JP4649862B2 - Lithium ion secondary battery and manufacturing method thereof - Google Patents
Lithium ion secondary battery and manufacturing method thereof Download PDFInfo
- Publication number
- JP4649862B2 JP4649862B2 JP2004109806A JP2004109806A JP4649862B2 JP 4649862 B2 JP4649862 B2 JP 4649862B2 JP 2004109806 A JP2004109806 A JP 2004109806A JP 2004109806 A JP2004109806 A JP 2004109806A JP 4649862 B2 JP4649862 B2 JP 4649862B2
- Authority
- JP
- Japan
- Prior art keywords
- porous film
- inorganic oxide
- oxide particles
- particle diameter
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
Description
本発明は、耐短絡性および耐熱性などの安全性に優れた非水電解液二次電池であり、特にリチウムイオン二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery excellent in safety such as short circuit resistance and heat resistance, and particularly relates to a lithium ion secondary battery.
リチウムイオン二次電池などの化学電池では、正極と負極との間にそれぞれの極板を電気的に絶縁する役目をもつセパレータを配している。前記セパレータとしては主にポリオレフィン樹脂からなる微多孔膜が用いられている。 In a chemical battery such as a lithium ion secondary battery, a separator having a function of electrically insulating each electrode plate is disposed between a positive electrode and a negative electrode. As the separator, a microporous film mainly made of polyolefin resin is used.
しかしながら、前記ポリオレフィン樹脂からなるセパレータは、その耐熱温度が120から160℃程度であり、電池が内部短絡した場合や釘のような鋭利な形状の突起物が電池を貫いた時に、セパレータの耐熱性が不十分なために電池が高温状態になるという課題を有していた。 However, the separator made of the polyolefin resin has a heat resistance temperature of about 120 to 160 ° C., and when the battery is short-circuited internally or when a sharp projection such as a nail penetrates the battery, Has a problem that the battery is in a high temperature state.
そこで、上記の課題を解決する方法として、正極板もしくは負極板のいずれかの表面にアルミナなどの無機物の粉体と樹脂製結着剤からなる多孔膜を形成する方法が提案されている。
しかしながら従来技術に基づいて多孔膜が形成された極板を用いて電池を作成した場合、電池の放電特性、特に、低温環境下や大電流放電時の放電特性が著しく低下するといった課題や保存特性やサイクル特性が低下するという課題が生じた。 However, when a battery is prepared using an electrode plate on which a porous film is formed based on the prior art, the discharge characteristics of the battery, in particular, the discharge characteristics during low temperature environments and large current discharges are significantly reduced and storage characteristics. As a result, there was a problem that the cycle characteristics deteriorated.
本発明は上記課題を解決するもので、多孔膜の膜構造を改良することで高い安全性と良好な放電特性、サイクル特性を両立したリチウムイオン二次電池を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a lithium ion secondary battery that achieves both high safety, good discharge characteristics, and cycle characteristics by improving the film structure of the porous film.
(a)複合リチウム酸化物からなる正極、
(b)負極、
(c)セパレータ、
(d)非水電解液、および
(e)前記正極および前記負極のいずれか一方の表面に形成された多孔膜を具備するリチウムイオン二次電池であって、前記多孔膜は無機酸化物粒子および結着剤からなり、その多孔膜の表面側と、正極または負極に接する側(電極側)において、多孔膜を構成している無機酸化物粒子の粒子径がそれぞれ異なり、かつ、多孔膜の表面側の無機酸化物粒子の粒子径の方が多孔膜の電極側の無機酸化物粒子の粒子径よりも大きいことを特徴とするリチウムイオン二次電池である。
(A) a positive electrode comprising a composite lithium oxide;
(B) a negative electrode,
(C) separator,
(D) a non-aqueous electrolyte, and (e) a lithium ion secondary battery comprising a porous film formed on the surface of any one of the positive electrode and the negative electrode, the porous film comprising inorganic oxide particles and The particle diameter of the inorganic oxide particles constituting the porous film is different between the surface side of the porous film and the side in contact with the positive electrode or the negative electrode (electrode side). The lithium ion secondary battery is characterized in that the particle diameter of the inorganic oxide particles on the side is larger than the particle diameter of the inorganic oxide particles on the electrode side of the porous membrane.
さらには、前記多孔膜において、多孔膜の表面側を形成する無機酸化物粒子の粒子径を1μm以上3μm以下とし、かつ、多孔膜の電極側を形成する無機酸化物粒子の粒子径を0.1μm以上0.5μm以下とすることを特徴とするリチウムイオン二次電池である。 Furthermore, in the porous film, the particle diameter of the inorganic oxide particles forming the surface side of the porous film is 1 μm or more and 3 μm or less, and the particle diameter of the inorganic oxide particles forming the electrode side of the porous film is 0.00. It is a lithium ion secondary battery characterized by being 1 micrometer or more and 0.5 micrometer or less.
以上のように本発明によれば、内部短絡安全性を向上させる目的で、極板表面上に無機
物の粉体からなる耐熱性の多孔質膜を形成してなるリチウムイオン二次電池において、優れた放電特性と高い安全性を有する電池を提供することが可能となる。
As described above, according to the present invention, for the purpose of improving the internal short circuit safety, the lithium ion secondary battery in which a heat-resistant porous film made of an inorganic powder is formed on the electrode plate surface is excellent. It is possible to provide a battery having excellent discharge characteristics and high safety.
本発明の好ましい態様を以下に示す。 Preferred embodiments of the present invention are shown below.
本発明は、
(a)複合リチウム酸化物からなる正極、
(b)負極、
(c)セパレータ、
(d)非水電解液、および
(e)前記正極および前記負極のいずれか一方の表面に形成された多孔膜を具備するリチウムイオン二次電池であって、前記多孔膜は無機酸化物粒子および結着剤からなり、その多孔膜の表面側と、電極側において、多孔膜を構成している無機酸化物粒子の粒子径がそれぞれ異なり、かつ、多孔膜の表面側の無機酸化物粒子の粒子径の方が多孔膜の電極側の無機酸化物粒子の粒子径よりも大きいことを特徴とするリチウムイオン二次電池である。
The present invention
(A) a positive electrode comprising a composite lithium oxide;
(B) a negative electrode,
(C) separator,
(D) a non-aqueous electrolyte, and (e) a lithium ion secondary battery comprising a porous film formed on the surface of any one of the positive electrode and the negative electrode, the porous film comprising inorganic oxide particles and The particle size of the inorganic oxide particles on the surface side of the porous film is different from that of the inorganic oxide particles constituting the porous film on the surface side of the porous film and the electrode side. The lithium ion secondary battery is characterized in that the diameter is larger than the particle diameter of the inorganic oxide particles on the electrode side of the porous membrane.
