JP2007280657A - Manufacturing method of positive electrode for lithium secondary battery, positive electrode and lithium secondary battery - Google Patents

Manufacturing method of positive electrode for lithium secondary battery, positive electrode and lithium secondary battery Download PDF

Info

Publication number
JP2007280657A
JP2007280657A JP2006102683A JP2006102683A JP2007280657A JP 2007280657 A JP2007280657 A JP 2007280657A JP 2006102683 A JP2006102683 A JP 2006102683A JP 2006102683 A JP2006102683 A JP 2006102683A JP 2007280657 A JP2007280657 A JP 2007280657A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006102683A
Other languages
Japanese (ja)
Other versions
JP5131723B2 (en
Inventor
Tatsuya Hashimoto
達也 橋本
Yasuaki Ichitaka
康晃 一▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006102683A priority Critical patent/JP5131723B2/en
Publication of JP2007280657A publication Critical patent/JP2007280657A/en
Application granted granted Critical
Publication of JP5131723B2 publication Critical patent/JP5131723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for a lithium secondary battery which is excellent in the binding capability among positive electrode active materials and the adhesion property of a positive electrode active material and a current collector, and which prevents drop in the charge-discharge capacity of the battery performance or degradation in the load characteristics, while having no adverse effects on the environmental loads. <P>SOLUTION: The manufacturing method is intended for a positive electrode for a lithium secondary battery which has a positive electrode active material with its top surface processed by the hydrophilic treatment, a conductive material, a binding agent, and a thickening agent. A mixture of poly(oxyethylene) tridecile ether and water is used as a surface active agent, of which ratio of the additive amount to the total amount of the positive electrode active material and conductive material is 0.1 to 5% in weight. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池用正極の改良に関する。   The present invention relates to an improvement in a positive electrode for a lithium secondary battery.

従来、リチウム二次電池の製造に関して、リチウム系金属酸化物材料、導電材、および結着剤を増粘剤水溶液に同時に配合・混練してペーストを製造する方法の他に、混合・分散時のせん断力を規定することで活物質、導電材及び増粘剤との分散性の改良などがあった(例えば、特許文献1参照)。また、導電材表面に界面活性剤を被覆されることにより分散性を改良したものも報告されている(例えば、特許文献2参照)。
特開平11―213989号公報 特開2002―134101号公報
Conventionally, regarding the production of lithium secondary batteries, in addition to a method of producing a paste by simultaneously blending and kneading a lithium-based metal oxide material, a conductive material, and a binder in a thickener aqueous solution, By defining the shearing force, there was an improvement in dispersibility with the active material, the conductive material and the thickener (see, for example, Patent Document 1). Moreover, what improved dispersibility by coat | covering surfactant on the surface of a electrically conductive material is also reported (for example, refer patent document 2).
Japanese Patent Application Laid-Open No. 11-213989 JP 2002-134101 A

しかしながら、特許文献1の製造方法により作製した極板においては、ペースト状態での正極活物質と結着剤および増粘剤との混合度は改善されたが、ペースト保管中において分離や沈降などの現象が生じることがあった。その結果、塗布乾燥後の活物質同士の結着性および集電体との密着性が悪くなり、高温保存中や繰り返し充放電使用中に、集電体から活物質の剥離や脱落が生じ、充放電特性の低下や負荷特性の悪化を促すといった問題があった。   However, in the electrode plate produced by the manufacturing method of Patent Document 1, the degree of mixing of the positive electrode active material, the binder, and the thickener in the paste state has been improved. A phenomenon sometimes occurred. As a result, the adhesion between the active materials after coating and drying and the adhesion with the current collector are deteriorated, and during active storage and repeated charge and discharge, the active material is peeled off or detached from the current collector. There has been a problem that the charge / discharge characteristics are deteriorated and the load characteristics are deteriorated.

また、特許文献2の製造方法においては導電材にのみの被覆を目的としているため、リチウム系金属酸化物材料によっては分散が不十分であるため、ペースト作成中に凝集塊が発生したりすることがあった。その結果、活物質同士の結着性および集電体の密着性が悪く高温保存中や繰り返し充放電使用中に、集電体から正極活物質の剥離、脱落が生じ、放電特性の低下や負荷特性の悪化を促すといった問題があった。   In addition, since the production method of Patent Document 2 is intended to cover only the conductive material, depending on the lithium-based metal oxide material, the dispersion may be insufficient, and agglomerates may be generated during paste preparation. was there. As a result, the binding property between the active materials and the adhesion of the current collector are poor, and the positive electrode active material peels off from the current collector during high-temperature storage or repetitive charge / discharge use, resulting in reduced discharge characteristics and load. There was a problem of promoting deterioration of characteristics.

さらに乾燥温度によってはベンゼンなどの有害な有機芳香族化合物を空気中に放出する恐れがあり、環境負荷を増大させるといった問題があった。   Furthermore, depending on the drying temperature, harmful organic aromatic compounds such as benzene may be released into the air, which increases the environmental load.

本発明は、このような問題に鑑みてなされたもので、その目的は、正極活物質同士の結着力、正極活物質と集電体との密着性に優れ、また、充放電特性の低下や負荷特性の悪化を防止すると共に、環境負荷に対しても優しいリチウム二次電池用正極を提供することにある。   The present invention has been made in view of such problems, and its purpose is excellent in binding force between the positive electrode active materials, adhesion between the positive electrode active material and the current collector, and reduction in charge / discharge characteristics. An object of the present invention is to provide a positive electrode for a lithium secondary battery that prevents deterioration of load characteristics and is also environmentally friendly.

