacturing method of positive electrode
JP2009272120A (en) Negative electrode material, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP6531947B2 (en) Coin-type battery for characteristic evaluation of positive electrode active material for non-aqueous electrolyte secondary battery, method of evaluating AC resistance using the coin-type battery, and method of manufacturing the coin-type battery
JP2014103107A (en) Positive electrode for nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery using the same
JP2005302338A (en) Lithium secondary battery and positive electrode material for lithium secondary battery
JP2015018820A (en) Separator for nonaqueous electrolyte battery
JP2017117541A (en) Nonaqueous electrolyte secondary battery for positive electrode active material evaluation, and method for measuring positive electrode resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190530

R150 Certificate of patent or registration of utility model

Ref document number: 6541035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150