JP2006310010A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2006310010A
JP2006310010A JP2005129286A JP2005129286A JP2006310010A JP 2006310010 A JP2006310010 A JP 2006310010A JP 2005129286 A JP2005129286 A JP 2005129286A JP 2005129286 A JP2005129286 A JP 2005129286A JP 2006310010 A JP2006310010 A JP 2006310010A
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
lithium ion
ion secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005129286A
Other languages
Japanese (ja)
Inventor
Yorito Oohana
頼人 大花
Takeshi Fukumasa
猛志 福政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005129286A priority Critical patent/JP2006310010A/en
Publication of JP2006310010A publication Critical patent/JP2006310010A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein when positive and negative plates are constituted in a conventional way in a lithium ion battery, since the surface area of the positive plate is required to make smaller than that of the negative plate, the capacity of the battery is decreased. <P>SOLUTION: In a lithium ion secondary battery, a porous film is formed on the surface of the positive plate and/or the surface of the negative plate and the porous film is comprised of inorganic oxide fillers which are main component and a binder, and by constituting the positive plate so as to have the width and/or length equal to or larger than the negative plate, the lithium ion secondary battery having high capacity and stability is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高エネルギー密度でサイクル特性に優れたリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery having high energy density and excellent cycle characteristics.

ノートパソコンや小型電子機器に使われる非水電解液二次電池において使用される電極は、重負荷放電やサイクル寿命等に対して良好な特性を得るために、炭素材料よりなる負極板とリチウムコバルト複合酸化物等からなる正極板をセパレータを介して積層巻回した巻回型構造をとることが多い。この巻回電極体においては、負極板が正極板よりも幅および/または長さが大となるような構成とすることにより、安定したサイクル寿命が達成されることが提案されている(例えば、特許文献1参照のこと)。
実開平2−150760号公報
The electrodes used in non-aqueous electrolyte secondary batteries used in notebook computers and small electronic devices are made of carbon material negative plates and lithium cobalt in order to obtain good characteristics for heavy load discharge and cycle life. In many cases, it has a winding structure in which a positive electrode plate made of a composite oxide or the like is laminated and wound through a separator. In this wound electrode body, it has been proposed that a stable cycle life is achieved by adopting a configuration in which the negative electrode plate has a larger width and / or length than the positive electrode plate (for example, (See Patent Document 1).
Japanese Utility Model Publication No. 2-150760

前述した正負極板の構成において、例えば、負極板が正極板よりも幅および/または長さが大きくなるような構成にすれば、充放電を繰り返すと負極板端面にリチウムのデントライトが発生し正極板と負極板とが微小な内部短絡を起こし、著しく電池容量が劣化するという問題があった。また、高温下で充電した場合においても、電池容量が劣化するといった問題があった。そのため、正極板を負極板より小さくせざる得ないこととなり、電池容量を向上させることの妨げになっていたという課題があった。   In the configuration of the positive and negative electrode plates described above, for example, if the negative electrode plate is configured so that the width and / or length is larger than that of the positive electrode plate, lithium dent light is generated on the end face of the negative electrode plate when charging and discharging are repeated. There was a problem that the positive electrode plate and the negative electrode plate caused a minute internal short circuit and the battery capacity was remarkably deteriorated. Further, even when charged at high temperature, there is a problem that the battery capacity deteriorates. For this reason, the positive electrode plate has to be made smaller than the negative electrode plate, and there has been a problem that it has been an impediment to improving battery capacity.

そこで本発明は、このような従来の課題を解決するもので、サイクル特性にすぐれた高エネルギー密度なリチウムイオン二次電池を提供することを目的とする。   Therefore, the present invention solves such a conventional problem, and an object of the present invention is to provide a lithium ion secondary battery with high energy density and excellent cycle characteristics.

前記課題を解決するために、本発明のリチウムイオン二次電池は、
複合リチウム酸化物からなる正極板と、リチウムを電気化学的に吸蔵および放出し得る材料からなる負極板との間に、セパレータを介して渦巻き状に捲回された極板群は、非水電解液と共に電池ケースの封入されたリチウムイオン二次電池において、
前記正極板の表面および/または前記負極板の表面に多孔膜が形成され、前記多孔膜は主体となる無機酸化物フィラーと、結着剤からなるリチウムイオン二次電池であって、
前記正極板が、前記負極板よりも幅および/または長さが同等以上である。
In order to solve the above problems, the lithium ion secondary battery of the present invention is
The electrode plate group wound in a spiral through a separator between a positive electrode plate made of a composite lithium oxide and a negative electrode plate made of a material capable of electrochemically inserting and extracting lithium is non-aqueous electrolysis. In a lithium ion secondary battery in which a battery case is enclosed with a liquid,
A porous film is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate, and the porous film is a lithium ion secondary battery comprising a main inorganic oxide filler and a binder,
The positive electrode plate has a width and / or length equal to or greater than that of the negative electrode plate.

別の本発明のリチウムイオン二次電池は、
複合リチウム酸化物からなる正極板と、リチウムを電気化学的に吸蔵および放出し得る材料からなる負極板とを渦巻き状に捲回された極板群は、非水電解液と共に電池ケースの封入されたリチウムイオン二次電池において、
前記正極板の表面および/または前記負極板の表面に多孔膜が形成され、前記多孔膜は主体となる無機酸化物フィラーと、結着剤からなるリチウムイオン二次電池であって、
前記正極板が、前記負極板よりも幅および/または長さが同等以上である。
Another lithium ion secondary battery of the present invention,
The electrode plate group in which a positive electrode plate made of a composite lithium oxide and a negative electrode plate made of a material capable of electrochemically inserting and extracting lithium are spirally wound together with a non-aqueous electrolyte and enclosed in a battery case. In lithium ion secondary batteries,
A porous film is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate, and the porous film is a lithium ion secondary battery comprising a main inorganic oxide filler and a binder,
The positive electrode plate has a width and / or length equal to or greater than that of the negative electrode plate.