本発明のリチウム二次電池用正極の製造方法は、表面に親水性処理を施した正極活物質、導電材に、結着剤および増粘剤を有するリチウム二次電池用正極の製造方法であって、前記正極活物質、前記導電材、前記結着剤、前記増粘剤および水を混練して正極用ペーストを作製する混練工程と、正極用ペーストを集電体に塗布して正極前駆体を得る塗布工程と、前記正極前駆体を乾燥する乾燥工程から成るリチウム二次電池用正極の製造方法を特徴とする。   The method for producing a positive electrode for a lithium secondary battery according to the present invention is a method for producing a positive electrode for a lithium secondary battery in which a surface is subjected to a hydrophilic treatment, and a conductive material has a binder and a thickener. A kneading step of kneading the positive electrode active material, the conductive material, the binder, the thickener and water to produce a positive electrode paste; and applying the positive electrode paste to a current collector to form a positive electrode precursor The manufacturing method of the positive electrode for lithium secondary batteries which consists of the application | coating process which obtains, and the drying process which dries the said positive electrode precursor is characterized.

本発明のリチウム二次電池用正極の製造方法によれば、繰り返し充放電の使用において、充放電特性の劣化や負荷特性の劣化を極めて小さく抑えることができる。また、高温下に長期放置するような厳しい条件下においても、充放電特性の劣化や負荷特性の劣化を
小さく抑えることができる。
According to the method for producing a positive electrode for a lithium secondary battery of the present invention, deterioration of charge / discharge characteristics and deterioration of load characteristics can be suppressed to an extremely low level in repeated use of charge / discharge. In addition, deterioration of charge / discharge characteristics and load characteristics can be minimized even under severe conditions such as leaving for a long time at high temperatures.

また、密着性も改善されるために、電池組立工程中における正極活物質の落下がなくなり、作業性を改善することができる。さらには、構造式にベンゼン環を持たないために、乾燥工程でベンゼンなどの有害な有機芳香族化合物を空気中に放出する恐れがなく、環境負荷を低減することができる。   In addition, since the adhesion is also improved, the positive electrode active material is not dropped during the battery assembly process, and the workability can be improved. Furthermore, since the structural formula does not have a benzene ring, there is no risk of releasing harmful organic aromatic compounds such as benzene into the air in the drying step, and the environmental load can be reduced.

本発明の請求項1記載の発明は、表面に親水性処理を施した正極活物質、導電材に、結着剤および増粘剤を有するリチウム二次電池用正極の製造方法であって、前記正極活物質、前記導電材、前記結着剤、前記増粘剤および水を混練して正極用ペーストを作製する混練工程と、正極用ペーストを集電体に塗布して正極前駆体を得る塗布工程と、前記正極前駆体を乾燥する乾燥工程から成るリチウム二次電池用正極の製造方法である。   The invention according to claim 1 of the present invention is a method for producing a positive electrode for a lithium secondary battery having a positive electrode active material having a hydrophilic treatment on its surface, a conductive material, and a binder and a thickener. A kneading step of kneading the positive electrode active material, the conductive material, the binder, the thickener, and water to prepare a positive electrode paste, and a coating that applies the positive electrode paste to a current collector to obtain a positive electrode precursor It is a manufacturing method of the positive electrode for lithium secondary batteries which consists of a process and the drying process which dries the said positive electrode precursor.

本発明のリチウム二次電池用正極の製造方法によれば、繰り返し充放電の使用において、充放電特性の劣化や負荷特性の劣化を極めて小さく抑えることができる。また、高温下に長期放置するような厳しい条件下においても、充放電特性の劣化や負荷特性の劣化を小さく抑えることができる。   According to the method for producing a positive electrode for a lithium secondary battery of the present invention, deterioration of charge / discharge characteristics and deterioration of load characteristics can be suppressed to an extremely low level in repeated use of charge / discharge. In addition, deterioration of charge / discharge characteristics and load characteristics can be minimized even under severe conditions such as leaving for a long time at high temperatures.

また、密着性も改善されるために、電池組立工程中における正極活物質の落下がなくなり、作業性を改善することができる。さらに、構造式としてベンゼン環を持たないため、乾燥工程でベンゼンなどの有害な有機芳香族化合物を空気中に放出する恐れがなく、環境負荷を低減することができる。   In addition, since the adhesion is also improved, the positive electrode active material is not dropped during the battery assembly process, and the workability can be improved. Furthermore, since it does not have a benzene ring as a structural formula, there is no fear of releasing harmful organic aromatic compounds such as benzene into the air in the drying step, and the environmental burden can be reduced.

請求項2に記載の発明は、前記親水性処理として、前記正極活物質および前記導電材表面を界面活性剤で覆ったことを特徴とするリチウム二次電池用正極の製造方法であって、この親水性処理として界面活性剤を用いることにより、請求項1と同様の効果を得ることができる。   The invention according to claim 2 is a method for producing a positive electrode for a lithium secondary battery, wherein the surface of the positive electrode active material and the conductive material is covered with a surfactant as the hydrophilic treatment. By using a surfactant as the hydrophilic treatment, the same effect as in claim 1 can be obtained.

請求項3に記載の発明は、前記界面活性剤として、ポリ(オキシエチレン)トリデシルエーテルと水との混合物であるであることを特徴としたリチウム二次電池用正極の製造方法であって、このことにより請求項1と同様の効果を得ることができる。   Invention of Claim 3 is a manufacturing method of the positive electrode for lithium secondary batteries characterized by being a mixture of poly (oxyethylene) tridecyl ether and water as said surfactant, Thus, the same effect as in the first aspect can be obtained.

請求項4に記載の発明は、前記界面活性剤の添加量比率が、前記正極活物質と前記導電材混合粉の総量に対して0.1〜5重量%であるリチウム二次電池用正極の製造方法であって、このことにより請求項1と同様の効果を得ることができる。   According to a fourth aspect of the present invention, there is provided a positive electrode for a lithium secondary battery in which the addition amount ratio of the surfactant is 0.1 to 5% by weight with respect to the total amount of the positive electrode active material and the conductive material mixed powder. This is a manufacturing method, and as a result, the same effect as in claim 1 can be obtained.

請求項5に記載の発明は、請求項1〜4に記載のリチウム二次電池用正極の製造方法で作製したリチウム二次電池用正極であり、請求項6に記載の発明は、請求項5に記載のリチウム二次電池用正極を有するリチウム二次電池である。   Invention of Claim 5 is a positive electrode for lithium secondary batteries produced with the manufacturing method of the positive electrode for lithium secondary batteries of Claims 1-4, The invention of Claim 6 is Claim 5 A lithium secondary battery having the positive electrode for a lithium secondary battery described in 1.

以上述べたように、本発明のリチウム二次電池用正極の製造方法により作製される正極およびその正極を用いたリチウム二次電池は、繰り返し行われる充放電の使用において、充放電特性の劣化や負荷特性の劣化を極めて小さく抑えることができる。また、高温下に長期放置するような厳しい条件下においても、充放電特性の劣化や負荷特性の劣化を小さく抑えることができる。   As described above, the positive electrode produced by the method for producing a positive electrode for a lithium secondary battery of the present invention and the lithium secondary battery using the positive electrode are deteriorated in charge / discharge characteristics in repeated charge / discharge use. Deterioration of load characteristics can be suppressed to an extremely small level. In addition, deterioration of charge / discharge characteristics and load characteristics can be minimized even under severe conditions such as leaving for a long time at high temperatures.

また、密着性も改善されるために、電池組立工程中における正極活物質の落下がなくなり、作業性を改善することができる。さらに、構造式にベンゼン環を持たないため、乾燥工程でベンゼンなどの有害な有機芳香族化合物を空気中に放出する恐れがなく、環境負荷
を低減することができる。
In addition, since the adhesion is also improved, the positive electrode active material is not dropped during the battery assembly process, and the workability can be improved. Furthermore, since the structural formula does not have a benzene ring, there is no fear that harmful organic aromatic compounds such as benzene are released into the air in the drying step, and the environmental load can be reduced.

図1は本発明の実施例において作製した円筒型リチウム二次電池の構成を表す一部切断断面図である。   FIG. 1 is a partially cut cross-sectional view showing a configuration of a cylindrical lithium secondary battery manufactured in an example of the present invention.

図1の円筒型リチウム二次電池の構成は前記実施例にて得られた正極用極板5と負極用極板6とからなる極板群と、電解液、これらを収容するケース-本体8からなる。   The cylindrical lithium secondary battery shown in FIG. 1 is composed of an electrode plate group made up of the positive electrode plate 5 and the negative electrode plate 6 obtained in the above embodiment, an electrolyte, and a case-main body 8 for containing them. Consists of.

極板群は、シート状の正極用極板5と、シート状の前記負極用極板6と、正極用極板5と負極用極板6間を絶縁するシート状のセパレータ7と、正極リード3と、負極リード9と、上部絶縁板4と、下部絶縁板10とからなる。   The electrode plate group includes a sheet-like positive electrode plate 5, a sheet-like negative electrode plate 6, a sheet-like separator 7 that insulates between the positive electrode plate 5 and the negative electrode plate 6, and a positive electrode lead 3, a negative electrode lead 9, an upper insulating plate 4, and a lower insulating plate 10.

次に負極用極板6の製造方法を説明する。   Next, the manufacturing method of the electrode plate 6 for negative electrodes is demonstrated.

負極用極板の活物質として鱗片状黒鉛粉末50重量部、結着剤としてスチレンブタジエンゴム5重量部、および増粘剤としてCMC1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部とを混合分散して負極用極板ペーストを得る。   A thickener aqueous solution 23 dissolved in 99 parts by weight of water with respect to 50 parts by weight of flaky graphite powder as an active material of a negative electrode plate, 5 parts by weight of styrene butadiene rubber as a binder, and 1 part by weight of CMC as a thickener. An electrode plate paste for negative electrode is obtained by mixing and dispersing parts by weight.

得られた負極用極板ペーストを、前述した正極用極板の作製方法と同様に、ダイ塗工法により、連続走行する厚さ40μm、幅150mmの銅箔上に、片側の厚さが0.110mmに負極活物質層が形成されるように、銅箔の両面に塗布、乾燥させた後、負極ジャンボロールを得る。この後、負極合剤層の片側の厚みが0.20mmになるよう圧延し、所定の寸法となるように裁断して負極用極板6を作製する。   The obtained negative electrode plate paste was continuously coated on a copper foil having a thickness of 40 μm and a width of 150 mm by a die coating method in the same manner as the above-described method for producing a positive electrode plate. After applying and drying on both surfaces of the copper foil so that the negative electrode active material layer is formed to 110 mm, a negative electrode jumbo roll is obtained. Then, it rolls so that the thickness of the one side of a negative mix layer may be set to 0.20 mm, and it cuts so that it may become a predetermined dimension, and the negative electrode plate 6 is produced.

非水電解液は、炭酸エチレン30vol%と、炭酸ジエチル50vol%とプロピオン酸メチル20vol%との混合液にLiPF6を1.0mol/Lの濃度に溶解したものを用いる。この非水電解液は、電池ケース内に収容され、正極活物質層および負極活物質層内に含浸されて、電池反応において、多孔質なセパレータの微少孔を通して正極用極板5と負極用極板6間のLiイオンの移動を担う。   As the nonaqueous electrolytic solution, a solution obtained by dissolving LiPF6 at a concentration of 1.0 mol / L in a mixed solution of ethylene carbonate 30 vol%, diethyl carbonate 50 vol% and methyl propionate 20 vol% is used. This non-aqueous electrolyte is accommodated in the battery case, impregnated in the positive electrode active material layer and the negative electrode active material layer, and in the battery reaction, the positive electrode plate 5 and the negative electrode electrode through the micropores of the porous separator. Responsible for the movement of Li ions between the plates 6.

電池ケースは、耐有機電解液性のステンレス鋼板を深絞り成形して得たケース本体8と、封口板1と封口板1と電池ケース8との間を絶縁し得る絶縁ガスケット2で構成されている。   The battery case is composed of a case main body 8 obtained by deep drawing an organic electrolyte resistant stainless steel plate, and an insulating gasket 2 that can insulate between the sealing plate 1, the sealing plate 1, and the battery case 8. Yes.

本実施例の円筒型リチウム二次電池のサイズは、直径17mm、高さ50mmである。   The size of the cylindrical lithium secondary battery of this example is 17 mm in diameter and 50 mm in height.

以下、本発明に関し実施例および比較例を用いて詳細に説明する。   Hereinafter, the present invention will be described in detail using examples and comparative examples.

(実施例1)
正極活物質としてLiCoO2粉末を95重量部、導電材としてアセチレンブラック5重量部に対し、ポリ(オキシエチレン)トリデシルエーテル1重量部に対して水99重量部に溶解した界面活性剤水溶液300重量部を60分間混合した。
(Example 1)
300 parts by weight of an aqueous surfactant solution prepared by dissolving 95 parts by weight of LiCoO 2 powder as a positive electrode active material, 5 parts by weight of acetylene black as a conductive material, and 99 parts by weight of water with respect to 1 part by weight of poly (oxyethylene) tridecyl ether The parts were mixed for 60 minutes.

このように混合して得られた正極活物質と導電材および界面活性剤の混合溶液を90℃の温度で180分乾燥させた後、100メッシュのふるいを通して凝集塊を取り除くことにより、正極活物質と導電材表面に界面活性剤で親水性処理された混合品を得た。   The mixed solution of the positive electrode active material, the conductive material and the surfactant obtained by mixing in this way is dried at a temperature of 90 ° C. for 180 minutes, and then agglomerates are removed through a 100-mesh sieve to obtain a positive electrode active material. And a mixture product obtained by hydrophilically treating the surface of the conductive material with a surfactant.

親水性処理をされた正極活物質と導電材の混合品100重量部に、結着剤としてポリテトラフルオロエチレン(以下PTFEと略す)の固形物50重量部入った水溶液を4重量
部、増粘剤としてカルボキシメチルセルロース(以下CMCと略す)を1重量部に対して水99重量部に溶解した水溶液30重量部を配合し、混合分散して正極用ペーストを得た。
4 parts by weight of an aqueous solution containing 50 parts by weight of a solid material of polytetrafluoroethylene (hereinafter abbreviated as PTFE) as a binder in 100 parts by weight of a mixture of a positive electrode active material and a conductive material subjected to hydrophilic treatment, thickening As an agent, 30 parts by weight of an aqueous solution in which carboxymethyl cellulose (hereinafter abbreviated as CMC) was dissolved in 99 parts by weight of water with respect to 1 part by weight was blended, mixed and dispersed to obtain a positive electrode paste.

次に、この正極用ペーストをダイ塗工法により、連続走行する厚み15μm、幅150mmの集電体であるアルミニウム箔上に、片側の厚さが0.11mmに正極活物質層が形成されるように、アルミニウム箔の両面に塗布、乾燥させた後、正極ジャンボロールを得た。   Next, a positive electrode active material layer having a thickness of 0.11 mm on one side is formed on an aluminum foil, which is a current collector having a thickness of 15 μm and a width of 150 mm, by continuously applying this positive electrode paste by a die coating method. After applying and drying on both surfaces of the aluminum foil, a positive jumbo roll was obtained.

この後、PTFEの溶融温度である250℃から350℃の範囲に設定された乾燥炉中にジャンボロールを順次繰り出し走行させて通過加熱させる。こうすることによりアルミニウム箔と正極合剤層の密着層を向上させることができる。この後、正極合剤層の片側の厚みが0.09mmになるよう圧延し、所定の寸法となるように裁断して正極用極板を作製し、実施例極板1とした。そして、これを用いた円筒型リチウム二次電池を実施例電池1とした。   After that, jumbo rolls are sequentially drawn and run in a drying furnace set in a range of 250 ° C. to 350 ° C., which is the melting temperature of PTFE, and heated by passage. By carrying out like this, the adhesion layer of aluminum foil and a positive mix layer can be improved. Then, it rolled so that the thickness of the one side of a positive mix layer might be set to 0.09 mm, and it cut | judged so that it might become a predetermined dimension, the positive electrode plate was produced, and it was set as the Example electrode plate 1. FIG. A cylindrical lithium secondary battery using this was designated as Example Battery 1.

(比較例1)
正極用極板の作製において、正極活物質と導電材のどちらも親水性処理を施さなかった以外は実施例1と同様にして正極用極板を作製し、比較例極板1とした。そして、これを用いた円筒型リチウム二次電池を比較例電池1とした。
(Comparative Example 1)
In the production of the positive electrode plate, a positive electrode plate was produced in the same manner as in Example 1 except that neither the positive electrode active material nor the conductive material was subjected to hydrophilic treatment. And the cylindrical lithium secondary battery using this was made into comparative example battery 1.

(比較例2)
正極用極板の作製において、正極活物質にのみ親水性処理を施した以外は、実施例1と同様にして正極用極板を作製し比較例極板2とした。そして、これを用いた円筒型リチウム二次電池を比較例電池2とした。
(Comparative Example 2)
In the production of the positive electrode plate, a positive electrode plate was produced in the same manner as in Example 1 except that only the positive electrode active material was subjected to a hydrophilic treatment to obtain a comparative electrode plate 2. And the cylindrical lithium secondary battery using this was made into comparative example battery 2.

(比較例3)
正極の作製において、導電材にのみ親水性処理を施した以外は、実施例1と同様にして正極用極板を作製し、比較例極板2とした。そして、これを用いた円筒型電池を比較例極板3とした。そして、これを用いた円筒型リチウム二次電池を比較例電池3とした。
(Comparative Example 3)
In the production of the positive electrode, a positive electrode plate was produced in the same manner as in Example 1 except that only the conductive material was subjected to the hydrophilic treatment, and a comparative electrode plate 2 was obtained. And the cylindrical battery using this was used as the comparative example electrode plate 3. And the cylindrical lithium secondary battery using this was made into comparative example battery 3.

(比較例4)
正極活物質と導電材の混合粉総量に対する界面活性剤の添加量の比率が0.05重量%添加した。それ以外は実施例1と同様にして正極用極板を作製し、比較例極板4とした。そして、これを用いた円筒型リチウム二次電池を比較例電池4とした。
(Comparative Example 4)
The ratio of the addition amount of the surfactant to the total amount of the mixed powder of the positive electrode active material and the conductive material was added by 0.05% by weight. Otherwise, a positive electrode plate was prepared in the same manner as in Example 1 to obtain a comparative electrode plate 4. And the cylindrical lithium secondary battery using this was made into comparative example battery 4.

(比較例5)
正極活物質と導電材の混合粉総量に対する界面活性剤の添加量の比率が7重量%添加した。他は実施例1と全く同様にして正極用極板を作製し、比較例極板5とした。そして、これを用いた円筒型リチウム二次電池を比較例電池5とした。
(Comparative Example 5)
The ratio of the addition amount of the surfactant to the total amount of the mixed powder of the positive electrode active material and the conductive material was added by 7% by weight. Other than that, a positive electrode plate was prepared in the same manner as in Example 1 to obtain a comparative electrode plate 5. And the cylindrical lithium secondary battery using this was made into comparative example battery 5.

(比較例6)
正極の作製において、正極活物質と導電材の混合粉総量に対する界面活性剤の添加量の比率は同じとするが、活物質、導電材、結着剤、増粘剤水溶液及び界面活性剤を一括添加して正極用極板ペーストを作成した。それ以外は実施例1と同様にして正極用極板を作製し、比較例極板6とした。これを用いた円筒型リチウム二次電池を比較例電池6とした。
(Comparative Example 6)
In the production of the positive electrode, the ratio of the addition amount of the surfactant to the total amount of the mixed powder of the positive electrode active material and the conductive material is the same, but the active material, the conductive material, the binder, the thickener aqueous solution and the surfactant are collectively included. This was added to prepare a positive electrode plate paste. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a comparative electrode plate 6 was obtained. A cylindrical lithium secondary battery using this was designated as Comparative Example Battery 6.

実施例1および比較例1〜6で得られた正極用極板を下記に示す方法で評価した。正極用極板1000cm2の表面に存在する凝集塊およびピンホールの数を目視により計数しとし、(表1)に示した。 The positive electrode plates obtained in Example 1 and Comparative Examples 1 to 6 were evaluated by the methods shown below. The number of agglomerates and pinholes present on the surface of the positive electrode plate 1000 cm 2 was visually counted and shown in (Table 1).

Figure 2007280657
Figure 2007280657

(表1)の結果より、あらかじめ正極活物質と導電材に親水性処理を施さない比較例1ものは溶媒および結着剤との濡れ性が十分でなく、分散が不十分となり凝集塊が発生した。   From the results of (Table 1), Comparative Example 1 in which the positive electrode active material and the conductive material are not subjected to hydrophilic treatment in advance has insufficient wettability with the solvent and the binder, resulting in insufficient dispersion and generation of agglomerates. did.

また、比較例2の正極活物質にのみ、もしくは比較例3の導電材にのみ親水性処理を施した場合は、施さない材料についての分散が不十分となり凝集塊が発生した。   In addition, when the hydrophilic treatment was performed only on the positive electrode active material of Comparative Example 2 or only on the conductive material of Comparative Example 3, the dispersion of the material that was not applied was insufficient and aggregates were generated.

界面活性剤であるポリ(オキシエチレン)トリデシルエーテルの添加量については、実施例4のように少なすぎると十分な分散性が得られず、また、実施例5のように過剰に添加すると、逆に再凝集が生じたり、ペーストが発泡しやすくなり、良好な正極用極板を得ることが困難であると考えられる。   About the addition amount of poly (oxyethylene) tridecyl ether which is a surfactant, if it is too small as in Example 4, sufficient dispersibility cannot be obtained, and if added excessively as in Example 5, On the contrary, reaggregation occurs or the paste easily foams, and it is considered difficult to obtain a good positive electrode plate.

また、比較例6のように界面活性剤を一括添加したものは、界面活性剤が導電剤表面だけでなく結着剤や増粘剤水溶液に吸着、分散されてしまうため導電剤表面を充分覆うことができないために十分な分散性がえられず、良好な正極用極板を得ることが困難であると考えられる。   In addition, in the case where the surfactant is added all at once as in Comparative Example 6, the surfactant is adsorbed and dispersed not only on the surface of the conductive agent but also on the binder and the thickener aqueous solution, so that the surface of the conductive agent is sufficiently covered. Therefore, sufficient dispersibility cannot be obtained, and it is considered difficult to obtain a good positive electrode plate.

次に、集電体であるアルミニウム箔と正極合剤層の密着性を評価するために、碁盤目試験法JIS K5400に準じて正極合剤層膜表面に碁盤目状の傷をつけて、その上にセロハン粘着テープを貼り付け、剥がした後に正極合剤層の残ったマス目の数より評価した。例えば、密着性が良好であればマス目がすべて正極合剤層として残り、100/100と示す。これを目視により計数し、(表2)に示した。   Next, in order to evaluate the adhesion between the aluminum foil as the current collector and the positive electrode mixture layer, the surface of the positive electrode mixture layer film was scratched in accordance with the cross cut test method JIS K5400. The cellophane pressure-sensitive adhesive tape was applied to the top and peeled off, and the evaluation was made based on the number of cells remaining in the positive electrode mixture layer. For example, if the adhesion is good, all of the squares remain as the positive electrode mixture layer, which is indicated as 100/100. This was visually counted and shown in Table 2.

Figure 2007280657
Figure 2007280657

(表2)の結果からも、あらかじめ正極活物質と導電材に親水性処理を施さないものは溶媒および結着剤との濡れ性が十分でなく、分散が不十分な結果、密着性が低下した。   From the results of (Table 2), those in which the positive electrode active material and the conductive material are not subjected to hydrophilic treatment in advance have insufficient wettability with the solvent and the binder, resulting in insufficient dispersion, resulting in decreased adhesion. did.

また、正極活物質のみもしくは導電材のみに親水性処理を施した場合は、施さない材料についての分散が不十分となり密着性が低下した。界面活性剤であるポリ(オキシエチレン)トリデシルエーテルの添加量についても、少なすぎると十分な分散性が得られず、また過剰に添加すると、逆に再凝集を生じさせたり、ペーストが発泡しやすくなり、良好な正極用極板を得ることが困難であると考えられる。   In addition, when the hydrophilic treatment was applied only to the positive electrode active material or only the conductive material, the dispersion of the material not applied was insufficient and the adhesion was lowered. If the amount of the poly (oxyethylene) tridecyl ether, which is a surfactant, is too small, sufficient dispersibility cannot be obtained. If it is added excessively, re-agglomeration occurs or the paste foams. It becomes easy and it is thought that it is difficult to obtain a good positive electrode plate.

また、一括添加したものは界面活性剤が導電材表面だけでなく結着剤や増粘剤水溶液に吸着、分散されてしまうため導電材表面を充分覆うことができないために十分な分散性がえられず、良好な正極用極板を得ることが困難であると考えられる。   In addition, when the surfactant is added all at once, the surfactant is adsorbed and dispersed not only on the surface of the conductive material but also on the binder or thickener aqueous solution, so that the surface of the conductive material cannot be sufficiently covered. Thus, it is considered difficult to obtain a good positive electrode plate.

さらに、実施例1と比較例1〜6の正極用極板を用いて作製した円筒型リチウム二次電池電池の充放電繰り返し容量劣化特性(以下、サイクル寿命特性と言う)を測定し、サイクル寿命特性を比較した電池特性図として図2に示す。   Furthermore, the charge / discharge repeated capacity deterioration characteristics (hereinafter referred to as cycle life characteristics) of the cylindrical lithium secondary battery produced using the positive electrode plate of Example 1 and Comparative Examples 1 to 6 were measured, and the cycle life was measured. FIG. 2 shows a battery characteristic diagram comparing the characteristics.

サイクル寿命特性の評価方法を以下に示す。   The evaluation method of cycle life characteristics is shown below.

充電は500mAの定電流で行い、4.1Vになった時点で4.1Vの定電圧充電にきりかえ、合計2時間充電を行った。放電は、20℃720mAで行い、放電電位が3.0Vになった時点で放電を終了し次の充電を開始した。この図2より本発明の円筒型リチウム二次電池は、充放電を繰り返しても容量の劣化が少なくサイクル特性に優れていることがわかった。   Charging was performed at a constant current of 500 mA. When the voltage reached 4.1 V, charging was replaced with constant voltage charging of 4.1 V, and charging was performed for a total of 2 hours. Discharge was performed at 20 ° C. and 720 mA, and when the discharge potential reached 3.0 V, the discharge was terminated and the next charge was started. From FIG. 2, it was found that the cylindrical lithium secondary battery of the present invention was excellent in cycle characteristics with little capacity deterioration even after repeated charge and discharge.

これは本発明の円筒型リチウム二次電池は予め正極活物質と導電材の両表面に対し親水
性処理を施すことにより正極ペースト中での正極活物質、導電材および結着剤との凝集を抑制し、ペースト中での正極活物質、導電材および結着剤との分散性が向上し、集電体との密着性が改良されたために、充放電での合剤の膨張収縮によっても剥がれにくくなったことが原因と考えられる。
This is because the cylindrical lithium secondary battery of the present invention causes the positive electrode active material, the conductive material and the binder to agglomerate in the positive electrode paste by applying hydrophilic treatment to both surfaces of the positive electrode active material and the conductive material in advance. Suppressed, improved dispersibility with positive electrode active material, conductive material and binder in paste, and improved adhesion to current collector, so peeling due to expansion and contraction of mixture during charge / discharge The cause is thought to be difficult.

また、これらの電池を充電状態で60℃20日間保存し、その後常温にて数回充放電を行った後、720mAで放電を行い電圧が3.0Vに達するまでの容量を求め、その保存前の容量に対する割合を(表3)に示した。   In addition, these batteries are stored in a charged state at 60 ° C. for 20 days, and then charged and discharged several times at room temperature, then discharged at 720 mA to determine the capacity until the voltage reaches 3.0 V, and before the storage The ratio of the capacity to the capacity is shown in (Table 3).

Figure 2007280657
Figure 2007280657

(表3)に示すとおり高温保存においても本発明品は容量劣化が少なくなることが明らかとなった。   As shown in (Table 3), it has been clarified that the product of the present invention has less capacity deterioration even when stored at high temperature.

以上説明したように、本発明によれば、繰り返し充放電の使用において、充放電特性の劣化や負荷特性の劣化を極めて小さく抑えることができる。   As described above, according to the present invention, in repeated use of charge / discharge, deterioration of charge / discharge characteristics and load characteristics can be suppressed extremely small.

また、高温下に長期放置するような厳しい条件下においても、充放電特性の劣化や負荷特性の劣化を小さく抑えることができる。   In addition, deterioration of charge / discharge characteristics and load characteristics can be minimized even under severe conditions such as leaving for a long time at high temperatures.

また、密着性も改善されるために、電池組立工程中における正極活物質の落下がなくなり、作業性を改善することができる。   In addition, since the adhesion is also improved, the positive electrode active material is not dropped during the battery assembly process, and the workability can be improved.

さらに、構造式にベンゼン環を持たないため、乾燥工程においてベンゼンなどの有害な有機芳香族化合物を空気中に放出する恐れがなく、環境負荷を低減できる。   Furthermore, since the structural formula does not have a benzene ring, there is no risk of releasing harmful organic aromatic compounds such as benzene into the air during the drying process, and the environmental load can be reduced.

本発明のリチウム二次電池用正極の製造方法により作製される正極およびその正極を用いたリチウム二次電池は、正極活物質同士の結着力、正極活物質と集電体との密着性に優れ、また、電池特性の充放電特性の低下や負荷特性の悪化を防止すると共に、環境負荷に
対しても優しいリチウム二次電池用正極を提供するものであり、電池の製造、販売に寄与し産業上極めて有用である。
The positive electrode produced by the method for producing a positive electrode for a lithium secondary battery of the present invention and the lithium secondary battery using the positive electrode are excellent in binding force between the positive electrode active materials and adhesion between the positive electrode active material and the current collector. In addition, it provides a positive electrode for lithium secondary batteries that prevents the deterioration of charge / discharge characteristics and load characteristics of battery characteristics and is also environmentally friendly, contributing to the manufacture and sale of batteries. It is extremely useful.

本発明の実施例において作製した円筒型リチウム二次電池の構成を表す一部切断断面図Partially cutaway sectional view showing the configuration of a cylindrical lithium secondary battery produced in an example of the present invention サイクル寿命特性を比較した電池特性図Battery characteristics comparing cycle life characteristics

符号の説明Explanation of symbols

1 封口板
2 絶縁ガスケット
3 正極リード
4 上部絶縁板
5 正極用極板
6 負極用極板
7 セパレータ
8 電池ケース
9 負極リード
10 下部絶縁板

DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Insulation gasket 3 Positive electrode lead 4 Upper insulating plate 5 Positive electrode plate 6 Negative electrode plate 7 Separator 8 Battery case 9 Negative electrode lead 10 Lower insulating plate

Claims (6)

表面に親水性処理を施した正極活物質、導電材に、結着剤および増粘剤を有するリチウム二次電池用正極の製造方法であって、前記正極活物質、前記導電材、前記結着剤、前記増粘剤および水を混練して正極用ペーストを作製する混練工程と、正極用ペーストを集電体に塗布して正極前駆体を得る塗布工程と、前記正極前駆体を乾燥する乾燥工程から成るリチウム二次電池用正極の製造方法。 A method for producing a positive electrode for a lithium secondary battery having a binder and a thickener on a positive electrode active material and a conductive material having a hydrophilic treatment on the surface, the positive electrode active material, the conductive material, and the binder A kneading step of kneading the agent, the thickener and water to produce a positive electrode paste, a coating step of applying the positive electrode paste to a current collector to obtain a positive electrode precursor, and drying to dry the positive electrode precursor The manufacturing method of the positive electrode for lithium secondary batteries which consists of a process. 前記親水性処理は、前記正極活物質および前記導電材の表面を界面活性剤で覆った請求項1記載のリチウム二次電池用正極の製造方法。 2. The method for producing a positive electrode for a lithium secondary battery according to claim 1, wherein the hydrophilic treatment covers surfaces of the positive electrode active material and the conductive material with a surfactant. 前記界面活性剤は、ポリ(オキシエチレン)トリデシルエーテルと水との混合物である請求項1記載のリチウム二次電池用正極の製造方法。 The method for producing a positive electrode for a lithium secondary battery according to claim 1, wherein the surfactant is a mixture of poly (oxyethylene) tridecyl ether and water. 前記界面活性剤の添加量比率が、前記正極活物質と前記導電材混合粉の総量に対して0.1〜5重量%である請求項1、3記載のリチウム二次電池用正極の製造方法。 4. The method for producing a positive electrode for a lithium secondary battery according to claim 1, wherein a ratio of the surfactant added is 0.1 to 5 wt% with respect to a total amount of the positive electrode active material and the conductive material mixed powder. . 請求項1〜4に記載のリチウム二次電池用正極の製造方法で作製したリチウム二次電池用正極。 The positive electrode for lithium secondary batteries produced with the manufacturing method of the positive electrode for lithium secondary batteries of Claims 1-4. 請求項5に記載のリチウム二次電池用正極を有するリチウム二次電池。
A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to claim 5.
JP2006102683A 2006-04-04 2006-04-04 Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery Expired - Fee Related JP5131723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102683A JP5131723B2 (en) 2006-04-04 2006-04-04 Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102683A JP5131723B2 (en) 2006-04-04 2006-04-04 Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007280657A true JP2007280657A (en) 2007-10-25
JP5131723B2 JP5131723B2 (en) 2013-01-30

Family

ID=38681902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102683A Expired - Fee Related JP5131723B2 (en) 2006-04-04 2006-04-04 Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5131723B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252396A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Lithium secondary battery cathode and method for manufacturing the same
JP2011192539A (en) * 2010-03-15 2011-09-29 Panasonic Corp Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016055254A (en) * 2014-09-10 2016-04-21 株式会社ジェイテクト Coating method and coating apparatus
WO2018068267A1 (en) * 2016-10-13 2018-04-19 宁德新能源科技有限公司 Anode additive, electrode plate comprising same, and electrochemical energy storage device
US10439222B2 (en) 2014-12-12 2019-10-08 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP2021524129A (en) * 2018-05-15 2021-09-09 ハイドロ−ケベック Cellulose-based self-supporting film for use in Li-ion batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH0737578A (en) * 1993-07-23 1995-02-07 C Uyemura & Co Ltd Battery electrode
JP2002134101A (en) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd Method of producing positive electrode plate for lithium secondary battery
JP2002151057A (en) * 2000-11-13 2002-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of paste for positive electrode of lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH0737578A (en) * 1993-07-23 1995-02-07 C Uyemura & Co Ltd Battery electrode
JP2002134101A (en) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd Method of producing positive electrode plate for lithium secondary battery
JP2002151057A (en) * 2000-11-13 2002-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of paste for positive electrode of lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252396A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Lithium secondary battery cathode and method for manufacturing the same
JP2011192539A (en) * 2010-03-15 2011-09-29 Panasonic Corp Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016055254A (en) * 2014-09-10 2016-04-21 株式会社ジェイテクト Coating method and coating apparatus
US10439222B2 (en) 2014-12-12 2019-10-08 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
WO2018068267A1 (en) * 2016-10-13 2018-04-19 宁德新能源科技有限公司 Anode additive, electrode plate comprising same, and electrochemical energy storage device
JP2021524129A (en) * 2018-05-15 2021-09-09 ハイドロ−ケベック Cellulose-based self-supporting film for use in Li-ion batteries
US11811068B2 (en) 2018-05-15 2023-11-07 HYDRO-QUéBEC Cellulose-based self-standing films for use in Li-ion batteries
JP7431175B2 (en) 2018-05-15 2024-02-14 ハイドロ-ケベック Cellulose-based free-standing film for use in Li-ion batteries

Also Published As

Publication number Publication date
JP5131723B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP2020064866A (en) Aqueous slurry for battery electrode
JP4958484B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
TWI521777B (en) Water-based cathode slurry for a lithium ion battery
JP2007280911A5 (en)
JP2009152200A (en) Anode including surface-treated anode active material and lithium battery adopting the same
EP3042410B1 (en) Additives for improving the ionic conductivity of lithium-ion battery electrodes
JP2009544135A (en) Battery, battery electrode, and manufacturing method thereof
KR101876690B1 (en) Nonaqueous electrolyte secondary battery
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
JP2007234277A (en) Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP5131723B2 (en) Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery
JP5204929B1 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2012109143A (en) Battery cathode and lithium-ion secondary battery
JP2011014262A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP4531444B2 (en) Method for producing electrode for lithium ion secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR20190085874A (en) Slurry composition for forming cathode, cathode manufactured thereby, and battery comprising the same
US9899681B2 (en) Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
JP2002151057A (en) Manufacturing method of paste for positive electrode of lithium secondary battery
KR101664624B1 (en) Method for manufacturing positive electrode for all solid lithium-sulfur battery, and positive electrode for all solid lithium-sulfur battery using the same
JP2011071047A (en) Method of manufacturing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2014150034A (en) Electrode for power storage device and power storage device
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2009224188A (en) Method of manufacturing lithium-ion secondary battery and its positive electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees