JPH05174810A - Battery electrode and battery - Google Patents

Battery electrode and battery

Info

Publication number
JPH05174810A
JPH05174810A JP3353603A JP35360391A JPH05174810A JP H05174810 A JPH05174810 A JP H05174810A JP 3353603 A JP3353603 A JP 3353603A JP 35360391 A JP35360391 A JP 35360391A JP H05174810 A JPH05174810 A JP H05174810A
Authority
JP
Japan
Prior art keywords
battery
carbon powder
positive electrode
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3353603A
Other languages
Japanese (ja)
Inventor
Ryuji Oshita
竜司 大下
Sanehiro Furukawa
修弘 古川
Seiji Yoshimura
精司 吉村
Ikurou Nakane
育朗 中根
Masatoshi Takahashi
昌利 高橋
Hiroshi Watanabe
浩志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3353603A priority Critical patent/JPH05174810A/en
Publication of JPH05174810A publication Critical patent/JPH05174810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a battery electrode developing superb battery characteristics by using surface modified carbon powder having a surface active agent adsorbed onto the surface in place of the carbon powder. CONSTITUTION:Carbon powder is soaked in a liquid formed by dispersing surface active agent in a low boiling point solvent such as water or alcohol and the like. Thereafter the solvent is evaporated, and the surface active agent is effectively adsorbed to the carbon powder. Hereat, a battery BA1 is composed of a positive electrode 1, a negative electrode 2, a separator 3 for isolating both electrodes, a positive electrode lead 4, a negative electrode lead 5, a positive electrode external terminal 6 and a negative electrode can 7. And the positive electrode 1 and negative electrode 2 are rolled up in spiral, through the separator 3 in which a nonaqueous electrolyte is poured to be contained in the negative electrode can 7. And the positive electrode 1 is connected to the external terminal 6 through the lead 4, and the negative electrode 2 is connected to the negative electrode can 7 through the lead 5, and the chemical energy generated inside the battery BA1 is brought out to the outside as the electrical energy. When the surface modified carbon powder is applied to the electrodes, electrodes of, the battery which can develope superb battery characteristics can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池用電極に係わり、
詳しくは電池用電極の電解液に対する濡れ性(含液性)
の改良に関する。
FIELD OF THE INVENTION The present invention relates to a battery electrode,
Specifically, the wettability of the battery electrode to the electrolyte (liquid containing property)
Regarding the improvement of.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】リチウ
ム電池などの非水系電池の正極の活物質としては、Li
NiO2 、LiCoO2 等の金属酸化物の粉末が使用さ
れているが、金属酸化物は非導電性物質であるため、こ
れに導電性を付与すべく導電剤が配合されて正極合剤と
して使用されている。
2. Description of the Related Art Lithium batteries and other non-aqueous batteries have a positive electrode active material such as Li.
Although powders of metal oxides such as NiO 2 and LiCoO 2 are used, since the metal oxides are non-conductive substances, a conductive agent is blended to impart conductivity to the powder and used as a positive electrode mixture. Has been done.

【0003】すなわち、非水系電池の正極は、先ず粉末
状の活物質と、炭素粉末からなる導電剤とを、フッ素樹
脂等の結着剤と混練して正極合剤を作製し、次いでこの
正極合剤を集電体(芯体)に圧延等の手段により固着さ
せることにより作製されている。この種の電極の場合、
電極反応は活物質と電解液との接触界面で起こるため、
活物質の全表面のうち電解液と直接接触する部分(以
下、「濡れ部」と称する)のみが電極反応に関与するこ
ととなる。すなわち、その電解液で濡れる部分の面積が
活物質の実効表面積となる。
That is, in the positive electrode of a non-aqueous battery, first, a powdered active material and a conductive agent made of carbon powder are kneaded with a binder such as a fluororesin to prepare a positive electrode mixture, and then this positive electrode is prepared. It is produced by fixing the mixture on a current collector (core) by means such as rolling. For this type of electrode,
Since the electrode reaction occurs at the contact interface between the active material and the electrolytic solution,
Only the part of the entire surface of the active material that is in direct contact with the electrolytic solution (hereinafter referred to as the "wetting part") is involved in the electrode reaction. That is, the area of the portion wetted by the electrolytic solution becomes the effective surface area of the active material.

【0004】しかしながら、炭素粉末は水系、非水系電
解液を問わず総じて電解液に対する濡れ性が良くない。
かかる濡れ性の良くない炭素粉末をそのまま導電剤とし
て配合すると、共存する活物質の濡れ性もまた良くない
ものとなる。而して、電池容量の小さい電池しか得難く
なる。また、活物質の濡れ性が良くないと、正極におけ
る電極反応が活物質の表面の一部すなわち上記濡れ部で
集中的に起こるようになり、濡れ部の活物質の劣化速度
が速くなる。このため、二次電池用電極として使用した
場合、サイクル特性の良くない電池しか得難くなる。
However, carbon powder, whether it is an aqueous or non-aqueous electrolytic solution, generally has poor wettability with the electrolytic solution.
If such a carbon powder having poor wettability is blended as a conductive agent as it is, the wettability of the coexisting active material also becomes poor. Therefore, it becomes difficult to obtain only a battery having a small battery capacity. In addition, if the wettability of the active material is not good, the electrode reaction in the positive electrode will be concentrated on a part of the surface of the active material, that is, the wetted portion, and the deterioration rate of the active material in the wetted portion will be accelerated. Therefore, when it is used as an electrode for a secondary battery, only a battery having poor cycle characteristics can be obtained.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、優れた電池特性を
発現させ得る電池用電極及びそれを正極に用いてなる電
池を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a battery electrode capable of exhibiting excellent battery characteristics and a battery using the same as a positive electrode. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る電池用電極は、活物質と、導電剤として
の炭素粉末と、結着剤とからなる正極合剤を集電体に固
着させてなる電池用電極であって、前記炭素粉末として
界面活性剤を表面に吸着させた表面改質炭素粉末が使用
されていることを特徴とする。
Means for Solving the Problems In order to achieve the above object, a battery electrode according to the present invention comprises a positive electrode mixture composed of an active material, carbon powder as a conductive agent, and a binder. The surface-modified carbon powder having a surface adsorbed with a surfactant is used as the carbon powder.

【0007】本発明に係る電池用電極は、たとえば非水
系電解液リチウム電池の正極として好適に使用され得る
ものである。
The battery electrode according to the present invention can be suitably used, for example, as a positive electrode of a non-aqueous electrolyte lithium battery.

【0008】本発明においては、導電剤たる炭素粉末と
して、界面活性剤を吸着させたものが用いられる。
In the present invention, a carbon powder as a conductive agent is one in which a surfactant is adsorbed.

【0009】炭素粉末としては、カーボンブラック、ア
セチレンブラック、ケッチンブラックが例示される。こ
れらの導電性粉末は一種単独を用いてもよく、必要に応
じて二種以上を併用してもよい。
Examples of the carbon powder include carbon black, acetylene black and Ketchin black. These conductive powders may be used alone or in combination of two or more if necessary.

【0010】界面活性剤としては、炭素粉末の電解液に
対する濡れ性を改良し得るものであれば特に制限され
ず、たとえば高級脂肪酸エステル、アルキル硫酸塩等の
陰イオン系界面活性剤、高級アミンハロゲン酸塩、第4
アンモニウム塩等の陽イオン系界面活性剤、ポリエチレ
ングリコールアルキルエーテル、ポリエチレングリコー
ル脂肪酸エステル等の非イオン系界面活性剤など、種々
の界面活性剤を使用することができる。なかでも、ポリ
エチレングリコールステアレート、ポリオキシエチレン
ノニルフェノールエーテル、高級脂肪酸ペンタエリスリ
トール又はそのモノ脂肪酸エステルが好適なものとして
挙げられる。
The surfactant is not particularly limited as long as it can improve the wettability of the carbon powder to the electrolytic solution, and examples thereof include anionic surfactants such as higher fatty acid esters and alkylsulfates, and higher amine halogens. Acid salt, fourth
Various surfactants such as a cationic surfactant such as ammonium salt and a nonionic surfactant such as polyethylene glycol alkyl ether and polyethylene glycol fatty acid ester can be used. Among them, polyethylene glycol stearate, polyoxyethylene nonylphenol ether, higher fatty acid pentaerythritol or monofatty acid ester thereof are preferred.

【0011】炭素粉末の界面活性剤吸着量は、炭素粉末
100重量部に対して10重量部未満が好ましく、0.
5〜6重量部の範囲がより好ましい。吸着量が10重量
部以上であると、導電剤の添加量が相対的に減少し、正
極合剤の導電性が低下して電池容量が低下するので好ま
しくない。
The amount of the surface active agent adsorbed on the carbon powder is preferably less than 10 parts by weight per 100 parts by weight of the carbon powder.
A range of 5 to 6 parts by weight is more preferable. When the amount of adsorption is 10 parts by weight or more, the amount of the conductive agent added is relatively decreased, the conductivity of the positive electrode mixture is reduced, and the battery capacity is reduced, which is not preferable.

【0012】界面活性剤を炭素粉末に吸着させる方法と
しては、たとえば界面活性剤を水やアルコール類等の低
沸点溶媒に分散又は溶解させた液に炭素粉末を浸漬した
後、溶媒を蒸散させる方法が挙げられるが、炭素粉末に
界面活性剤を有効に吸着させ得る方法であれば特に制限
なく用いることができる。
As a method for adsorbing the surfactant on the carbon powder, for example, the carbon powder is immersed in a liquid in which the surfactant is dispersed or dissolved in a low boiling point solvent such as water or alcohol, and then the solvent is evaporated. However, any method can be used without particular limitation as long as it is a method capable of effectively adsorbing the surfactant on the carbon powder.

【0013】界面活性剤を吸着させた炭素粉末は、活物
質及びPTFE(ポリテトラフルオロエチレン)、PV
dF(ポリ二フッ化ビニリデン)等の結着剤と混練し
て、正極合剤として使用される。
The carbon powder having the surface active agent adsorbed is composed of an active material, PTFE (polytetrafluoroethylene), PV
It is kneaded with a binder such as dF (polyvinylidene difluoride) and used as a positive electrode mixture.

【0014】本発明における活物質としては、特に制限
されないが、たとえば非水系電解液電池の正極活物質と
しては、LiCoO2 、LiMn2 4 、LiMn
2 、LiNiO2 、MnO2 、CuOが例示される。
これらの活物質は一種単独を用いてもよく、必要に応じ
て二種以上を併用してもよい。
The active material in the present invention is not particularly limited, but for example, as the positive electrode active material of a non-aqueous electrolyte battery, LiCoO 2 , LiMn 2 O 4 and LiMn are used.
O 2 , LiNiO 2 , MnO 2 and CuO are exemplified.
These active materials may be used alone or in combination of two or more if necessary.

【0015】[0015]

【作用】本発明に係る電池用電極は、導電剤として界面
活性剤を吸着させた炭素粉末が使用されているので、正
極の電解液に対する濡れ性が良好であり、電極反応にお
ける実効表面積が大きい。このため、正極における電極
反応が活物質の表面で均一に行われるようになり、活物
質の劣化速度が遅くなる。
In the battery electrode according to the present invention, the carbon powder having the surfactant adsorbed as the conductive agent is used, so that the wettability of the positive electrode with respect to the electrolytic solution is good and the effective surface area in the electrode reaction is large. .. For this reason, the electrode reaction in the positive electrode is carried out uniformly on the surface of the active material, and the deterioration rate of the active material becomes slow.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0017】(実施例1)本発明に係る電池用電極を正
極とする円筒型の非水系電解液二次電池を作製した。 〔正極の作製〕炭酸コバルトと炭酸リチウムとをCo:
Liの原子比1:1で混合した後、空気中で900°C
で20時間熱処理してLiCoO2 を得た。このようし
て得た活物質としてのLiCoO2 に、導電剤としての
表面改質炭素粉末と、結着剤としてのPTFEとを、重
量比90:6:4の比率で混合して正極合剤を得た。こ
の正極合剤を集電体としてのアルミニウムの箔に圧延
し、250°Cで2時間真空下で熱処理して正極を作製
した。上記表面改質炭素粉末としては、アセチレンブラ
ック100重量部に対してポリエチレングリコールステ
アレートを1重量部吸着させたものを使用した。
Example 1 A cylindrical non-aqueous electrolyte secondary battery having the battery electrode according to the present invention as a positive electrode was produced. [Preparation of Positive Electrode] Cobalt carbonate and lithium carbonate were converted into Co:
After mixing Li at an atomic ratio of 1: 1 at 900 ° C in air
Then, heat treatment was performed for 20 hours to obtain LiCoO 2 . Thus obtained LiCoO 2 as an active material, surface-modified carbon powder as a conductive agent, and PTFE as a binder were mixed in a weight ratio of 90: 6: 4 to prepare a positive electrode mixture. Got This positive electrode mixture was rolled into an aluminum foil as a current collector and heat-treated under vacuum at 250 ° C. for 2 hours to produce a positive electrode. As the surface-modified carbon powder, 100 parts by weight of acetylene black and 1 part by weight of polyethylene glycol stearate adsorbed were used.

【0018】〔負極の作製〕400メッシュパスの黒鉛
に、結着剤としてのPTFEを、重量比95:5の比率
で混合し、集電体としてのアルミニウムの箔に圧延し、
250°Cで2時間真空下で熱処理して、負極を作製し
た。
[Preparation of Negative Electrode] 400 mesh pass graphite was mixed with PTFE as a binder in a weight ratio of 95: 5 and rolled into an aluminum foil as a current collector.
It heat-processed under vacuum at 250 degreeC for 2 hours, and produced the negative electrode.

【0019】〔非水系電解液の調製〕エチレンカーボネ
ートとジメチルカーボネートとの体積混合比1:1の混
合溶媒に、LiPF6 を1モル/リットル溶かして非水
系電解液を調製した。
[Preparation of Non-Aqueous Electrolyte Solution] A non-aqueous electrolyte solution was prepared by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume mixing ratio of 1: 1.

【0020】〔電池の作製〕以上の正負両極及び非水系
電解液を用いて円筒型の二次電池BA1(電池寸法:直
径14.2mm、高さ:50.0mm)を作製した。な
お、ポリプロピレン製の微孔性薄膜をセパレータとして
用いた。
[Production of Battery] A cylindrical secondary battery BA1 (battery size: diameter 14.2 mm, height: 50.0 mm) was produced using the positive and negative electrodes and the non-aqueous electrolyte solution described above. A polypropylene microporous thin film was used as a separator.

【0021】図1は作製した電池BA1の断面図であ
り、同図に示す電池BA1は、正極1及び負極2、これ
ら両電極を離隔するセパレータ3、正極リード4、負極
リード5、正極外部端子6、負極缶7などからなる。正
極1及び負極2は非水電解液が注入されたセパレータ3
を介して渦巻き状に巻き取られた状態で負極缶7内に収
容されており、正極1は正極リード4を介して正極外部
端子6に、また負極2は負極リード5を介して負極缶7
に接続され、電池BA1内部で生じた化学エネルギーを
電気エネルギーとして外部へ取り出し得るようになって
いる。
FIG. 1 is a cross-sectional view of the manufactured battery BA1. The battery BA1 shown in FIG. 1 includes a positive electrode 1 and a negative electrode 2, a separator 3 for separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, and a positive electrode external terminal. 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are separators 3 in which a non-aqueous electrolyte is injected.
It is housed in a negative electrode can 7 in a spirally wound state via a positive electrode 1 via a positive electrode lead 4 to a positive electrode external terminal 6, and a negative electrode 2 via a negative electrode lead 5 into a negative electrode can 7.
The chemical energy generated inside the battery BA1 can be taken out to the outside as electric energy.

【0022】(実施例2)表面改質炭素粉末として、ア
セチレンブラック100重量部に対してポリオキシエチ
レンノニルフェノールエーテルを1重量部吸着させたも
のを使用したこと以外は、実施例1と同様にして電池B
A2を作製した。
Example 2 The same procedure as in Example 1 was carried out except that 1 part by weight of polyoxyethylene nonylphenol ether was adsorbed to 100 parts by weight of acetylene black as the surface-modified carbon powder. Battery B
A2 was produced.

【0023】(実施例3)表面改質炭素粉末として、ア
セチレンブラック100重量部に対して高級脂肪酸ペン
タエリスリトールを1重量部吸着させたものを使用した
こと以外は、実施例1と同様にして電池BA3を作製し
た。
Example 3 A battery was prepared in the same manner as in Example 1 except that 1 part by weight of higher fatty acid pentaerythritol was adsorbed to 100 parts by weight of acetylene black as the surface-modified carbon powder. BA3 was produced.

【0024】(比較例1)正極合剤の作製において界面
活性剤を吸着させずに表面未改質のアセチレンブラック
を用いたこと以外は実施例1と同様にして、比較電池B
C1を作製した。
Comparative Example 1 Comparative battery B was prepared in the same manner as in Example 1 except that the surface-unmodified acetylene black was used without adsorbing a surfactant in the preparation of the positive electrode mixture.
C1 was produced.

【0025】図2は、本発明に係る電極を用いた電池B
A1及び比較電池BC1の200mA(定電流放電)に
おける初期放電特性を、縦軸に電池電圧(V)を、また
横軸に放電容量(mAh)をとって表したグラフであ
り、同図より、本発明に係る電極を用いた電池BA1は
比較電池BC1に比し、放電容量が大きいことが分か
る。なお、放電は、2.75Vを放電終止電圧とした。
FIG. 2 shows a battery B using the electrode according to the present invention.
It is a graph showing the initial discharge characteristics at 200 mA (constant current discharge) of A1 and comparative battery BC1, the battery voltage (V) on the vertical axis, and the discharge capacity (mAh) on the horizontal axis. It can be seen that the battery BA1 using the electrode according to the present invention has a larger discharge capacity than the comparative battery BC1. In addition, the discharge used 2.75V as the discharge end voltage.

【0026】図3は、本発明に係る電極を用いた電池B
A1及び比較電池BC1の200mA(定電流放電)に
おけるサイクル特性を、縦軸に電池の放電容量(mA
h)を、また横軸にサイクル数(回)をとって表したグ
ラフである。同図より、本発明に係る電極を用いた電池
BA1は比較電池BC1に比し、サイクル特性に優れて
いることが分かる。なお、充放電は、2.75Vを放電
終止電圧とし、4.1Vを充電終止電圧とした。
FIG. 3 shows a battery B using the electrode according to the present invention.
The cycle characteristics of A1 and the comparative battery BC1 at 200 mA (constant current discharge) are plotted on the vertical axis, and the discharge capacity (mA
3 is a graph showing h) and the number of cycles (times) on the horizontal axis. From the figure, it can be seen that the battery BA1 using the electrode according to the present invention is superior in cycle characteristics to the comparative battery BC1. The charge and discharge was set to 2.75V as the discharge end voltage and 4.1V as the charge end voltage.

【0027】表1に、本発明に係る電極を用いた電池B
A1〜BA3及び比較電池BC1の500サイクル経過
後の1サイクル当たりのサイクル劣化率(%/サイク
ル)を、まとめて示す。
Table 1 shows battery B using the electrode according to the present invention.
The cycle deterioration rates (% / cycle) per cycle after 500 cycles of A1 to BA3 and the comparative battery BC1 are collectively shown.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、本発明に係る電極を用いた電池
BA1〜BA3は、比較電池BC1に比し、いずれもサ
イクル劣化率が低くサイクル特性に優れていることが分
かる。特に、界面活性剤としてポリオキシエチレングリ
コールステアレートを用いた電池BA1は、特に優れた
サイクル特性を発現することが分かる。
It can be seen from Table 1 that the batteries BA1 to BA3 using the electrodes according to the present invention have a lower cycle deterioration rate and excellent cycle characteristics than the comparative battery BC1. In particular, it is found that the battery BA1 using polyoxyethylene glycol stearate as the surfactant exhibits particularly excellent cycle characteristics.

【0030】(実施例4)ポリオキシエチレングリコー
ルステアレートの吸着量の異なる6種の表面改質アセチ
レンブラックを作製し、実施例1と同様にして、電池B
A4(ポリオキシエチレングリコールステアレート吸着
部数:0.1)、電池BA5(同吸着部数:0.5)、
電池BA6(同吸着部数:2.0)、電池BA7(同吸
着部数:5.0)、電池BA8(同吸着部数:10.
0)、電池BA9(同吸着部数:20.0)の6種の電
池を作製した。
Example 4 Six types of surface-modified acetylene blacks having different amounts of polyoxyethylene glycol stearate adsorbed were prepared, and battery B was prepared in the same manner as in Example 1.
A4 (number of adsorbed polyoxyethylene glycol stearate: 0.1), battery BA5 (number of adsorbed parts: 0.5),
Battery BA6 (same adsorption number: 2.0), battery BA7 (same adsorption number: 5.0), battery BA8 (same adsorption number: 10.
0) and battery BA9 (the same number of adsorbed parts: 20.0) as six types of batteries.

【0031】図4は、電池BA4〜BA9の各電池の初
期の放電容量(mAh)を縦軸に、また界面活性剤の吸
着量(重量部)を横軸にとって表したグラフである。同
グラフ中には、電池BA1及び比較電池BC1のデータ
も転記してある。同図より、界面活性剤の吸着量は、初
期の放電容量を大きくするためには、アセチレンブラッ
ク100重量部に対して10重量部未満であることが好
ましく、0.5〜6重量部の範囲がより好ましいことが
分かる。なお、他の炭素粉末や界面活性剤を使用した場
合においても同様の結果が得られる。
FIG. 4 is a graph in which the initial discharge capacity (mAh) of each of the batteries BA4 to BA9 is plotted on the ordinate and the adsorption amount (parts by weight) of the surfactant is plotted on the abscissa. Data of the battery BA1 and the comparative battery BC1 are also transcribed in the graph. From the figure, the adsorption amount of the surfactant is preferably less than 10 parts by weight with respect to 100 parts by weight of acetylene black in order to increase the initial discharge capacity, and is in the range of 0.5 to 6 parts by weight. Is more preferable. Similar results can be obtained when other carbon powders or surfactants are used.

【0032】叙上の実施例では本発明を非水系電解液二
次電池の正極に適用する場合の具体例について説明した
が、電解液の水系、非水系、及び、電池の一次、二次は
特に制限されない。
In the above embodiments, a specific example in which the present invention is applied to the positive electrode of a non-aqueous electrolyte secondary battery is described. However, the aqueous and non-aqueous electrolytes of the electrolytic solution and the primary and secondary of the battery are There is no particular limitation.

【0033】[0033]

【発明の効果】本発明に係る電極は、導電剤たる炭素粉
末に界面活性剤を吸着させることにより、活物質の電解
液に対する濡れ性が改良されているので、優れた電池特
性を発現する電池の作製が可能になるなど、本発明は優
れた特有の効果を奏する。
EFFECTS OF THE INVENTION The electrode according to the present invention has improved wettability of an active material with an electrolytic solution by adsorbing a surfactant on carbon powder which is a conductive agent, so that the battery exhibits excellent battery characteristics. The present invention has excellent peculiar effects such as the production of

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電極を用いた電池の断面図であ
る。
FIG. 1 is a cross-sectional view of a battery using an electrode according to the present invention.

【図2】初期放電特性図である。FIG. 2 is an initial discharge characteristic diagram.

【図3】サイクル特性図である。FIG. 3 is a cycle characteristic diagram.

【図4】界面活性剤吸着量と放電容量との関係を示すグ
ラフである。
FIG. 4 is a graph showing a relationship between a surfactant adsorption amount and a discharge capacity.

【符号の説明】[Explanation of symbols]

BA1 電池 1 正極 2 負極 3 セパレータ 4 正極リード 5 負極リード 6 正極外部端子 7 負極缶 BA1 battery 1 positive electrode 2 negative electrode 3 separator 4 positive electrode lead 5 negative electrode lead 6 positive electrode external terminal 7 negative electrode can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中根 育朗 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 高橋 昌利 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 渡辺 浩志 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Ikuro Nakane 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Masatoshi Takahashi 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Denki Incorporated (72) Inventor Hiroshi Watanabe 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活物質と、導電剤としての炭素粉末と、結
着剤とからなる正極合剤を集電体に固着させてなる電池
用電極であって、前記炭素粉末として界面活性剤を表面
に吸着させた表面改質炭素粉末が使用されていることを
特徴とする電池用電極。
1. A battery electrode comprising a positive electrode mixture comprising an active material, carbon powder as a conductive agent, and a binder, which is fixed to a current collector, wherein a surfactant is used as the carbon powder. An electrode for a battery, wherein a surface-modified carbon powder adsorbed on the surface is used.
【請求項2】前記表面改質炭素粉末が、前記炭素粉末1
00重量部に前記界面活性剤を10重量部未満の割合で
吸着させてなるものである請求項1記載の電池用電極。
2. The surface-modified carbon powder is the carbon powder 1.
The electrode for a battery according to claim 1, wherein the surface active agent is adsorbed to 00 parts by weight at a ratio of less than 10 parts by weight.
【請求項3】前記活物質が、LiCoO2 、LiMn2
4 、LiMnO2 、LiNiO2 、MnO2 及びCu
Oよりなる群から選ばれた少なくとも一種の金属酸化物
である請求項1記載の電池用電極。
3. The active material is LiCoO 2 , LiMn 2
O 4 , LiMnO 2 , LiNiO 2 , MnO 2 and Cu
The battery electrode according to claim 1, which is at least one metal oxide selected from the group consisting of O.
【請求項4】請求項1〜3のいずれかに記載の電池用電
極を正極とする電池。
4. A battery having the battery electrode according to claim 1 as a positive electrode.
JP3353603A 1991-12-18 1991-12-18 Battery electrode and battery Pending JPH05174810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3353603A JPH05174810A (en) 1991-12-18 1991-12-18 Battery electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3353603A JPH05174810A (en) 1991-12-18 1991-12-18 Battery electrode and battery

Publications (1)

Publication Number Publication Date
JPH05174810A true JPH05174810A (en) 1993-07-13

Family

ID=18431958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3353603A Pending JPH05174810A (en) 1991-12-18 1991-12-18 Battery electrode and battery

Country Status (1)

Country Link
JP (1) JPH05174810A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266853A (en) * 2000-03-22 2001-09-28 Matsushita Electric Ind Co Ltd Manufacturing method of lithium secondary battery positive electrode paste
JP2001313035A (en) * 2000-04-28 2001-11-09 Nissan Motor Co Ltd Nonaqeuos cell
JP2002093405A (en) * 2000-09-12 2002-03-29 Hitachi Maxell Ltd Nonaqueous secondary battery and its charging method
JP2002134101A (en) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd Method of producing positive electrode plate for lithium secondary battery
JP2006172821A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Electrode and cell using same
JP2006302617A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery
JP2007280657A (en) * 2006-04-04 2007-10-25 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode for lithium secondary battery, positive electrode and lithium secondary battery
US7923400B2 (en) 2004-12-14 2011-04-12 Nissan Motor Co., Ltd. Method of making an electrode for use in a battery
WO2011078112A1 (en) * 2009-12-22 2011-06-30 石原産業株式会社 Lithium titanate, manufacturing method therefor, slurry used in said manufacturing method, electrode active material containing said lithium titanate, and lithium secondary battery using said electrode active material
WO2019064995A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266853A (en) * 2000-03-22 2001-09-28 Matsushita Electric Ind Co Ltd Manufacturing method of lithium secondary battery positive electrode paste
JP2001313035A (en) * 2000-04-28 2001-11-09 Nissan Motor Co Ltd Nonaqeuos cell
JP4682395B2 (en) * 2000-04-28 2011-05-11 日産自動車株式会社 Non-aqueous battery
JP4553468B2 (en) * 2000-09-12 2010-09-29 日立マクセル株式会社 Non-aqueous secondary battery and charging method thereof
JP2002093405A (en) * 2000-09-12 2002-03-29 Hitachi Maxell Ltd Nonaqueous secondary battery and its charging method
JP2002134101A (en) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd Method of producing positive electrode plate for lithium secondary battery
US7923400B2 (en) 2004-12-14 2011-04-12 Nissan Motor Co., Ltd. Method of making an electrode for use in a battery
JP2006172821A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Electrode and cell using same
US8329337B2 (en) 2004-12-14 2012-12-11 Nissan Motor Co., Ltd. Electrode for use in a battery
JP2006302617A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery
JP2007280657A (en) * 2006-04-04 2007-10-25 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode for lithium secondary battery, positive electrode and lithium secondary battery
WO2011078112A1 (en) * 2009-12-22 2011-06-30 石原産業株式会社 Lithium titanate, manufacturing method therefor, slurry used in said manufacturing method, electrode active material containing said lithium titanate, and lithium secondary battery using said electrode active material
JP5926959B2 (en) * 2009-12-22 2016-05-25 石原産業株式会社 Lithium titanate, method for producing the lithium titanate, slurry used in the production method, electrode active material containing the lithium titanate, and lithium secondary battery using the electrode active material
WO2019064995A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2019064995A1 (en) * 2017-09-27 2020-10-15 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11462726B2 (en) 2017-09-27 2022-10-04 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3059832B2 (en) Lithium secondary battery
EP3767709A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2006032325A (en) Lithium secondary battery, positive electrode used in lithium secondary battery, and its manufacturing method
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
TW385565B (en) Cathode for lithium secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP2013254647A (en) Lithium ion-lithium air composite secondary battery, charging/discharging method using the same, and cathode material for lithium ion-lithium air composite secondary battery
JPH11312518A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH05174810A (en) Battery electrode and battery
JP2006216305A (en) Secondary battery
JP2001243951A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and battery using the same
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3223051B2 (en) Lithium secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JP2006260786A (en) Nonaqueous electrolyte secondary battery
WO2023052836A1 (en) Cathode active material for lithium-ion battery and method for preparing said active material, and cathode comprising said active material and method for preparing said cathode
JPH0541244A (en) Nonaqueous electrolyte secondary battery
JP2011222460A (en) Battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP2003007339A (en) Battery and manufacturing method of battery
JPH06333597A (en) Nonaqueous electrolyte battery
JP3167518B2 (en) Non-aqueous electrolyte secondary battery