本発明によるリチウムイオン二次電池リチウムイオン二次電池は、正極板が負極板よりも幅および/または長さが同等以上となるような構成となっているため、決められた一定容積内での電池容量を最大にすることが可能となる。また無機酸化物フィラーを正負極板表面のどちらか少なくとも一方に形成されていることによって、充電時に正極から溶出し
た金属が負極板に析出し、セパレーターを貫通し微小短絡を起こしたとしてもその短絡電流によって微小短絡部が溶断され結果的に高温充放電においても容量低下を引き起こすことのなく、高温充電特性と高エネルギー密度に優れたリチウムイオン二次電池を提供することができる。
The lithium ion secondary battery according to the present invention has a configuration in which the positive electrode plate has a width and / or length equal to or greater than that of the negative electrode plate. The battery capacity can be maximized. In addition, since the inorganic oxide filler is formed on at least one of the positive and negative electrode plate surfaces, even if the metal eluted from the positive electrode during deposition is deposited on the negative electrode plate and penetrates the separator to cause a micro short circuit, the short circuit As a result, a minute short-circuited portion is melted by an electric current, and as a result, a lithium ion secondary battery excellent in high-temperature charge characteristics and high energy density can be provided without causing a decrease in capacity even in high-temperature charge / discharge.

本発明のリチウムイオン二次電池は、
複合リチウム酸化物からなる正極板と、リチウムを電気化学的に吸蔵および放出し得る材料からなる負極板との間に、セパレータを介して渦巻き状に捲回された極板群は、非水電解液と共に電池ケースの封入されたリチウムイオン二次電池において、
前記正極板の表面および/または前記負極板の表面に多孔膜が形成され、前記多孔膜は主体となる無機酸化物フィラーと、結着剤からなるリチウムイオン二次電池であって、
前記正極板が、前記負極板よりも幅および/または長さが同等以上である。
The lithium ion secondary battery of the present invention is
The electrode plate group wound in a spiral through a separator between a positive electrode plate made of a composite lithium oxide and a negative electrode plate made of a material capable of electrochemically inserting and extracting lithium is non-aqueous electrolysis. In a lithium ion secondary battery in which a battery case is enclosed with a liquid,
A porous film is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate, and the porous film is a lithium ion secondary battery comprising a main inorganic oxide filler and a binder,
The positive electrode plate has a width and / or length equal to or greater than that of the negative electrode plate.

ここで、負極板が正極板よりも幅および/または長さが大きくなるような構成にしても、充放電を繰り返した時に負極板端面にリチウムのデントライトが発生し、正極板と負極板との間で微小な内部短絡が発生しても、無機フィラーを主体とした多孔膜が正極板の表面および/または負極板の表面に形成されているため、セパレータが発熱により溶解したとしても多孔膜は溶解せず、正極板と負極板とを隔離する役目を維持することができる
ために電池容量の劣化を抑制することができる。
Here, even if the negative electrode plate is configured to be larger in width and / or length than the positive electrode plate, lithium dentite is generated on the end surface of the negative electrode plate when charging and discharging are repeated, and the positive electrode plate and the negative electrode plate Even if a minute internal short circuit occurs between them, a porous film mainly composed of an inorganic filler is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate. Does not dissolve, and can maintain the role of separating the positive electrode plate and the negative electrode plate, so that deterioration of the battery capacity can be suppressed.

また、正極板は負極板とまったく同面積部分で対向してることが電池の容量密度上最も好ましいが、正極板と負極板とを、セパレータを介して渦巻き状に捲回して極板群を作製する時に、それら極板を捲回する際のばらつきなどによって、正極板の一部分が負極板
よりも幅および/または長さが小さくなっていても構わない。
The positive electrode plate is most preferably opposed to the negative electrode plate in the same area. However, the positive electrode plate and the negative electrode plate are spirally wound through a separator to produce a group of electrode plates. In this case, a part of the positive electrode plate may be smaller in width and / or length than the negative electrode plate due to variations in winding the electrode plates.

セパレータは、リチウムイオン二次電池の使用環境に耐え得る材料からなるものであれば、特に限定されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂からなる微多孔フィルムを用いることが一般的である。微多孔フィルムは、1種のポリオレフィン系樹脂からなる単層膜であってもよく、2種以上のポリオレフィン系樹脂からなる多層膜であってもよい。   The separator is not particularly limited as long as it is made of a material that can withstand the use environment of the lithium ion secondary battery, but a microporous film made of a polyolefin-based resin such as polyethylene or polypropylene is generally used. The microporous film may be a single layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resin.

本発明の別の実施の形態におけるリチウムイオン二次電池は、
複合リチウム酸化物からなる正極板と、リチウムを電気化学的に吸蔵および放出し得る材料からなる負極板とを渦巻き状に捲回された極板群は、非水電解液と共に電池ケースの封入されたリチウムイオン二次電池において、
前記正極板の表面および/または前記負極板の表面に多孔膜が形成され、前記多孔膜は主体となる無機酸化物フィラーと、結着剤からなるリチウムイオン二次電池であって、
前記正極板が、前記負極板よりも幅および/または長さが同等以上である。
In another embodiment of the present invention, a lithium ion secondary battery
The electrode plate group in which a positive electrode plate made of a composite lithium oxide and a negative electrode plate made of a material capable of electrochemically inserting and extracting lithium are spirally wound together with a non-aqueous electrolyte and enclosed in a battery case. In lithium ion secondary batteries,
A porous film is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate, and the porous film is a lithium ion secondary battery comprising a main inorganic oxide filler and a binder,
The positive electrode plate has a width and / or length equal to or greater than that of the negative electrode plate.

ここで、負極板が正極板よりも幅および/または長さが大きくなるような構成にしても、充放電を繰り返した時に負極板端面にリチウムのデントライトが発生し、正極板と負極板との間で微小な内部短絡が発生しても、無機フィラーを主体とした多孔膜が正極板の表面および/または負極板の表面に形成されているため、発熱しても多孔膜が溶解することなく正極板と負極板とを隔離する役目を維持できるため電池容量の劣化を抑制することができる。   Here, even if the negative electrode plate is configured to be larger in width and / or length than the positive electrode plate, lithium dentite is generated on the end surface of the negative electrode plate when charging and discharging are repeated, and the positive electrode plate and the negative electrode plate Even if a minute internal short circuit occurs between them, a porous film mainly composed of inorganic filler is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate, so that the porous film dissolves even if heat is generated. In addition, since the role of separating the positive electrode plate and the negative electrode plate can be maintained, deterioration of the battery capacity can be suppressed.

本発明の好ましい多孔膜の無機酸化物フィラーは、アルミナ、酸化チタン(TiO2)、酸化ケイ素(SiO2)などを主成分とし、これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、異種のフィラーからなる複数の多孔膜を積層しても良
い。
Preferred inorganic oxide fillers of the porous membrane of the present invention are mainly composed of alumina, titanium oxide (TiO2), silicon oxide (SiO2), etc., and these may be used alone or in combination of two or more. Good. A plurality of porous films made of different kinds of fillers may be laminated.

本発明の好ましい多孔膜の結着剤は、結晶融点もしくは分解開始温度が250℃以上のものである。   A preferred porous membrane binder of the present invention is one having a crystal melting point or a decomposition initiation temperature of 250 ° C. or higher.

内部短絡が発生した場合において、短絡部の発熱温度は100℃程度になる。結着剤は、その結晶融点が低い場合や、分解開始温度が低い場合は、軟化したり焼失したりする。このことにより、多孔膜が変形し、さらに短絡個所が拡大する。このような不具合を回避しなければならないためである。   When an internal short circuit occurs, the heat generation temperature of the short circuit part is about 100 ° C. When the crystal melting point is low or the decomposition start temperature is low, the binder softens or burns out. As a result, the porous film is deformed, and the short-circuit portion is further expanded. This is because such a problem must be avoided.

本発明の好ましい実施の形態におけるリチウムイオン二次電池は、多孔膜の空孔率が60%以下である。   In the lithium ion secondary battery according to a preferred embodiment of the present invention, the porosity of the porous film is 60% or less.

これは多孔膜の空孔率が60%より大きくなると、電池を充放電している間に負極板端面に発生したデンドライトが正極板とのパスが大きくなる。その結果、内部短絡による発熱でデンドライトが溶断されないまま残ることとなるため、電池電圧の降下不良、すなわち電池容量の不良となるためである。このことから、多孔膜の空孔率は60%以下が好ましい。   This is because when the porosity of the porous film is greater than 60%, the dendrite generated on the end face of the negative electrode plate during charging / discharging of the battery increases the path to the positive electrode plate. As a result, the dendrite remains unmelted due to heat generated by an internal short circuit, resulting in a battery voltage drop failure, that is, a battery capacity failure. For this reason, the porosity of the porous film is preferably 60% or less.

正極板は、少なくとも正極活物質と結着剤と導電剤を含む。
正極活物質としては、複合酸化物を挙げることができる。複合酸化物としては、コバルト酸リチウム、コバルト酸リチウムの変性体、ニッケル酸リチウム、ニッケル酸リチウムの変性体、マンガン酸リチウム、マンガン酸リチウムの変性体などが好ましい。各変性体には、アルミニウム、マグネシウムなどの元素を含むものがある。また、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものもある。
The positive electrode plate includes at least a positive electrode active material, a binder, and a conductive agent.
An example of the positive electrode active material is a composite oxide. As the composite oxide, lithium cobaltate, modified lithium cobaltate, lithium nickelate, modified lithium nickelate, lithium manganate, modified lithium manganate, and the like are preferable. Some modified bodies contain elements such as aluminum and magnesium. There are also those containing at least two of cobalt, nickel and manganese.

正極板に用いる結着剤は、特に限定されず、ポリテトラフルオロエチレン(以下、PTFEと略す)、変性アクリロニトリルゴム粒子(日本ゼオン(株)製BM−500B(以下、BM−500Bと略す))、ポリフッ化ビニリデンなどを用いることができる。   The binder used for the positive electrode plate is not particularly limited, and polytetrafluoroethylene (hereinafter abbreviated as PTFE), modified acrylonitrile rubber particles (BM-500B manufactured by Nippon Zeon Co., Ltd. (hereinafter abbreviated as BM-500B)). Polyvinylidene fluoride and the like can be used.

導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いても良い。   As the conductive agent, acetylene black, ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.

負極板は、少なくとも負極活物質と結着剤を含む。
負極活物質としては、各種天然黒鉛、各種人造黒鉛、シリサイドなどのシリコン含有複合材料、各種合金材料を用いることができる。結着剤としては、ポリフッ化ビニリデンおよびその変性体を始め各種バインダーを用いることができる。
The negative electrode plate includes at least a negative electrode active material and a binder.
As the negative electrode active material, various natural graphites, various artificial graphites, silicon-containing composite materials such as silicide, and various alloy materials can be used. As the binder, various binders such as polyvinylidene fluoride and modified products thereof can be used.

非水電解液には、六フッ化リン酸リチウム、四フッ化ホウ酸リチウムなどの各種リチウム塩を溶質として用いることができる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを用いることが好ましいが、これらに限定されない。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。また、添加剤としては、ビニレンカーボネート、シクロヘキシルベンゼン、ジフェニルエーテルなどを用いることもできる。   In the non-aqueous electrolyte, various lithium salts such as lithium hexafluorophosphate and lithium tetrafluoroborate can be used as solutes. As the non-aqueous solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like are preferably used, but are not limited thereto. Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination. Moreover, as an additive, vinylene carbonate, cyclohexylbenzene, diphenyl ether, etc. can also be used.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(a)正極板の作製
コバルト酸リチウム3kgと、結着剤としてポリフッ化ビニリデン(呉羽化学(株)製#1320(固形分12重量%のN−メチル−2−ピロリドン(以下、NMPと略す)溶液)(以下、PVDFと略す))を1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製する。このペーストを15μm厚のアルミニウム箔に塗布し、乾燥後圧延して、正極合剤層を形成する。この際、アルミニウム箔および合剤層からなる極板の厚みを160μmとする。その後、その極板は、下記の実施比較例に示すように所定の幅に裁断し、正極板を得る。
(A) Production of positive electrode plate 3 kg of lithium cobaltate and polyvinylidene fluoride (# 1320 manufactured by Kureha Chemical Co., Ltd.) (N-methyl-2-pyrrolidone having a solid content of 12% by weight (hereinafter abbreviated as NMP)) 1 kg of solution (hereinafter abbreviated as PVDF), 90 g of acetylene black, and an appropriate amount of NMP are stirred in a double-arm kneader to prepare a positive electrode mixture paste. This paste is applied to an aluminum foil having a thickness of 15 μm, dried and rolled to form a positive electrode mixture layer. Under the present circumstances, the thickness of the electrode plate which consists of aluminum foil and a mixture layer shall be 160 micrometers. Thereafter, the electrode plate is cut into a predetermined width as shown in the following comparative example to obtain a positive electrode plate.

(b)負極板の作製
人造黒鉛3kgと、結着剤としてスチレン−ブタジエン共重合体(日本ゼオン(株)製BM−400B、固形分40重量%の水性分散液)75gと、増粘剤としてのカルボキシメチルセルロース30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製する。このペーストを10μm厚の銅箔に塗布し、乾燥後圧延して、負極合剤層を形成する。この際、銅箔および合剤層からなる極板の厚みを180μmとする。その後、その極板は、前記電池ケースに挿入可能な幅58.5mmに裁断し、負極板を得る。
(B) Production of negative electrode plate 3 kg of artificial graphite, 75 g of styrene-butadiene copolymer (BM-400B manufactured by Nippon Zeon Co., Ltd., aqueous dispersion having a solid content of 40% by weight) as a binder, and as a thickener 30 g of carboxymethyl cellulose and an appropriate amount of water are stirred with a double-arm kneader to prepare a negative electrode mixture paste. This paste is applied to a 10 μm thick copper foil, dried and then rolled to form a negative electrode mixture layer. Under the present circumstances, the thickness of the electrode plate which consists of copper foil and a mixture layer shall be 180 micrometers. Thereafter, the electrode plate is cut into a width of 58.5 mm that can be inserted into the battery case to obtain a negative electrode plate.

(c)電解液の調製
エチレンカーボネートと、ジメチルカーボネートと、メチルエチルカーボネートとを体積比2:3:3で混合した混合溶媒に、六フッ化リン酸リチウムを1mol/Lの濃度で溶解し、さらに添加剤として、ビニレンカーボネートを3重量%加え、電解液を調製する。
(C) Preparation of electrolyte solution Lithium hexafluorophosphate was dissolved at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 2: 3: 3. Further, 3% by weight of vinylene carbonate is added as an additive to prepare an electrolytic solution.

(d)電池の組立
正極板フープと、負極板フープとを、厚み20μmのポリエチレン製微多孔フィルムからなるセパレータを介して捲回し、電池ケース内に挿入する。次いで、前記の電解液を5.5g秤量して、電池ケース内に注液し、ケースの開口部を封口する。こうして、円筒形リチウムイオン二次電池を作製する。
(D) Battery assembly The positive electrode plate hoop and the negative electrode plate hoop are wound through a separator made of a polyethylene microporous film having a thickness of 20 μm and inserted into the battery case. Next, 5.5 g of the electrolytic solution is weighed and poured into the battery case, and the opening of the case is sealed. In this way, a cylindrical lithium ion secondary battery is produced.

(e)多孔膜の作製
以下に、負極板上に多孔膜を作製する場合について説明する。
(E) Production of porous film Hereinafter, a case where a porous film is produced on the negative electrode plate will be described.

《実施例1〜3》
負極板上に1層の多孔膜を作製した。無機酸化物フィラーとしてメディアン径0.3μmのアルミナ960gと、結着剤として変性アクリロニトリルゴム(日本ゼオン(株)製BM−720H、固形分8重量%、NMP92重量%)(以下、BM−720Hと略す)500gと、適量のNMPとを双腕式練合機に入れ、攪拌分散し、多孔膜用ペーストを作製した。このペーストを負極板の両面に塗布し、乾燥して厚みが6μm、空孔率50%の多孔膜を作製した。なお空孔率は、多孔膜厚みおよび結着剤、無機化合物フィラーの真密度から計算した。
<< Examples 1-3 >>
A single-layer porous film was produced on the negative electrode plate. 960 g of alumina having a median diameter of 0.3 μm as an inorganic oxide filler, and modified acrylonitrile rubber (BM-720H manufactured by Nippon Zeon Co., Ltd., solid content: 8 wt%, NMP: 92 wt%) (hereinafter referred to as BM-720H) (Omitted) 500 g and an appropriate amount of NMP were put into a double-arm kneader and stirred and dispersed to prepare a porous film paste. This paste was applied to both sides of the negative electrode plate and dried to prepare a porous film having a thickness of 6 μm and a porosity of 50%. The porosity was calculated from the thickness of the porous film, the binder, and the true density of the inorganic compound filler.

このように作成した負極板とこの極板幅以上に切断した正極板60.5mm、59.5mm、58.5mmを組み合わせて電池を組み立てた。   A battery was assembled by combining the negative electrode plate thus prepared and the positive electrode plates 60.5 mm, 59.5 mm, and 58.5 mm cut to the width of the electrode plate or more.

《実施例4》
実施例1〜3において同様多孔膜の材料を用いて、練合撹拌を双腕式練合機の代わりにディスパーを用いて弱く分散させることによって、空孔率60%のみ異なる多孔膜を有した負極板を作成した。
Example 4
In Examples 1 to 3, the same porous membrane material was used, and kneading stirring was weakly dispersed using a disper instead of a double-arm kneader, thereby having different porous membranes with a porosity of only 60%. A negative electrode plate was prepared.

このように作成した負極板と59.5mmの幅に切断した正極板とを組み合わせて電池を組み立てた。   A battery was assembled by combining the negative electrode plate thus prepared and the positive electrode plate cut to a width of 59.5 mm.

《実施例5》
多孔膜用ペーストを作成する際に分散をさらに弱くすることによって多孔膜の空孔率を70%とした以外は実施例2と同様の電池を組み立てた。
Example 5
A battery was assembled in the same manner as in Example 2 except that the porosity of the porous film was set to 70% by further weakening the dispersion when preparing the porous film paste.

《比較例1、2》
実施例1〜3で作成した負極板に57.5mm幅、56.5mm幅で切断した正極板とをそれぞれ組み合わせて電池を組み立てた。
<< Comparative Examples 1 and 2 >>
A battery was assembled by combining the negative electrode plates prepared in Examples 1 to 3 with a positive electrode plate cut to a width of 57.5 mm and a width of 56.5 mm.

《比較例3〜6》
実施例1〜3で多孔膜を形成しない負極板をもちい、正極板をそれぞれ60.5mm、59.5mm、58.5mm、57.5mmの幅に切断した正極板と組み合わせて電池を組み立てた。
<< Comparative Examples 3-6 >>
Using the negative electrode plate which does not form a porous film in Examples 1 to 3, the positive electrode plate was combined with positive electrode plates cut to widths of 60.5 mm, 59.5 mm, 58.5 mm and 57.5 mm, respectively, to assemble batteries.

《比較例7》
多孔膜のフィラーとして、アルミナ代わりにポリエチレン(以下、PEと略す)製ビーズを用いた。これ以外は、実施例2と同様とした。
<< Comparative Example 7 >>
As the filler for the porous film, beads made of polyethylene (hereinafter abbreviated as PE) were used instead of alumina. Except this, it was the same as Example 2.

上述した実施例と比較例の電池について、次の充放電条件で電池の容量を測定した。   About the battery of the Example and comparative example which were mentioned above, the capacity | capacitance of the battery was measured on the following charging / discharging conditions.

[放電特性]
作製した電池について、以下に示したパターンで予備充放電を行い、45℃環境下で7日間保存した。
[Discharge characteristics]
The produced battery was precharged / discharged in the following pattern and stored for 7 days in a 45 ° C. environment.

1)定電流充電:400mA(終止電圧4.0V)     1) Constant current charging: 400mA (end voltage 4.0V)

2)電流放電 :400mA(終止電圧3.0V)     2) Current discharge: 400mA (end voltage 3.0V)

3)電流充電 :400mA(終止電圧4.0V)     3) Current charging: 400mA (end voltage 4.0V)

4)電流放電 :400mA(終止電圧3.0V)     4) Current discharge: 400mA (end voltage 3.0V)

5)電流充電 :400mA(終止電圧4.0V)     5) Current charging: 400mA (end voltage 4.0V)

その後、20℃環境下で、以下のパターンの充放電を行った。   Then, charging / discharging of the following patterns was performed in a 20 degreeC environment.

(1)予備放電
定電流放電:400mA(終止電圧3.0V)
(2)第1パターン
定電流充電:1400mA(終止電圧4.2V)
定電圧充電:4.2V(終止電流100mA)
定電流放電:400mA(終止電圧3.0V)
(3)第2パターン
定電流充電:1400mA(終止電圧4.2V)
定電圧充電:4.2V(終止電流100mA)
定電流放電:4000mA(終止電圧3.0V)
この時の放電容量の結果を表1中に示した。
(1) Preliminary discharge Constant current discharge: 400 mA (final voltage: 3.0 V)
(2) First pattern constant current charge: 1400 mA (end voltage 4.2 V)
Constant voltage charge: 4.2V (end current 100mA)
Constant current discharge: 400 mA (end voltage 3.0 V)
(3) Second pattern constant current charge: 1400 mA (end voltage 4.2 V)
Constant voltage charge: 4.2V (end current 100mA)
Constant current discharge: 4000 mA (end voltage 3.0 V)
The results of the discharge capacity at this time are shown in Table 1.

[短絡発生数]
短絡発生数を評価後の電池について、以下の充放電を行った。
[Number of short circuits]
The battery after evaluation of the number of occurrences of short-circuiting was charged and discharged as follows.

定電流充電:1400mA(終止電圧4.25V)
定電圧充電:4.2V(終止電流100mA)
定電流放電:2200mA(終止電圧3.0V)
これらの充放電を実施例、比較例ともに各々20セルを300サイクル繰り返した後、充電状態で1週間放置後、内部短絡により大幅に電圧が低下した電池の数を数えて表1に記載した。
Constant current charging: 1400mA (end voltage 4.25V)
Constant voltage charge: 4.2V (end current 100mA)
Constant current discharge: 2200 mA (end voltage 3.0 V)
In each of the Examples and Comparative Examples, the charging and discharging of these 20 cells was repeated 300 cycles, and after standing for 1 week in the charged state, the number of batteries whose voltage was greatly reduced due to an internal short circuit was counted and listed in Table 1.

以下、評価結果について説明する。 Hereinafter, the evaluation results will be described.

実施例1〜5の電池のように、フィラーとしてアルミナを用いた多孔膜を負極板上に形成した場合は、電池容量も大きく、充放電サイクルをしても短絡発生による電池容量の低下も観察されなかった。実施例1〜5の電池は比較1、2の電池をに比べて、電池容量が大きくなった。これは、実施例1〜5の電池と比較例1、2の電池において、正極幅が大きくなるにしたがって電池容量も大きくなっていることから、。正極板と負極板が対向している部分が充放電に寄与しているためである。したがって、電池の容量を大きくするためには、正極板の幅が負極板の幅と同一以上であると良いと言える。   As in the batteries of Examples 1 to 5, when a porous film using alumina as a filler was formed on the negative electrode plate, the battery capacity was large, and a decrease in battery capacity due to occurrence of a short circuit was observed even after a charge / discharge cycle. Was not. The batteries of Examples 1 to 5 had a larger battery capacity than the batteries of Comparative Examples 1 and 2. This is because in the batteries of Examples 1 to 5 and the batteries of Comparative Examples 1 and 2, the battery capacity increases as the positive electrode width increases. This is because the portion where the positive electrode plate and the negative electrode plate face each other contributes to charge / discharge. Therefore, in order to increase the capacity of the battery, it can be said that the width of the positive electrode plate is preferably equal to or greater than the width of the negative electrode plate.

比較例3〜6の電池の容量は、前述と同様に、正極板の幅が負極板の幅に対して大きくなるにしたがって電池の容量が増加している。比較例5の電池のように、正極板の幅が負極板の幅と同じになった場合は、実施例3の電池と同等の電池容量を示した。ただし、比較例3〜5の電池は、サイクル試験後に短絡した電池数が多く観察され、比較例6の電池は電池容量の大幅な低下が観察された。   The capacity | capacitance of the battery of Comparative Examples 3-6 is increasing as the width | variety of a positive electrode plate becomes large with respect to the width | variety of a negative electrode plate similarly to the above-mentioned. When the width of the positive electrode plate was the same as the width of the negative electrode plate as in the battery of Comparative Example 5, the battery capacity equivalent to that of the battery of Example 3 was shown. However, in the batteries of Comparative Examples 3 to 5, a large number of short-circuited batteries were observed after the cycle test, and in the battery of Comparative Example 6, a significant decrease in battery capacity was observed.

サイクル試験後に短絡した電池を分解してみると、正極板、負極板、およびセパレータを観察すると、負極板端面上にデントライトが形成されていた。このことより、電池の短絡は負極板端面上に発生したデンドライトが原因であることがわかった。   When the battery short-circuited after the cycle test was disassembled, dentlite was formed on the end face of the negative electrode plate when the positive electrode plate, the negative electrode plate, and the separator were observed. From this, it was found that the short circuit of the battery was caused by dendrite generated on the end face of the negative electrode plate.

これは、短絡した箇所が短絡によるジュール熱によって、セパレータのような耐熱性の低い材料が溶融し、さらに大きな短絡部を形成し、短絡箇所の拡大により電池容量が大きく低下したものと考えている。一方、本発明の電池では、デントライトにより短絡しても無機フィラーを主体とする多孔膜の中をデンドライトが生成し、短絡するため、最初の短絡によるジュール熱でセパレータにような耐熱性の低い材料が収縮したとしても、その短絡箇所が大きくならず、結果的に大幅な電圧降下による電池容量の低下をもたらすことはない。   This is because the short-circuited portion is caused by Joule heat due to short-circuiting, a material having low heat resistance such as a separator is melted, a larger short-circuit portion is formed, and the battery capacity is greatly reduced by expanding the short-circuit portion. . On the other hand, in the battery of the present invention, even if short-circuited by dentite, dendrite is generated in the porous film mainly composed of inorganic filler and short-circuited. Therefore, Joule heat due to the first short-circuit causes low heat resistance like a separator. Even if the material shrinks, the short-circuit portion does not become large, and as a result, the battery capacity is not reduced due to a significant voltage drop.

比較例7のように低温で溶融するフィラーとしてPE製ビーズを用いて多孔膜を形成したものは、サイクル後に短絡するものが発生したが、これも上記内容を裏付けている。   In the case of forming a porous film using PE beads as a filler that melts at a low temperature as in Comparative Example 7, a short circuit occurred after the cycle, which also confirms the above contents.

したがって、フィラーには無機酸化物を選択することが必須である。   Therefore, it is essential to select an inorganic oxide for the filler.

また実施例2、4、および5を比較すると、多孔膜の空孔率が50%、60%、および70%と大きくなるにしたがって、サイクル試験後の短絡した電池数が増えている。これは多孔膜の空孔率が大きくなるにしたがって、最初に発生したデントライトによる短絡が大きくなり、結果的にセパレーターなどを溶融させなくてもその短絡部の電流のみで自己放電し結果的に大きな電圧降下になったためと考えられる。このことから、多孔膜の空孔率は60%以下が好ましいと言える。   Moreover, when Examples 2, 4, and 5 are compared, the number of short-circuited batteries after the cycle test increases as the porosity of the porous film increases to 50%, 60%, and 70%. This is because as the porosity of the porous film increases, the short circuit caused by the first dent light increases, and as a result, self-discharge occurs only with the current in the short circuit part without melting the separator. This is probably due to a large voltage drop. From this, it can be said that the porosity of the porous film is preferably 60% or less.

前述した実施例では記載していないが、これら原理からするとアルミナの代わりにチタニアを用いた場合、アルミナと同様の効果を確認できた。このことから、アルミナ以外の無機酸化物フィラーも使用可能である。   Although not described in the above-described examples, based on these principles, when titania was used instead of alumina, the same effect as alumina could be confirmed. For this reason, inorganic oxide fillers other than alumina can also be used.

なお、実施例では、負極板上に多孔膜を形成した場合について説明したが、正極板上に形成しても、両極上に形成しても、同様の効果が得られる。   In addition, although the Example demonstrated the case where a porous film was formed on a negative electrode plate, the same effect is acquired even if it forms on a positive electrode plate or both poles.

また、この原理に従えば、今回の実施例では幅方向の実施例を記述したが本発明によれば、極板長手方向についても同様に正極板は負極板以上に配置することにより同様の効果を得ることができる。   Further, according to this principle, the embodiment in the width direction has been described in the present embodiment, but according to the present invention, the same effect can be obtained by arranging the positive plate in the longitudinal direction of the electrode plate more than the negative plate. Can be obtained.

また、実施例では、セパレータを有する場合について説明したが、セパレータがない場合についても、同様の効果が得られる。   Moreover, although the Example demonstrated the case where it had a separator, the same effect is acquired also when there is no separator.

以上のように本発明電池は、無機酸化物多孔膜を正負極板間に配置し、正極板幅を負極板幅以上にすることによって高エネルギー密度と同時に安定なサイクル特性を得ることができるものである。   As described above, the battery of the present invention can obtain a stable cycle characteristic at the same time as a high energy density by disposing the inorganic oxide porous film between the positive and negative electrode plates and making the positive electrode plate width equal to or larger than the negative electrode plate width. It is.

本発明は、電極上に耐熱性に優れた多孔膜を形成することにより、高品質で高エネルギー密度のリチウムイオン二次電池を提供することができる。このことにより、リチウムイオン二次電池を駆動電源として用いる電子機器、例えば、ノートパソコン、携帯電話、デジタルスチルカメラなどに用いることができる。   The present invention can provide a high-quality and high-energy density lithium ion secondary battery by forming a porous film having excellent heat resistance on an electrode. As a result, it can be used in electronic devices that use a lithium ion secondary battery as a drive power source, such as notebook computers, mobile phones, digital still cameras, and the like.

Claims (4)

複合リチウム酸化物からなる正極板と、リチウムを電気化学的に吸蔵および放出し得る材料からなる負極板との間に、セパレータを介して渦巻き状に捲回された極板群は、非水電解液と共に電池ケースの封入されたリチウムイオン二次電池において、
前記正極板の表面および/または前記負極板の表面に多孔膜が形成され、前記多孔膜は主体となる無機酸化物フィラーと、結着剤からなるリチウムイオン二次電池であって、
前記正極板が、前記負極板よりも幅および/または長さが同等以上であるリチウムイオン二次電池。
The electrode plate group wound in a spiral through a separator between a positive electrode plate made of a composite lithium oxide and a negative electrode plate made of a material capable of electrochemically inserting and extracting lithium is non-aqueous electrolysis. In a lithium ion secondary battery in which a battery case is enclosed with a liquid,
A porous film is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate, and the porous film is a lithium ion secondary battery comprising a main inorganic oxide filler and a binder,
The lithium ion secondary battery in which the positive electrode plate has a width and / or length equal to or greater than that of the negative electrode plate.
前記多孔膜の空孔率が60%以下である請求項1記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the porosity of the porous film is 60% or less. 複合リチウム酸化物からなる正極板と、リチウムを電気化学的に吸蔵および放出し得る材料からなる負極板とを渦巻き状に捲回された極板群は、非水電解液と共に電池ケースの封入されたリチウムイオン二次電池において、
前記正極板の表面および/または前記負極板の表面に多孔膜が形成され、前記多孔膜は主体となる無機酸化物フィラーと、結着剤からなるリチウムイオン二次電池であって、
前記正極板が、前記負極板よりも幅および/または長さが同等以上であるリチウムイオン二次電池。
The electrode plate group in which a positive electrode plate made of a composite lithium oxide and a negative electrode plate made of a material capable of electrochemically inserting and extracting lithium are spirally wound together with a non-aqueous electrolyte and enclosed in a battery case. In lithium ion secondary batteries,
A porous film is formed on the surface of the positive electrode plate and / or the surface of the negative electrode plate, and the porous film is a lithium ion secondary battery comprising a main inorganic oxide filler and a binder,
The lithium ion secondary battery in which the positive electrode plate has a width and / or length equal to or greater than that of the negative electrode plate.
前記多孔膜の空孔率が60%以下である請求項3記載のリチウムイオン二次電池。
























The lithium ion secondary battery according to claim 3, wherein the porosity of the porous film is 60% or less.
























JP2005129286A 2005-04-27 2005-04-27 Lithium ion secondary battery Withdrawn JP2006310010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129286A JP2006310010A (en) 2005-04-27 2005-04-27 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129286A JP2006310010A (en) 2005-04-27 2005-04-27 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006310010A true JP2006310010A (en) 2006-11-09

Family

ID=37476681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129286A Withdrawn JP2006310010A (en) 2005-04-27 2005-04-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006310010A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167642A (en) * 2006-12-04 2008-07-17 Matsushita Electric Ind Co Ltd Charging system, charging device, and battery pack
WO2010067410A1 (en) * 2008-12-08 2010-06-17 トヨタ自動車株式会社 Lithium ion battery and method for manufacturing the same
US7745057B2 (en) 2007-02-23 2010-06-29 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2011024799A1 (en) 2009-08-27 2011-03-03 大日精化工業株式会社 Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
CN102177604A (en) * 2008-10-10 2011-09-07 丰田自动车株式会社 Lithium secondary battery and manufacturing method thereof
US8394536B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394537B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394538B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394535B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN103468207A (en) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 Abrasive and coating slurry of lithium-ion power battery diaphragm and preparation methods thereof
CN103468211A (en) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 Abrasive and coating slurry of lithium-ion power battery diaphragm and preparation methods thereof
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN104993097A (en) * 2015-05-26 2015-10-21 广东烛光新能源科技有限公司 Negative plate, electrochemical energy storage device containing the same and preparation method thereof
KR20170105283A (en) * 2016-03-09 2017-09-19 삼성에스디아이 주식회사 Secondary battery
CN109391008A (en) * 2018-11-20 2019-02-26 漳州高新区远见产业技术研究有限公司 It is a kind of with the cellular li-ion battery for preventing from overcharging
JP2019200868A (en) * 2018-05-15 2019-11-21 マクセルホールディングス株式会社 Nonaqueous secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167642A (en) * 2006-12-04 2008-07-17 Matsushita Electric Ind Co Ltd Charging system, charging device, and battery pack
US7745057B2 (en) 2007-02-23 2010-06-29 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8703343B2 (en) 2008-10-10 2014-04-22 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery with electrode protective layer and initial capacity ratio and manufacturing method thereof
CN102177604A (en) * 2008-10-10 2011-09-07 丰田自动车株式会社 Lithium secondary battery and manufacturing method thereof
WO2010067410A1 (en) * 2008-12-08 2010-06-17 トヨタ自動車株式会社 Lithium ion battery and method for manufacturing the same
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394538B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394535B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394537B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394536B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US9359509B2 (en) 2009-08-27 2016-06-07 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefore, and electrical storage device
US9834688B2 (en) 2009-08-27 2017-12-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefore, and electrical storage device
US8628610B2 (en) 2009-08-27 2014-01-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Dispersant for use in a carbon filler
WO2011024799A1 (en) 2009-08-27 2011-03-03 大日精化工業株式会社 Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
US8945767B2 (en) 2009-08-27 2015-02-03 Dainichiseika Color & Chemicals Mfg. Co., Ltd Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
US9359508B2 (en) 2009-08-27 2016-06-07 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device
CN103468211A (en) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 Abrasive and coating slurry of lithium-ion power battery diaphragm and preparation methods thereof
CN103468207A (en) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 Abrasive and coating slurry of lithium-ion power battery diaphragm and preparation methods thereof
CN104993097A (en) * 2015-05-26 2015-10-21 广东烛光新能源科技有限公司 Negative plate, electrochemical energy storage device containing the same and preparation method thereof
KR20170105283A (en) * 2016-03-09 2017-09-19 삼성에스디아이 주식회사 Secondary battery
KR102486801B1 (en) 2016-03-09 2023-01-10 삼성에스디아이 주식회사 Secondary battery
JP2019200868A (en) * 2018-05-15 2019-11-21 マクセルホールディングス株式会社 Nonaqueous secondary battery
JP7083696B2 (en) 2018-05-15 2022-06-13 マクセル株式会社 Non-water secondary battery
CN109391008A (en) * 2018-11-20 2019-02-26 漳州高新区远见产业技术研究有限公司 It is a kind of with the cellular li-ion battery for preventing from overcharging

Similar Documents

Publication Publication Date Title
JP2006310010A (en) Lithium ion secondary battery
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
JP2006120462A (en) Nonaqueous electrolyte battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
WO2001063687A1 (en) Nonaqueous electrolyte secondary cell
JPWO2013005329A1 (en) Secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2004327422A (en) Composite polymer electrolyte having different morphology for lithium secondary battery and method of manufacturing the same
JP2008234853A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery having the same
JP2005339938A (en) Manufacturing method of electrode for lithium-ion secondary battery
JP2006222077A (en) Nonaqueous electrolyte solution secondary battery
JP2006228544A (en) Lithium ion secondary battery
JP2011198600A (en) Electrode plate for battery and battery using the same
JP6249242B2 (en) Nonaqueous electrolyte secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2006313736A (en) Non-aqueous electrolyte secondary battery
JP4794820B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2007242575A (en) Nonaqueous electrolyte solution secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2015103404A (en) Negative electrode active material layer for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2006260786A (en) Nonaqueous electrolyte secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080717