多孔膜の表面側では、多孔膜を形成する無機酸化物粒子の粒子径を大きくすることで多孔膜の孔径を大きくすることができ、これにより、大電流での放電特性を向上させることができる。一方、多孔膜の電極側では、多孔膜を形成する無機酸化物粒子の粒子径を小さくすることで多孔膜の空隙を大きくすることができ、これによって、多孔膜と電極間での電解液の保持性が良くなりサイクル特性が向上する。 On the surface side of the porous film, the pore diameter of the porous film can be increased by increasing the particle diameter of the inorganic oxide particles forming the porous film, thereby improving the discharge characteristics at a large current. . On the other hand, on the electrode side of the porous film, the voids of the porous film can be increased by reducing the particle diameter of the inorganic oxide particles forming the porous film, and thus the electrolyte solution between the porous film and the electrode can be increased. Retention is improved and cycle characteristics are improved.
無機酸化物粒子で、その粒子径が0.1μm以上0.5μm以下の粒子を用いて多孔膜を構成した場合、その多孔膜の孔径は0.07から0.10μmの範囲で、多孔度は50から60%の範囲となる膜が得られる。このような多孔膜はその多孔度が大きいことから電解液の保持量が多く、電極側に構成することで電極での電解液の保持性を高めサイクル特性が向上する。一方、粒子径が1μm以上3μm以下の無機酸化物粒子を用いて多孔膜を構成した場合は、その多孔膜の孔径は0.4から0.5μmの範囲で、多孔度は25から35%の範囲となる膜が得られる。このような多孔膜はその孔径が大きいことから大電流時の放電特性が向上する。しかしながら、その多孔度が低いためにサイクル特性は低下する。従って、上記の2種類の孔径および多孔度の異なる多孔膜を最適に配置することで大電流時の放電特性とサイクル特性に優れた電池を得ることができる。すなわち、多孔膜において、多孔膜の表面側を形成する無機酸化物粒子の粒子径を1μm以上3μm以下とし、かつ、多孔膜の電極側を形成する無機酸化物粒子の粒子径が0.1μm以上0.5μm以下とすることが最も望ましい。 When the porous membrane is composed of inorganic oxide particles having a particle size of 0.1 μm or more and 0.5 μm or less, the pore size of the porous membrane is in the range of 0.07 to 0.10 μm, and the porosity is A film with a range of 50 to 60% is obtained. Since such a porous film has a large porosity, the amount of electrolyte solution retained is large, and by being constructed on the electrode side, the electrolyte solution retention at the electrode is increased and the cycle characteristics are improved. On the other hand, when the porous membrane is composed of inorganic oxide particles having a particle size of 1 μm or more and 3 μm or less, the pore size of the porous membrane is in the range of 0.4 to 0.5 μm, and the porosity is 25 to 35%. A film with a range is obtained. Since such a porous film has a large pore diameter, the discharge characteristics at a large current are improved. However, due to its low porosity, cycle characteristics are degraded. Therefore, a battery having excellent discharge characteristics and cycle characteristics at a large current can be obtained by optimally disposing the two kinds of porous films having different pore diameters and porosity. That is, in the porous film, the particle diameter of the inorganic oxide particles forming the surface side of the porous film is 1 μm or more and 3 μm or less, and the particle diameter of the inorganic oxide particles forming the electrode side of the porous film is 0.1 μm or more. Most preferably, it is 0.5 μm or less.
前記正極または負極に多孔膜を形成する製造方法としては、無機酸化物粒子と結着剤と溶剤とを含む多孔膜前駆体を、正極および負極のいずれか一方の表面に塗布及び乾燥して多孔膜を形成するに際し、前記多孔膜前駆体として、無機酸化粒子の粒子径の異なる2種類以上の多孔膜前駆体を使用して塗布及び乾燥を繰り返し工程とし、かつ、最初に塗布する前記多孔膜前駆体の無機酸化物粒子の粒子径よりも、後に塗布する多孔膜前駆体の無機酸化物粒子の粒子径の方を大きくすることで製造することができる。 As a manufacturing method for forming a porous film on the positive electrode or the negative electrode, a porous film precursor containing inorganic oxide particles, a binder, and a solvent is applied to and dried on either the positive electrode or the negative electrode. When forming a film, the porous film is applied first and repeatedly using two or more kinds of porous film precursors having different inorganic oxide particle diameters as the porous film precursor, and the porous film is first applied. It can manufacture by making the particle diameter of the inorganic oxide particle of the porous membrane precursor apply | coated later larger than the particle diameter of the inorganic oxide particle of a precursor.
多孔膜を形成する無機酸化物粒子としては電気的に絶縁体であり耐熱性を有することが求められる。すなわち、電池がなんらかの外的要因で内部短絡して発熱した場合においても、その多孔膜を形成する無機酸化物粒子が有する耐熱性の機能で、電池の発熱を防止して電池を安全に保つことができるからである。したがって、多孔膜を構成している無機酸化物粒子としては、電気的に絶縁体であり、かつ、250℃以上の耐熱性が必要である。また、リチウムイオン二次電池の電位窓内で電気化学的に安定である必要がある。これら
の条件を満たすものとしては、アルミナやシリカ、ジルコニア、チタニアといった材料がより望ましい。
The inorganic oxide particles forming the porous film are required to be electrically insulating and heat resistant. That is, even when the battery generates heat due to an internal short circuit due to some external factor, the heat resistance function of the inorganic oxide particles forming the porous film prevents the battery from generating heat and keeps the battery safe. Because you can. Therefore, the inorganic oxide particles constituting the porous film are electrically insulating and require heat resistance of 250 ° C. or higher. Moreover, it is necessary to be electrochemically stable within the potential window of the lithium ion secondary battery. As materials satisfying these conditions, materials such as alumina, silica, zirconia, and titania are more preferable.
また、多孔膜に用いる樹脂製ポリマー結着剤の添加量としては、無機酸化物粒子の100重量部に対して1重量部以上20重量部以下であることが望ましい。結着剤の添加量が20重量部を超える場合には、多孔膜の孔が結着剤で塞がれてしまい放電特性が低下する問題があり、結着剤の添加量が1重量部未満の場合には、多孔膜と極板との密着性が低下することにより、多孔膜の脱落が問題となる。 The amount of the resinous polymer binder used for the porous membrane is preferably 1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the inorganic oxide particles. When the added amount of the binder exceeds 20 parts by weight, there is a problem that the pores of the porous film are blocked with the binder and the discharge characteristics are deteriorated, and the added amount of the binder is less than 1 part by weight. In this case, the adhesion between the porous film and the electrode plate is lowered, so that the removal of the porous film becomes a problem.
多孔膜を形成する結着剤としては、スチレンブタジエンラバー(以下、SBRと略す)やポリテトラフルオロエチレン(以下、PTFEと略す)、ポリフッ化ビニリデン(以下、PVDFと略す)及び、SBRのアクリル酸変性体などを用いることができるが、さらに、本発明の好ましい実施の形態の多孔膜の結着剤は、融点もしくは分解開始温度が250℃以上のものである。さらに、本発明の好ましい実施の形態の多孔膜の結着剤は、アクリロニトリル単位を含むゴム性状高分子を包含している。内部短絡が発生した場合において、短絡部の発熱温度は100℃程度になる。結着剤は、その融点が低い場合もしくは熱分解温度が低い場合は、軟化したり焼失したりする。このことにより、多孔膜が変形し、さらに短絡個所が拡大する。このような不具合を回避しなければならないためである。 Examples of the binder for forming the porous film include styrene butadiene rubber (hereinafter abbreviated as SBR), polytetrafluoroethylene (hereinafter abbreviated as PTFE), polyvinylidene fluoride (hereinafter abbreviated as PVDF), and acrylic acid of SBR. Although a modified body etc. can be used, Furthermore, the binder of the porous film of preferable embodiment of this invention is a thing whose melting | fusing point or decomposition start temperature is 250 degreeC or more. Furthermore, the binder for the porous membrane according to a preferred embodiment of the present invention includes a rubbery polymer containing an acrylonitrile unit. When an internal short circuit occurs, the heat generation temperature of the short circuit part is about 100 ° C. When the melting point is low or the thermal decomposition temperature is low, the binder softens or burns out. As a result, the porous film is deformed, and the short-circuit portion is further expanded. This is because such a problem must be avoided.
本発明のさらに好ましい実施の形態のリチウムイオン二次電池は、正極および負極が、セパレータを介して積層され、それらが渦巻状に捲かれている。 In the lithium ion secondary battery of a further preferred embodiment of the present invention, the positive electrode and the negative electrode are laminated via a separator, and they are wound in a spiral shape.
多孔膜の厚みは、特に限定されないが、多孔膜による安全性向上の機能を十分に発揮させるとともに、電池の設計容量を維持する観点から、0.5〜20μmであることが好ましい。2層以上の多孔膜を形成した場合においても、総厚みが0.5〜20μmであることが好ましい。この場合、現在、一般的に用いられているセパレータの厚さと多孔膜の厚さとの総和は、15〜30μmが好ましい。 The thickness of the porous film is not particularly limited, but is preferably 0.5 to 20 μm from the viewpoint of sufficiently exerting the function of improving the safety by the porous film and maintaining the design capacity of the battery. Even when two or more porous films are formed, the total thickness is preferably 0.5 to 20 μm. In this case, the sum of the thickness of the separator and the thickness of the porous film that are generally used at present is preferably 15 to 30 μm.
正極は、少なくとも正極活物質と結着剤と導電剤を含む。 The positive electrode includes at least a positive electrode active material, a binder, and a conductive agent.
正極活物質としては、複合酸化物を挙げることができる。複合酸化物としては、コバルト酸リチウム、コバルト酸リチウムの変性体、ニッケル酸リチウム、ニッケル酸リチウムの変性体、マンガン酸リチウム、マンガン酸リチウムの変性体などが好ましい。各変性体には、アルミニウム、マグネシウムなどの元素を含むものがある。また、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものもある。 An example of the positive electrode active material is a composite oxide. As the composite oxide, lithium cobaltate, modified lithium cobaltate, lithium nickelate, modified lithium nickelate, lithium manganate, modified lithium manganate, and the like are preferable. Some modified bodies contain elements such as aluminum and magnesium. There are also those containing at least two of cobalt, nickel and manganese.
正極に用いる結着剤は、特に限定されず、PTFE、変性アクリロニトリルゴム粒子、PVDFなどを用いることができる。PTFEなどは、正極合剤層の原料ペーストの増粘剤となるカルボキシメチルセルロース、ポリエチレンオキシド、変性アクリロニトリルゴムなどと組み合わせて用いることが好ましい。PVDFは、単一で結着剤と増粘剤の双方の機能を有する。 The binder used for the positive electrode is not particularly limited, and PTFE, modified acrylonitrile rubber particles, PVDF, and the like can be used. PTFE or the like is preferably used in combination with carboxymethyl cellulose, polyethylene oxide, modified acrylonitrile rubber, or the like that serves as a thickener for the raw material paste of the positive electrode mixture layer. PVDF is single and functions as both a binder and a thickener.
導電剤としては、アセチレンブラック、ケッチェンブラック(登録商標)、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いても良い。 As the conductive agent, acetylene black, ketjen black (registered trademark), various graphites, and the like can be used. These may be used alone or in combination of two or more.
負極は、少なくとも負極活物質と結着剤を含む。 The negative electrode includes at least a negative electrode active material and a binder.
負極活物質としては、各種天然黒鉛、各種人造黒鉛、シリサイドなどのシリコン含有複合材料、各種合金材料を用いることができる。結着剤としては、PVDFおよびその変性
体を始め各種バインダーを用いることができる。
As the negative electrode active material, various natural graphites, various artificial graphites, silicon-containing composite materials such as silicide, and various alloy materials can be used. As the binder, various binders such as PVDF and modified products thereof can be used.
非水溶媒からなる電解液には、LiPF6、LiBF4などの各種リチウム塩を溶質として用いることができる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを用いることが好ましいが、これらに限定されない。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。また、添加剤としては、ビニレンカーボネート、シクロヘキシルベンゼン、それらの変性体などを用いることもできる。 Various lithium salts such as LiPF 6 and LiBF 4 can be used as solutes in the electrolyte solution composed of a non-aqueous solvent. As the non-aqueous solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like are preferably used, but are not limited thereto. Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination. Moreover, as an additive, vinylene carbonate, cyclohexylbenzene, those modified bodies, etc. can also be used.
セパレータは、リチウムイオン二次電池の使用環境に耐え得る材料からなるものであれば、特に限定されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂からなる微多孔フィルムを用いることが一般的である。微多孔フィルムは、1種のポリオレフィン系樹脂からなる単層膜であってもよく、2種以上のポリオレフィン系樹脂からなる多層膜であってもよい。 The separator is not particularly limited as long as it is made of a material that can withstand the use environment of the lithium ion secondary battery, but a microporous film made of a polyolefin-based resin such as polyethylene or polypropylene is generally used. The microporous film may be a single layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resin.
(実施例)
コバルト酸リチウム3kgを、呉羽化学(株)製PVDF#1320(固形分12重量%のN−メチルピロリドン(NMP)溶液)1kg、アセチレンブラック90gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極ペーストを作製した。このペーストを15μm厚のアルミニウム箔の両面に塗布乾燥し、総厚が160μmとなるように圧延した後、幅60mm、長さ500mmの寸法に裁断及びリード取り付け加工を施し正極板を得た。
(Example)
3 kg of lithium cobaltate was stirred in a double-arm kneader together with 1 kg of PVDF # 1320 (N-methylpyrrolidone (NMP) solution with a solid content of 12% by weight), 90 g of acetylene black and an appropriate amount of NMP. A positive electrode paste was prepared. This paste was applied and dried on both sides of a 15 μm thick aluminum foil, rolled to a total thickness of 160 μm, and then cut and lead-attached into a width of 60 mm and a length of 500 mm to obtain a positive electrode plate.
人造黒鉛2kgを、日本ゼオン(株)製スチレンブタジエンラバー結着剤BM−400B(固形分40重量%)75g、カルボキシメチルセルロース(CMC)30gおよび適量の水とともに双腕式練合機にて攪拌し、負極ペーストを作製した。このペーストを10μm厚の銅箔の両面に塗布乾燥し、総厚が180μmとなるように圧延し、負極リールを得た。 2 kg of artificial graphite was stirred in a double arm kneader together with 75 g of styrene butadiene rubber binder BM-400B (solid content 40% by weight), 30 g of carboxymethylcellulose (CMC) and an appropriate amount of water manufactured by Nippon Zeon Co., Ltd. A negative electrode paste was prepared. This paste was applied and dried on both sides of a 10 μm thick copper foil and rolled to a total thickness of 180 μm to obtain a negative electrode reel.
次いで、アルミナ粉末で、その粒子径が0.1、0.2、0.5、1.0、2.0、3.0μmの粉末をそれぞれ用いて、前記アルミナ粉末の950gを、日本ゼオン(株)製ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量%)625gおよび適量のNMPとともに双腕式練合機にて攪拌してそれぞれ7種類の多孔膜ペースト、A、B、C、D、E、Fを作製した。 Next, using alumina powders having particle sizes of 0.1, 0.2, 0.5, 1.0, 2.0, and 3.0 μm, respectively, 950 g of the alumina powder was added to Nippon Zeon ( Co., Ltd. polyacrylonitrile modified rubber binder BM-720H (solid content 8% by weight) 625 g and an appropriate amount of NMP and stirred in a double-arm kneader, each of seven types of porous film pastes, A, B, C , D, E, F were prepared.
次いで、上記の負極リールの両面に厚さ3μmとなるように、多孔膜ペーストA、B、C、D、Eを塗布及び乾燥して5種類の負極リールa、b、c、d、eを得た。次いで、この5種類の負極リールの両面にさらに厚さ3μmとなるように、多孔膜ペーストB、C、D、E、Fをそれぞれ塗布及び乾燥して、2層の多孔膜を作製した。このとき、後で塗布して表面側の多孔膜を形成するアルミナ粉末の粒子径が、先に塗布して電極側の多孔膜を形成したアルミナの粒子径より大きくなるように組み合わせて2層の多孔膜を作製した。このようにして、15種類の負極リールAB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EFを得た(ここで、前記負極の種類を表す記号は、(電極側に形成した多孔膜ペーストの記号)(表面側の多孔膜のペーストの記号)を組み合わせて表記している)。得られた15種類の負極リールは、幅62mm、長さ570mmの寸法に裁断及びリード取り付け加工を施し負極板をそれぞれ得た。 Next, the porous film pastes A, B, C, D, and E are applied and dried so as to have a thickness of 3 μm on both surfaces of the negative electrode reel, and five types of negative electrode reels a, b, c, d, and e are obtained. Obtained. Next, porous film pastes B, C, D, E, and F were applied and dried so as to have a thickness of 3 μm on both surfaces of the five types of negative electrode reels, respectively, to prepare a two-layer porous film. At this time, the particle diameter of the alumina powder to be applied later to form the porous film on the surface side is combined to be larger than the particle diameter of the alumina previously applied to form the porous film on the electrode side. A porous membrane was produced. In this way, 15 types of negative electrode reels AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF, and EF were obtained (here, the types of the negative electrodes (The symbol of the porous film paste formed on the electrode side) (the symbol of the porous film paste on the surface side) is used in combination. The obtained 15 types of negative electrode reels were cut and lead-attached into dimensions of a width of 62 mm and a length of 570 mm to obtain negative electrode plates, respectively.
セパレータには、ポリエチレン微多孔膜(膜厚16μm)ものを用いた。 As the separator, a polyethylene microporous film (film thickness: 16 μm) was used.
正極板と負極板をセパレータとともに巻回し、巻回したものを、直径18mm、高さ67mmの円筒形の電池ケースにケースに挿入、封口板の溶接等の加工を施した後に、電解液として1.0M−LiPF6/EC+EMC(体積比1:3)を用い、前記電解液を5.5g注入して直径18mm、高さ65mmの円筒型電池を作製した。この電池の設計容量は、2000mAhである。これを実施例とする。
(比較例)
アルミナ粉末で、その粒子径が0.1、0.2、0.5、1.0、2.0、3.0μmの粉末をそれぞれ用いて、前記アルミナ粉末の950gを、日本ゼオン(株)製ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量%)625gおよび適量のNMPとともに双腕式練合機にて攪拌してそれぞれ7種類の多孔膜ペースト、A、B、C、D、E、Fを作製した。
A positive electrode plate and a negative electrode plate are wound together with a separator, and the wound one is inserted into a cylindrical battery case having a diameter of 18 mm and a height of 67 mm, and after processing such as welding of a sealing plate, the electrolyte is 1 Using 0.0 M-LiPF 6 / EC + EMC (volume ratio 1: 3), 5.5 g of the electrolyte was injected to produce a cylindrical battery having a diameter of 18 mm and a height of 65 mm. The design capacity of this battery is 2000 mAh. This is an example.
(Comparative example)
950 g of the alumina powder was used by using powders of alumina powder having particle sizes of 0.1, 0.2, 0.5, 1.0, 2.0, and 3.0 μm, respectively. Nippon Zeon Co., Ltd. 7 types of porous film pastes, A, B, C, and D, which were stirred together with a 625 g polyacrylonitrile-modified rubber binder BM-720H (solid content 8 wt%) and an appropriate amount of NMP in a double-arm kneader. , E, F were prepared.
次いで、実施例と同様の方法で得た負極リールの両面に厚さ3μmとなるように、多孔膜ペーストA、B、C、D、E、Fを塗布及び乾燥して6種類の負極リールa、b、c、d、e、fを得た。次いで、この6種類の負極リールの両面にさらに厚さ3μmとなるように、多孔膜ペーストA、B、C、D、E、Fをそれぞれ塗布及び乾燥して、実施例で作製した負極以外の21種類の負極リールAA、BA、BB、CA、CB、CC、DA、DB、DC、DD、EA、EB、EC、ED、EE、FA、FB、FC、FD、FE、FFを得た。 Next, porous film pastes A, B, C, D, E, and F were applied and dried so as to have a thickness of 3 μm on both sides of the negative electrode reel obtained by the same method as in the example, and six types of negative electrode reels a , B, c, d, e, f were obtained. Next, the porous film pastes A, B, C, D, E, and F were applied and dried so as to have a thickness of 3 μm on both surfaces of the six types of negative electrode reels, respectively. 21 types of negative electrode reels AA, BA, BB, CA, CB, CC, DA, DB, DC, DD, EA, EB, EC, ED, EE, FA, FB, FC, FD, FE, FF were obtained.
得られた21種類の負極リールは、幅62mm、長さ570mmの寸法に裁断及びリード取り付け加工を施し負極板をそれぞれ得た。 The obtained 21 types of negative electrode reels were cut and lead-attached into dimensions of a width of 62 mm and a length of 570 mm to obtain negative electrode plates, respectively.
上記の負極板を用いた以外は実施例と同様の方法で円筒型電池を作製し、比較例とした。 A cylindrical battery was produced in the same manner as in the example except that the negative electrode plate was used, and used as a comparative example.
以上の実施例及び比較例の電池は以下に示す方法で特性評価を行なった。
(大電流放電試験)
低温放電試験は以下の方法で行なった。電池の充電を、環境温度20℃にて、充電電圧4.2V、充電最大電流1400mAの条件で2時間定電圧充電した後に、放電電流200mA、放電終止電圧3.0Vの定電流放電を行い放電容量を測定し電池の定格容量とした。次いで、放電後の電池を上記と同様の方法で再度充電をした後に、充電後の電池を20℃の環境温度で、放電電流4000mA、放電終止電圧3.0Vの定電流放電を行い大電流時の放電容量を測定した。電池の定格容量に対する大電流放電時の放電容量の比率を求めて放電容量維持率とした。
(サイクル試験)
充放電のサイクル寿命試験は以下の方法で行なった。環境温度20℃にて、充電電圧4.2V、充電最大電流1400mAの条件で2時間定電圧充電した後に、放電電流2000mA、放電終止電圧3.0Vの定電流放電を行った。前記充電及び放電のサイクルを繰り返し行い、1サイクル目の放電容量に対する500サイクル目の放電容量の比率を求めてサイクル容量維持率とした。
The batteries of the above examples and comparative examples were evaluated by the following method.
(Large current discharge test)
The low temperature discharge test was conducted by the following method. The battery was charged at a constant temperature of 20 ° C. under a charging voltage of 4.2 V and a charging maximum current of 1400 mA for 2 hours, followed by a constant current discharging with a discharging current of 200 mA and a discharge end voltage of 3.0 V. The capacity was measured and used as the rated capacity of the battery. Next, after charging the discharged battery again in the same manner as described above, the charged battery was discharged at a constant current of 4000 mA and an end-of-discharge voltage of 3.0 V at an environmental temperature of 20 ° C. The discharge capacity of was measured. The ratio of the discharge capacity at the time of large current discharge to the rated capacity of the battery was determined and used as the discharge capacity maintenance rate.
(Cycle test)
The charge / discharge cycle life test was conducted by the following method. After charging at a constant voltage for 2 hours at an environmental temperature of 20 ° C. under conditions of a charging voltage of 4.2 V and a charging maximum current of 1400 mA, a constant current discharging with a discharging current of 2000 mA and a discharge final voltage of 3.0 V was performed. The charge and discharge cycles were repeated, and the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle was determined as the cycle capacity maintenance rate.
以下に、本発明に関して、結果を詳細に説明する。 In the following, the results will be described in detail with respect to the present invention.
表1に、実施例及び比較例の負極板に形成した多孔膜の組み合わせの関係を示した。次いで、表2に、大電流放電時の放電容量維持率の結果を示した。 Table 1 shows the relationship of combinations of porous films formed on the negative electrode plates of the examples and comparative examples. Next, Table 2 shows the results of the discharge capacity retention ratio during large current discharge.
表2に示すように、多孔膜の表面側を形成するアルミナ粉末の粒子径が1.0、2.0、3.0μmの場合の負極、AD、AE、AF、BD、BE、BF、CD、CE、CF、DD、DE、DF、ED、EE、EF、FD、FE、及び、FFはいずれも放電容量維持率が95%以上の良好な特性を示した。これは、粒子径が1μm以上3μm以下の粒子を用いて多孔膜を構成した場合には、その多孔膜の孔径は0.4から0.5μmの範囲で、多孔度は25から35%の範囲となる膜が得られる。このような多孔膜はその孔径が大きいために、大電流時の放電特性が向上すると考えられる。 As shown in Table 2, the negative electrode, AD, AE, AF, BD, BE, BF, CD when the particle size of the alumina powder forming the surface side of the porous membrane is 1.0, 2.0, 3.0 μm , CE, CF, DD, DE, DF, ED, EE, EF, FD, FE, and FF all showed good characteristics with a discharge capacity retention rate of 95% or more. This is because, when a porous film is formed using particles having a particle diameter of 1 μm or more and 3 μm or less, the pore diameter of the porous film is in the range of 0.4 to 0.5 μm, and the porosity is in the range of 25 to 35%. A film is obtained. Such a porous film has a large pore diameter, and is considered to improve discharge characteristics at a large current.
一方、多孔膜の表面側を形成するアルミナ粉末の粒子径が0.1、0.2、0.5μmの場合の負極、AA、AB、AC、BA、BB、BC、CA、CB、CC、DA、DB、DC、EA、EB、EC、FA、FB、及び、FCはいずれも90%以下の低い放電特性を示し、表面側を形成するアルミナ粉末の粒子径が小さくなるにしたがい、放電特性が低下した。これは、粒子径が0.1μm以上0.5μm以下の粒子を用いて多孔膜を構成した場合には、その多孔膜の孔径は0.07から0.10μmの範囲で、多孔度は50から60%の範囲となる膜が得られる。このような多孔膜はその孔径が小さいために、大電流時の放電特性が低下していると考えられる。 On the other hand, the negative electrode, AA, AB, AC, BA, BB, BC, CA, CB, CC, when the particle diameter of the alumina powder forming the surface side of the porous film is 0.1, 0.2, 0.5 μm, DA, DB, DC, EA, EB, EC, FA, FB, and FC all show low discharge characteristics of 90% or less, and discharge characteristics as the particle size of the alumina powder forming the surface side decreases. Decreased. This is because, when a porous membrane is formed using particles having a particle size of 0.1 μm or more and 0.5 μm or less, the pore size of the porous membrane is in the range of 0.07 to 0.10 μm, and the porosity is from 50 A film with a range of 60% is obtained. Such a porous film is considered to have a reduced discharge characteristic at a large current due to its small pore diameter.
表3には、サイクル試験の結果を示した。 Table 3 shows the results of the cycle test.
表3に示すように、多孔膜の電極側を形成するアルミナ粉末の粒子径が0.1、0.2、0.5μmの場合の負極、AA、AB、AC、AD、AE、AF、BA、BB、BC、BD、BE、BF、CA、CB、CC、CD、CE、及び、CFでは、いづれもサイクル容量維持率が85%以上の良好なサイクル特性を示した。これは、粒子径が0.1μm以上0.5μm以下の粒子を用いて多孔膜を構成した場合には、その多孔膜の孔径は0.07から0.10μmの範囲で、多孔度は50から60%の範囲となる膜が得られる。このような多孔膜はその多孔度が大きいことから電解液の保持量が多く、このような多孔膜を電極側に構成することで、電極での電解液の保持性を高めサイクル特性が向上するものと考えられる。 As shown in Table 3, the negative electrode, AA, AB, AC, AD, AE, AF, BA when the particle diameter of the alumina powder forming the electrode side of the porous membrane is 0.1, 0.2, 0.5 μm , BB, BC, BD, BE, BF, CA, CB, CC, CD, CE, and CF all showed good cycle characteristics with a cycle capacity retention rate of 85% or more. This is because, when a porous membrane is formed using particles having a particle size of 0.1 μm or more and 0.5 μm or less, the pore size of the porous membrane is in the range of 0.07 to 0.10 μm, and the porosity is from 50 A film with a range of 60% is obtained. Since such a porous membrane has a large porosity, it retains a large amount of electrolyte solution. By constructing such a porous membrane on the electrode side, the retention property of the electrolyte solution at the electrode is increased and the cycle characteristics are improved. It is considered a thing.
一方、多孔膜の電極側を形成するアルミナ粉末の粒子径が1.0、2.0、3.0μmの場合の負極、DA、DB、DC、DD、DE、DF、EA、EB、EC、ED、EE、EF、FA、FB、FC、FD、FE、及び、FFでは、いずれもサイクル容量維持率が80%以下と低いサイクル特性を示した。これは、粒子径が1μm以上3μm以下の粒子を用いて多孔膜を構成した場合には、その多孔膜の孔径は0.4から0.5μmの範囲で、多孔度は25から35%の範囲となる膜が得られる。このような多孔膜はその多孔度が小さいことから、電解液の保持性が低下しサイクル特性が低下しているものと考えられる。 On the other hand, the negative electrode, DA, DB, DC, DD, DE, DF, EA, EB, EC, when the particle diameter of the alumina powder forming the electrode side of the porous membrane is 1.0, 2.0, 3.0 μm ED, EE, EF, FA, FB, FC, FD, FE, and FF all exhibited low cycle characteristics with a cycle capacity retention rate of 80% or less. This is because, when a porous film is formed using particles having a particle diameter of 1 μm or more and 3 μm or less, the pore diameter of the porous film is in the range of 0.4 to 0.5 μm, and the porosity is in the range of 25 to 35%. A film is obtained. Since such a porous membrane has a low porosity, it is considered that the retention of the electrolytic solution is lowered and the cycle characteristics are lowered.
以上の結果より、本発明のように、2種類の孔径および多孔度の異なる多孔膜を最適に配置することで大電流時の放電特性とサイクル特性に優れた電池を得ることができることが分かる。 From the above results, it can be seen that a battery excellent in discharge characteristics and cycle characteristics at a large current can be obtained by optimally arranging two kinds of porous films having different pore diameters and porosity as in the present invention.
AB、AC、BCの負極は、多孔膜の表面側を形成する無機酸化物粒子の粒子径の方が多孔膜の電極側を形成する無機酸化物粒子の粒子径よりも大きくなっているが、多孔膜の表面側を形成する無機酸化物粒子の粒子径が0.2μm、あるいは0.5μmであるため、多孔膜の孔径が小さくなり、大電流放電特性が低下してしまった。また、DE、DF、EFの負極も、多孔膜の表面側を形成する無機酸化物粒子の粒子径の方が多孔膜の電極側を形成する無機酸化物粒子の粒子径よりも大きくなっているが、多孔膜の電極側を形成する無機酸化物粒子の粒子径が1.0μm、あるいは2.0μmであるため、多孔膜の多孔度が小さくなり、電極での電解液の保持性が低下してサイクル特性が低下してしまった。 In the negative electrode of AB, AC, BC, the particle diameter of the inorganic oxide particles forming the surface side of the porous film is larger than the particle diameter of the inorganic oxide particles forming the electrode side of the porous film. Since the particle diameter of the inorganic oxide particles forming the surface side of the porous film is 0.2 μm or 0.5 μm, the pore diameter of the porous film is reduced, and the large current discharge characteristics are deteriorated. Further, in the negative electrode of DE, DF, and EF, the particle diameter of the inorganic oxide particles forming the surface side of the porous film is larger than the particle diameter of the inorganic oxide particles forming the electrode side of the porous film. However, since the particle diameter of the inorganic oxide particles forming the electrode side of the porous film is 1.0 μm or 2.0 μm, the porosity of the porous film is reduced, and the retention of the electrolytic solution at the electrode is reduced. The cycle characteristics have deteriorated.
以上の結果より、大電流時の放電特性に優れ、かつ、サイクル特性に優れた電池を得るためには、多孔膜の表面側を形成する無機酸化物粒子の粒子径の方が多孔膜の電極側を形成する無機酸化物粒子の粒子径よりも大きい多孔膜を形成し、かつ、多孔膜の表面側を形
成する無機酸化物粒子の粒子径を1μm以上3μm以下とし、多孔膜の電極側を形成する無機酸化物粒子の粒子径を0.1μm以上0.5μm以下とすることが望ましい。
From the above results, in order to obtain a battery having excellent discharge characteristics at a large current and excellent cycle characteristics, the particle diameter of the inorganic oxide particles forming the surface side of the porous film is more porous. Forming a porous film larger than the particle diameter of the inorganic oxide particles forming the side, and setting the particle diameter of the inorganic oxide particles forming the surface side of the porous film to 1 μm to 3 μm, It is desirable that the inorganic oxide particles to be formed have a particle size of 0.1 μm or more and 0.5 μm or less.
すなわち、多孔膜において、多孔膜の表面側を形成する無機酸化物粒子の粒子径を1μm以上3μm以下とすることで多孔膜の孔径を大きくして、大電流時の放電特性を向上させることができる。また、多孔膜の電極側を形成する無機酸化物粒子の粒子径を0.1μm以上0.5μm以下とすることで多孔膜の多孔度を大きくして、電極側での電解液の保持性を改善しサイクル特性を向上させることができる。 That is, in the porous film, the pore diameter of the porous film can be increased by setting the particle diameter of the inorganic oxide particles forming the surface side of the porous film to 1 μm or more and 3 μm or less, thereby improving the discharge characteristics at a large current. it can. Moreover, the porosity of the porous membrane is increased by setting the particle size of the inorganic oxide particles forming the electrode side of the porous membrane to 0.1 μm or more and 0.5 μm or less, and the electrolyte retention on the electrode side The cycle characteristics can be improved.
尚、実施例においては2種類の粒子径の異なる無機酸化物粒子を用い、2層の多孔膜を形成したものについて説明したが、多孔膜の表面側を形成する無機酸化物粒子の粒子径の方が多孔膜の電極側を形成する無機酸化物粒子の粒子径よりも大きい多孔膜を形成し、かつ、多孔膜の表面側を形成する無機酸化物粒子の粒子径を1μm以上3μm以下とし、多孔膜の電極側を形成する無機酸化物粒子の粒子径を0.1μm以上0.5μm以下とすれば、2層に限らず、複数層でも同様の効果が得られる。 In the examples, two types of inorganic oxide particles having different particle sizes were used to form a two-layer porous film. However, the particle size of the inorganic oxide particles forming the surface side of the porous film was described. Forming a porous film larger than the particle diameter of the inorganic oxide particles forming the electrode side of the porous film, and the particle diameter of the inorganic oxide particles forming the surface side of the porous film being 1 μm or more and 3 μm or less, If the particle diameter of the inorganic oxide particles forming the electrode side of the porous membrane is 0.1 μm or more and 0.5 μm or less, the same effect can be obtained not only with two layers but also with a plurality of layers.
このように、本発明によれば大電流時の放電特性に優れ、かつ、サイクル特性に優れた電池が得られることが明確である。
Thus, according to the present invention, it is clear that a battery having excellent discharge characteristics at a large current and excellent cycle characteristics can be obtained.
本発明のリチウムイオン二次電池は、安全性の優れたポータブル用電源等として有用である。
The lithium ion secondary battery of the present invention is useful as a portable power source having excellent safety.
Claims (2)
(b)負極、
(c)セパレータ、
(d)非水電解液、および
(e)前記正極および前記負極のいずれか一方の表面に形成された多孔膜を具備するリチウムイオン二次電池であって、
前記多孔膜は無機酸化物粒子および結着剤からなり、その多孔膜の表面側と、正極または負極に接する側(電極側)において、多孔膜を構成している無機酸化物粒子の粒子径がそれぞれ異なり、かつ、多孔膜の表面側の無機酸化物粒子の粒子径の方が多孔膜の電極側の無機酸化物粒子の粒子径よりも大きいリチウムイオン二次電池おいて、前記多孔膜の表面側を形成する無機酸化物粒子の粒子径を1μm以上3μm以下とし、かつ、前記多孔膜の電極側を形成する無機酸化物粒子の粒子径を0.1μm以上0.5μm以下とすることを特徴とするリチウムイオン二次電池。 (A) a positive electrode comprising a composite lithium oxide;
(B) a negative electrode,
(C) separator,
(D) a non-aqueous electrolyte, and (e) a lithium ion secondary battery comprising a porous film formed on the surface of one of the positive electrode and the negative electrode,
The porous film is composed of inorganic oxide particles and a binder, and the particle diameter of the inorganic oxide particles constituting the porous film is on the surface side of the porous film and the side in contact with the positive electrode or the negative electrode (electrode side). In a lithium ion secondary battery, the surface of the porous membrane is different from each other and the particle size of the inorganic oxide particles on the surface side of the porous membrane is larger than the particle size of the inorganic oxide particles on the electrode side of the porous membrane. The inorganic oxide particles forming the side have a particle diameter of 1 μm to 3 μm, and the inorganic oxide particles forming the electrode side of the porous film have a particle diameter of 0.1 μm to 0.5 μm. Lithium ion secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004109806A JP4649862B2 (en) | 2004-04-02 | 2004-04-02 | Lithium ion secondary battery and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004109806A JP4649862B2 (en) | 2004-04-02 | 2004-04-02 | Lithium ion secondary battery and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005294139A JP2005294139A (en) | 2005-10-20 |
JP4649862B2 true JP4649862B2 (en) | 2011-03-16 |
Family
ID=35326825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004109806A Expired - Fee Related JP4649862B2 (en) | 2004-04-02 | 2004-04-02 | Lithium ion secondary battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4649862B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5309628B2 (en) * | 2007-03-23 | 2013-10-09 | 住友化学株式会社 | Porous film |
JP5286844B2 (en) * | 2007-03-23 | 2013-09-11 | 住友化学株式会社 | Separator |
KR20100081301A (en) * | 2007-09-27 | 2010-07-14 | 산요덴키가부시키가이샤 | Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery |
JP5062526B2 (en) * | 2007-09-27 | 2012-10-31 | 三洋電機株式会社 | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery |
JP5591704B2 (en) * | 2007-09-28 | 2014-09-17 | エー123 システムズ, インコーポレイテッド | Batteries having inorganic / organic porous membrane |
CN101911368B (en) | 2007-12-26 | 2014-07-02 | 松下电器产业株式会社 | Nonaqueous electrolyte rechargeable battery |
CN101877422B (en) * | 2009-04-30 | 2013-04-10 | 比亚迪股份有限公司 | Method for preparing lithium-ion secondary battery |
WO2010134501A1 (en) | 2009-05-18 | 2010-11-25 | 日本ゼオン株式会社 | Porous film and secondary battery |
KR101499676B1 (en) * | 2011-06-09 | 2015-03-06 | 주식회사 엘지화학 | A separator having porous coating layer and electrochemical device containing the same |
KR101315941B1 (en) | 2011-09-07 | 2013-10-08 | 성균관대학교산학협력단 | Organic-inorganic composite porous separator, producing method of the same, and electrochemical device containing the same |
KR101433198B1 (en) | 2012-05-29 | 2014-08-22 | 주식회사 엘지화학 | A separator having porous coating layer and electrochemical device including the same |
JP7507879B2 (en) * | 2020-10-08 | 2024-06-28 | エルジー エナジー ソリューション リミテッド | Separator for secondary battery including adhesive layer and method for manufacturing said separator |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08287897A (en) * | 1985-05-16 | 1996-11-01 | Wr Grace & Co Connecticut | Separator for battery |
WO1997008763A1 (en) * | 1995-08-28 | 1997-03-06 | Asahi Kasei Kogyo Kabushiki Kaisha | Cell and production method thereof |
WO1998038688A1 (en) * | 1997-02-28 | 1998-09-03 | Asahi Kasei Kogyo Kabushiki Kaisha | Nonaqueous secondary battery and method for manufacturing the same |
WO1999038224A1 (en) * | 1998-01-22 | 1999-07-29 | Mitsubishi Denki Kabushiki Kaisha | Battery |
WO2001095421A1 (en) * | 2000-06-07 | 2001-12-13 | Gs-Melcotec Co., Ltd. | Battery |
JP2002151055A (en) * | 2000-08-28 | 2002-05-24 | Nissan Motor Co Ltd | Lithium ion secondary battery |
JP2003077463A (en) * | 2001-09-05 | 2003-03-14 | Mitsubishi Chemicals Corp | Lithium secondary battery and its manufacturing method |
JP2004214042A (en) * | 2003-01-06 | 2004-07-29 | Mitsubishi Electric Corp | Adhesive for lithium secondary battery, its manufacturing method, and battery using it |
WO2005076388A1 (en) * | 2004-02-07 | 2005-08-18 | Lg Chem, Ltd. | Organic/inorganic composite porous layer-coated electrode and electro-chemical device comprising the same |
-
2004
- 2004-04-02 JP JP2004109806A patent/JP4649862B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08287897A (en) * | 1985-05-16 | 1996-11-01 | Wr Grace & Co Connecticut | Separator for battery |
WO1997008763A1 (en) * | 1995-08-28 | 1997-03-06 | Asahi Kasei Kogyo Kabushiki Kaisha | Cell and production method thereof |
WO1998038688A1 (en) * | 1997-02-28 | 1998-09-03 | Asahi Kasei Kogyo Kabushiki Kaisha | Nonaqueous secondary battery and method for manufacturing the same |
WO1999038224A1 (en) * | 1998-01-22 | 1999-07-29 | Mitsubishi Denki Kabushiki Kaisha | Battery |
WO2001095421A1 (en) * | 2000-06-07 | 2001-12-13 | Gs-Melcotec Co., Ltd. | Battery |
JP2002151055A (en) * | 2000-08-28 | 2002-05-24 | Nissan Motor Co Ltd | Lithium ion secondary battery |
JP2003077463A (en) * | 2001-09-05 | 2003-03-14 | Mitsubishi Chemicals Corp | Lithium secondary battery and its manufacturing method |
JP2004214042A (en) * | 2003-01-06 | 2004-07-29 | Mitsubishi Electric Corp | Adhesive for lithium secondary battery, its manufacturing method, and battery using it |
WO2005076388A1 (en) * | 2004-02-07 | 2005-08-18 | Lg Chem, Ltd. | Organic/inorganic composite porous layer-coated electrode and electro-chemical device comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP2005294139A (en) | 2005-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4752574B2 (en) | Negative electrode and secondary battery | |
JP4519796B2 (en) | Square lithium secondary battery | |
JP5761582B2 (en) | Secondary battery | |
JP5800208B2 (en) | Nonaqueous electrolyte secondary battery | |
JPWO2005098996A1 (en) | Lithium ion secondary battery and its charge / discharge control system | |
CN113994512B (en) | Lithium secondary battery and method for manufacturing the same | |
KR20110021974A (en) | Electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2006310010A (en) | Lithium ion secondary battery | |
JP2008097879A (en) | Lithium ion secondary battery | |
KR102491619B1 (en) | Anode for lithium secondary battery and lithium secondary battery including the same | |
KR20160001651A (en) | Lithium secondary battery | |
JP4649862B2 (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP2003331825A (en) | Nonaqueous secondary battery | |
JP2014127333A (en) | Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery | |
CN113574702A (en) | Negative electrode active material for secondary battery, method for producing same, negative electrode for secondary battery comprising same, and lithium secondary battery | |
JP2008198408A (en) | Nonaqueous electrolyte secondary battery | |
JP2013110049A (en) | Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery | |
JP4824450B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2006228544A (en) | Lithium ion secondary battery | |
KR20190066867A (en) | Negative electrode active material, negative electrode including the negative electrode active material, and lithium secondary battery including the same | |
JP2006261059A (en) | Non-aqueous electrolyte secondary battery | |
JP6249242B2 (en) | Nonaqueous electrolyte secondary battery | |
JP7562849B2 (en) | Positive electrode and lithium secondary battery including same | |
JP2007172947A (en) | Nonaqueous electrolyte secondary battery | |
JP2007242348A (en) | Lithium-ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070125 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |