JP2005339938A - Manufacturing method of electrode for lithium-ion secondary battery - Google Patents

Manufacturing method of electrode for lithium-ion secondary battery Download PDF

Info

Publication number
JP2005339938A
JP2005339938A JP2004155856A JP2004155856A JP2005339938A JP 2005339938 A JP2005339938 A JP 2005339938A JP 2004155856 A JP2004155856 A JP 2004155856A JP 2004155856 A JP2004155856 A JP 2004155856A JP 2005339938 A JP2005339938 A JP 2005339938A
Authority
JP
Japan
Prior art keywords
electrode
porous film
binder
negative electrode
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004155856A
Other languages
Japanese (ja)
Other versions
JP4531444B2 (en
Inventor
Junji Nakajima
潤二 中島
Tsumoru Ohata
積 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004155856A priority Critical patent/JP4531444B2/en
Publication of JP2005339938A publication Critical patent/JP2005339938A/en
Application granted granted Critical
Publication of JP4531444B2 publication Critical patent/JP4531444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a lithium-ion secondary battery with a porous film with excellent heat resistance and resistance to swelling. <P>SOLUTION: The manufacturing method of the electrode contains a process of coating paste for a porous film consisting of an inorganic oxide filler and a binder with water as a dispersant on the surface of an electrode, and drying it to form a porous film. At least, one of the binders uses scaly silica. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、寿命特性が優れ、耐短絡性および耐熱性などの安全性に優れたリチウムイオン二次電池、特にその電極の製造方法に関する。   The present invention relates to a lithium ion secondary battery having excellent life characteristics and excellent safety such as short circuit resistance and heat resistance, and more particularly to a method for producing the electrode.

電子機器のポータブル化、コードレス化が進むにつれて、その駆動用電源として小型、軽量で、高エネルギー密度を有するリチウムイオン二次電池が注目を集めている。リチウムイオン二次電池などの電気化学電池では、正極と負極との間に、両電極を電気的に絶縁するとともに電解液を保持する役目をもつセパレータがある。リチウムイオン二次電池では、セパレータとして現在、主にポリエチレンからなる微多孔性薄膜シートが使われている。   As electronic devices become more portable and cordless, lithium-ion secondary batteries that are small, light, and have high energy density are attracting attention as power sources for driving them. In an electrochemical battery such as a lithium ion secondary battery, there is a separator between the positive electrode and the negative electrode that serves to electrically insulate both electrodes and hold an electrolyte solution. In a lithium ion secondary battery, a microporous thin film sheet mainly made of polyethylene is currently used as a separator.

しかしながら、これら樹脂からなるシート状セパレータは、概して低温で収縮しやすく、そのため内部短絡が生じたり釘のような鋭利な形状の突起物が電池を貫いたりした時、瞬時に発生する短絡反応熱により短絡部が拡大し、さらに多大な反応熱を発生させ、異常過熱を促進するという問題を有していた。   However, sheet-like separators made of these resins generally tend to shrink at a low temperature, so that when an internal short circuit occurs or a sharply shaped protrusion such as a nail penetrates the battery, the short-circuit reaction heat generated instantaneously The short-circuit portion is enlarged, and further, a large amount of reaction heat is generated, and abnormal overheating is promoted.

そこで、上記課題を含めた安全性を向上させるために、シート状セパレータの上に、無機粒子を含む多孔膜を形成する技術(特許文献1および特許文献2)や、ガラス転移点の低い樹脂にて電極上に多孔膜を形成する技術(特許文献3)、さらに目的は異なるがアルミナなどの固体粒子と水溶性ポリマーからなる保護層を電極上に形成する技術(特許文献4)が提案されている。
特開2001−319634号公報 特開2002−8730号公報 特開平11−144706号公報 特開平9−147916号公報
Therefore, in order to improve the safety including the above-described problems, a technique (Patent Document 1 and Patent Document 2) for forming a porous film containing inorganic particles on a sheet-like separator, or a resin having a low glass transition point. A technique for forming a porous film on the electrode (Patent Document 3) and a technique for forming a protective layer made of solid particles such as alumina and a water-soluble polymer on the electrode (Patent Document 4) have been proposed. Yes.
JP 2001-319634 A JP 2002-8730 A JP-A-11-144706 JP-A-9-147916

しかしながら、特許文献1および2については、多孔膜がシート状セパレータの上に形成されているため、内部短絡部においては、多大な発熱によりシート状セパレータとともに多孔膜も収縮するという欠点を有する。そもそもこの技術は、リチウムのデンドライトの成長抑制や高率放電特性の向上を目的としたものであり、内部短絡や釘刺し時の安全性を保障できないことはやむをえない。   However, Patent Documents 1 and 2 have a drawback that the porous film is contracted together with the sheet-like separator due to a large amount of heat generated in the internal short circuit portion because the porous film is formed on the sheet-like separator. In the first place, this technology is aimed at suppressing the growth of lithium dendrites and improving the high-rate discharge characteristics, and it is inevitable that the safety at the time of internal short circuit or nail penetration cannot be guaranteed.

特許文献3については、従来のセパレータと同様、短絡発熱時に樹脂が軟化し、シャットダウン効果を発現させるものであるが、例えば内部短絡の代用評価である釘刺し試験において、試験条件によっては内部短絡時の発熱温度は局所的に数百℃を超えるため、樹脂の軟化や焼失による多孔膜の変形に伴って、釘が正負極を貫くために異常過熱を引き起こす場合がある。よって、樹脂のシャットダウン効果を利用する手段は、内部短絡に対する絶対的な安全機構とはなり得ない。このことは特許文献3に記されている「セパレータとの併用」においても同様である。   Regarding Patent Document 3, as in the case of conventional separators, the resin softens during short-circuit heat generation and exhibits a shutdown effect. For example, in a nail penetration test that is a substitute evaluation of internal short-circuit, depending on the test conditions, Since the exothermic temperature locally exceeds several hundred degrees Celsius, the nail penetrates the positive and negative electrodes due to deformation of the porous film due to softening or burning of the resin, which may cause abnormal overheating. Therefore, means using the resin shutdown effect cannot be an absolute safety mechanism against an internal short circuit. This also applies to “Combination with separator” described in Patent Document 3.

特許文献4については、耐熱性に優れる無機固体粒子およびポリアクリル酸誘導体やセルロース誘導体などの水溶性ポリマーを含むため、短絡発熱時に膜自体の変形抑止は期待できる。しかし、リチウムイオン二次電池の負極には、現在一般的にスチレン−ブタジエン共重合体ゴム粒子およびその変性体を活用することが多い。これらは、従来の結着剤、例えばポリフッ化ビニリデンよりも少量の添加でよく、リチウムイオンの受入れ性が向上する。これらの結着剤を用いる場合は、通常活物質層を芯材に塗布するために、増粘剤として水溶性セルロース系樹脂を併用する。このような負極に、特許文献4の多孔膜を塗布した場合、多孔膜塗料の溶媒である水が負極中に浸漬し、負極の増粘剤を膨潤させ、溶媒揮発後に負極の変形が多発するという不具合が生じる。変形を免れた負極は、実用に供するものの、歩留が大幅に低下するため、実用に適さない。   Since Patent Document 4 includes inorganic solid particles having excellent heat resistance and water-soluble polymers such as polyacrylic acid derivatives and cellulose derivatives, it can be expected to suppress deformation of the film itself during short-circuit heat generation. However, in general, styrene-butadiene copolymer rubber particles and modified products thereof are generally used for the negative electrode of a lithium ion secondary battery. These may be added in a smaller amount than conventional binders such as polyvinylidene fluoride, and the lithium ion acceptability is improved. When using these binders, in order to apply | coat an active material layer to a core material normally, water-soluble cellulose resin is used together as a thickener. When the porous film of Patent Document 4 is applied to such a negative electrode, water, which is a solvent for the porous film paint, is immersed in the negative electrode to swell the negative electrode thickener, and deformation of the negative electrode frequently occurs after solvent volatilization. The problem that occurs. A negative electrode that is free from deformation is put to practical use, but is not suitable for practical use because the yield is greatly reduced.

この不具合を回避するため、非水溶性結着剤の使用が有効と考えられる。しかし、これらの多くは、電池の主材料である電解液と物性が近似するN−メチル−2−ピロリドンを溶剤として用いており、基本的に電解液との親和性が高い。よって、大抵の非水溶性結着剤は、充放電中に電解液を取り込んで膨潤し、極板間のイオン伝導性を低下させ、結果として電池の放電特性が悪化する。   In order to avoid this problem, it is considered effective to use a water-insoluble binder. However, many of these use N-methyl-2-pyrrolidone whose physical properties are close to those of the electrolytic solution, which is the main material of the battery, as a solvent, and basically have high affinity with the electrolytic solution. Therefore, most water-insoluble binders take in the electrolyte solution during charge / discharge and swell, reducing the ionic conductivity between the electrode plates, resulting in deterioration of the discharge characteristics of the battery.

本発明は、上記課題を解決するもので、耐熱性と耐膨潤性に優れた多孔膜を有するリチウムイオン二次電池用電極を提供することを目的とする。
本発明は、また高いリチウムイオン受入れ性を有する負極に適用できる多孔膜の製造方法を提供することを目的とする。
This invention solves the said subject, and it aims at providing the electrode for lithium ion secondary batteries which has a porous film excellent in heat resistance and swelling resistance.
Another object of the present invention is to provide a method for producing a porous film applicable to a negative electrode having high lithium ion acceptability.

本発明は、複合リチウム酸化物からなる正極、リチウムを可逆的に吸蔵・放出しうる材料からなる負極、セパレータ、および非水電解液を具備するリチウムイオン二次電池の前記正極および負極の少なくとも一方に適用される電極の製造方法に関する。本発明の電極の製造方法は、無機酸化物フィラーおよび水を分散媒とする結着剤からなる多孔膜用ペーストを電極の表面に塗布し、乾燥して多孔膜を形成する電極の製造方法において、前記結着剤の少なくとも1つに、りん(鱗)片状シリカを用いることを特徴とする。   The present invention provides a positive electrode made of a composite lithium oxide, a negative electrode made of a material capable of reversibly occluding and releasing lithium, a separator, and at least one of the positive electrode and the negative electrode of a lithium ion secondary battery comprising a non-aqueous electrolyte. The present invention relates to an electrode manufacturing method applied to the above. The electrode manufacturing method of the present invention is a method for manufacturing an electrode in which a porous film paste comprising an inorganic oxide filler and a binder containing water as a dispersion medium is applied to the surface of the electrode and dried to form a porous film. In addition, phosphorus (scale) flake silica is used for at least one of the binders.

りん片状シリカを水に分散させた結着剤の分散液中では、シリカ中のシラノール基が親水性を示し、水を取り込んだミセル体の集まりとなり、負極活物質である黒鉛との親和性が適度に低下する。このため、水が負極中に浸漬し、負極の増粘剤を膨潤させ、水揮発後に負極の変形が多発するという不具合を回避できる。   In a binder dispersion in which flaky silica is dispersed in water, the silanol groups in the silica show hydrophilicity and become a collection of micelle bodies incorporating water, and the affinity with graphite as the negative electrode active material Is moderately reduced. For this reason, the problem that water is immersed in a negative electrode, the thickener of a negative electrode is swollen, and a deformation | transformation of a negative electrode occurs frequently after water volatilization can be avoided.

りん片状シリカ結着剤と併用して、多孔膜の結着剤にエマルジョン型ゴム性状高分子を含むと、さらに多孔膜の可撓性が向上し、電極を捲回して極板群を作製する際の歩留まりを向上させることができる。   When used in combination with flaky silica binder, and the emulsion membrane rubber-like polymer is included in the porous membrane binder, the flexibility of the porous membrane is further improved, and the electrode plate is produced by winding the electrode. Yield can be improved.

本発明によれば、従来のシート状セパレータのみを用いた場合と同等の放電特性を有しつつ、安全性を飛躍的に向上させたリチウムイオン二次電池を与える電極を提供することが可能となる。   According to the present invention, it is possible to provide an electrode that provides a lithium ion secondary battery having greatly improved safety while having discharge characteristics equivalent to those when only a conventional sheet-like separator is used. Become.

本発明の好ましい態様を以下に示すが、本発明はこれらに限定されるものではない。
本発明の骨子である多孔膜については、以下に詳述する正負極のいずれかに接着形成されていなければならない。まず、セパレータ上に接着形成した場合、前述した特許文献1および2にもあるように、自身の耐熱性にかかわらず、内部短絡部に伴う多大な発熱によって、シート状セパレータとともに多孔膜も収縮するという欠点を有する。また、単独に多孔膜でシートを形成する場合、シート形状を保持する観点からその厚みを相当に大きくする必要がある上、多量の結着剤を必要とするため、特性および設計容量維持の観点から好ましくない。
Although the preferable aspect of this invention is shown below, this invention is not limited to these.
The porous membrane, which is the gist of the present invention, must be bonded to any of the positive and negative electrodes described in detail below. First, when the adhesive is formed on the separator, the porous film is contracted together with the sheet-like separator due to a large amount of heat generated by the internal short-circuit portion regardless of its own heat resistance, as described in Patent Documents 1 and 2 described above. Has the disadvantages. In addition, when forming a sheet with a porous film alone, it is necessary to increase the thickness from the viewpoint of maintaining the sheet shape, and a large amount of binder is required. Is not preferable.

前記結着剤の少なくとも1つは、多孔膜形成時の電極、特に負極の変形を回避する観点から、りん片状シリカを用いる。りん片状シリカと併用して、エマルジョン型ゴム性状高分子を含むことは、捲回型電極群を作製する際の歩留向上の観点から好ましい態様として挙げられる。
りん片状シリカは、厚みが0.01〜0.5μm、面径2〜5μmで、比表面積当たりのシラノール基が50〜70μmol/m2と大きなもので、水に分散したスラリーとして入手できるもの、例えば洞海化学工業(株)製の機能性工業用シリカで、サンラブリーの名で販売されているものが好適である。
As at least one of the binders, flaky silica is used from the viewpoint of avoiding deformation of the electrode, particularly the negative electrode, when forming the porous film. Including an emulsion type rubbery polymer in combination with flake shaped silica is a preferred embodiment from the viewpoint of yield improvement when producing a wound electrode group.
The flaky silica has a thickness of 0.01 to 0.5 μm, a surface diameter of 2 to 5 μm, a large silanol group per specific surface area of 50 to 70 μmol / m 2, and can be obtained as a slurry dispersed in water. For example, functional industrial silica manufactured by Dokai Chemical Industry Co., Ltd., sold under the name Sun Lovely, is preferred.

多孔膜にフィラーとして用いられるのは、無機酸化物が選択される。各種樹脂微粒子もフィラーとしては一般的であるが、前述のように耐熱性が必要である上に、リチウムイオン電池の使用範囲内で電気化学的に安定である必要があり、これら要件を満たしつつ、塗料化に適する材料としては無機酸化物が最も好ましい。また、無機酸化物は、電気化学的安定性の観点からαアルミナや酸化チタン等が最も望ましく、そのフィラーの多孔膜に占める含有率が50重量%以上99重量%以下であることが好ましい。50重量%を下回る結着剤過多な場合、フィラー間の隙間で構成される細孔構造の制御が困難になる。また、99重量%を上回る結着剤過少な場合、多孔膜の密着性が低下するため、脱落による機能の損失が引き起こされる。この無機酸化物は、複数種を混合あるいは多層化して用いても良い。   An inorganic oxide is selected for use as a filler in the porous membrane. Various resin fine particles are also commonly used as fillers. However, as described above, heat resistance is required, and in addition, the resin must be electrochemically stable within the range of use of the lithium ion battery. An inorganic oxide is most preferable as a material suitable for coating. The inorganic oxide is most preferably α-alumina or titanium oxide from the viewpoint of electrochemical stability, and the content of the filler in the porous film is preferably 50% by weight or more and 99% by weight or less. When the binder is excessively less than 50% by weight, it becomes difficult to control the pore structure constituted by the gaps between the fillers. In addition, when the amount of the binder exceeds 99% by weight, the adhesion of the porous film is lowered, and thus a loss of function due to dropping off is caused. This inorganic oxide may be used by mixing or multilayering a plurality of types.

正極については、活物質としてコバルト酸リチウムおよびその変性体、例えばアルミニウムやマグネシウムを共晶させたものなど、ニッケル酸リチウムおよびその変性体、例えば一部のニッケルをコバルト置換させたものなど、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。結着剤としては、ポリテトラフルオロエチレン、変性アクリロニトリルゴム粒子結着剤、例えば日本ゼオン(株)BM−500Bなど、を増粘効果のあるカルボキシメチルセルロース(CMC)、ポリエチレンオキシド、可溶性変性アクリロニトリルゴム、例えば日本ゼオン(株)製BM−720Hなど、と組み合わせても良い。また、単一で結着性および増粘性の双方を有するポリフッ化ビニリデン(PVDF)およびその変性体を単独または組み合わせて用いても良い。
導電剤としては、アセチレンブラック、ケッチェンブラック、各種グラファイトを単独あるいは組み合わせて用いて良い。
As for the positive electrode, lithium cobaltate and its modified products such as those obtained by eutectic aluminum or magnesium as the active material, lithium nickelate and its modified products such as those obtained by replacing some nickel with cobalt, etc. A composite oxide such as lithium and a modified product thereof can be given. As the binder, polytetrafluoroethylene, modified acrylonitrile rubber particle binder, such as Nippon Zeon Co., Ltd. BM-500B, etc., carboxymethyl cellulose (CMC), polyethylene oxide, soluble modified acrylonitrile rubber having a thickening effect, For example, you may combine with Nippon Zeon Co., Ltd. product BM-720H. Further, a single polyvinylidene fluoride (PVDF) having both binding properties and thickening properties and a modified product thereof may be used alone or in combination.
As the conductive agent, acetylene black, ketjen black, and various graphites may be used alone or in combination.

負極については、活物質として各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、および各種合金材料を用いることができる。結着剤としては、PVDFおよびその変性体をはじめ各種結着剤を用いることができるが、前述のようにリチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴムまたはその変性体を、CMCをはじめとするセルロース系樹脂と併用・少量添加するのがより好ましい。   For the negative electrode, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy materials can be used as the active material. As the binder, various binders including PVDF and modified products thereof can be used. From the viewpoint of improving lithium ion acceptability as described above, styrene-butadiene copolymer rubber or modified products thereof are used. It is more preferable to add a small amount in combination with a cellulose resin such as CMC.

非水電解液については、溶媒としてエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートを単独または組み合わせて用いることができる。また、正負極上に良好な皮膜を形成させたり、過充電時の安定性を保証したりするために、ビニレンカーボネートやシクロヘキシルベンゼンおよびその変性体を用いることも可能である。これらの溶媒に溶解する塩としては、LiPF6、LiBF4などの各種リチウム塩を用いることができる。 For the non-aqueous electrolyte, ethylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate can be used alone or in combination as a solvent. In order to form a good film on the positive and negative electrodes and to ensure stability during overcharge, it is also possible to use vinylene carbonate, cyclohexylbenzene, and modified products thereof. As a salt dissolved in these solvents, various lithium salts such as LiPF 6 and LiBF 4 can be used.

セパレータについては、リチウムイオン電池の使用範囲に耐え得る組成であれば特に限定されないが、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的であり、また態様として好ましい。このセパレータの厚みは特に限定されないものの、前述した多孔膜の効用を発揮しつつ設計容量を維持する観点から、組み合わせる多孔膜の厚みとの総和が従来用いられているセパレータ仕様(15〜30μm)と同程度であることが好ましい。   The separator is not particularly limited as long as it is a composition that can withstand the use range of the lithium ion battery, but a microporous film of an olefin resin such as polyethylene or polypropylene is generally used in a single or composite manner, Moreover, it is preferable as an aspect. Although the thickness of this separator is not particularly limited, from the viewpoint of maintaining the design capacity while demonstrating the effects of the porous membrane described above, the total of the thickness of the combined porous membrane is conventionally used (15-30 μm) and It is preferable that it is comparable.

以下、本発明の実施例を説明する。
《比較例1》
コバルト酸リチウム3kgを、ポリフッ化ビニリデン(呉羽化学(株)製PVDF#1320、固形分12重量%のN−メチル−2−ピロリドン(NMP)溶液)1kg、アセチレンブラック90gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極ペーストを作製した。このペーストを15μm厚のアルミニウム箔に塗布、乾燥し、総厚が160μmとなるように圧延した後、円筒型18650に挿入可能な幅にスリットし、正極フープを得た。
Examples of the present invention will be described below.
<< Comparative Example 1 >>
3 arms of lithium cobaltate with 1 kg of polyvinylidene fluoride (PVDF # 1320, Kureha Chemical Co., Ltd., N-methyl-2-pyrrolidone (NMP) solution with a solid content of 12% by weight), 90 g of acetylene black and an appropriate amount of NMP The mixture was stirred with a type kneader to prepare a positive electrode paste. This paste was applied to a 15 μm thick aluminum foil, dried, rolled to a total thickness of 160 μm, and then slit into a width that could be inserted into a cylindrical mold 18650 to obtain a positive electrode hoop.

一方、人造黒鉛3kgを、日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム粒子結着剤BM−400B(固形分40重量%)75g、CMC30gおよび適量の水とともに双腕式練合機にて攪拌し、負極ペーストを作製した。このペーストを10μm厚の銅箔に塗布、乾燥し、総厚が180μmとなるように圧延した後、円筒型18650に挿入可能な幅にスリットし、負極フープを得た。   On the other hand, 3 kg of artificial graphite was mixed with Nippon Zeon Co., Ltd. styrene-butadiene copolymer rubber particle binder BM-400B (solid content 40% by weight) 75 g, CMC 30 g and an appropriate amount of water in a double arm kneader. Stirring to prepare a negative electrode paste. This paste was applied to a 10 μm thick copper foil, dried, rolled to a total thickness of 180 μm, and then slit into a width that could be inserted into a cylindrical mold 18650 to obtain a negative electrode hoop.

《比較例2》
NMPを分散媒に用い、メディアン径0.3μmのαアルミナ300gに対し、結着剤として日本ゼオン(株)製ポリアクリロニトリル変性ゴム結着剤BM720Hを、固形分としてアルミナ100重量部に対し4重量部となるよう添加した後、双腕式練合機にて攪拌し、多孔膜ペーストを作製した。このペーストを比較例1の負極フープ上に片側5μmずつ塗布、乾燥した。
<< Comparative Example 2 >>
Using NMP as a dispersion medium, based on 300 g of α-alumina with a median diameter of 0.3 μm, polyacrylonitrile modified rubber binder BM720H manufactured by Nippon Zeon Co., Ltd. as a binder and 4 wt. After adding so as to be a part, the mixture was stirred with a double-arm kneader to prepare a porous film paste. This paste was applied to the negative electrode hoop of Comparative Example 1 by 5 μm on one side and dried.

《比較例3》
水を分散媒に用い、多孔膜の結着剤として和光製薬(株)製のポリアクリル酸を固形分としてアルミナ100重量部に対し4重量部となるよう添加した以外は比較例2と同様にして負極を作製した。
<< Comparative Example 3 >>
Comparative Example 2 except that water was used as a dispersion medium and polyacrylic acid manufactured by Wako Pharmaceutical Co., Ltd. was added as a solid membrane binder to a solid content of 4 parts by weight with respect to 100 parts by weight of alumina. Thus, a negative electrode was produced.

《実施例1》
水を分散媒に用い、多孔膜の結着剤として洞海化学工業(株)製機能性工業用シリカ サンラブリーLFS HN050を固形分としてアルミナ100重量部に対し4重量部となるよう添加した以外は比較例3と同様にして負極を作製した。
Example 1
Except that water is used as a dispersion medium, and functional industrial silica sun labry LFS HN050 manufactured by Dokai Chemical Industries, Ltd. is added as a binder for the porous membrane to a solid content of 4 parts by weight per 100 parts by weight of alumina Produced a negative electrode in the same manner as in Comparative Example 3.

《実施例2および3》
水を分散媒に用い、多孔膜の結着剤として実施例1と同じ結着剤HN050およびを日本ゼオン(株)製スチレン−ブタジエンゴム結着剤BM400Bをそれぞれ固形分としてアルミナ100重量部に対し2重量部となるよう添加した以外は比較例3と同様にして負極を作製した(実施例2)。また、前記スチレン−ブタジエンゴム結着剤の代わりにアクリル変性ゴム結着剤AD−211を用いて同様に負極を作製した(実施例3)。
<< Examples 2 and 3 >>
Using water as a dispersion medium, the same binder HN050 as in Example 1 as a binder for the porous membrane and styrene-butadiene rubber binder BM400B manufactured by Nippon Zeon Co., Ltd. as solids, respectively, with respect to 100 parts by weight of alumina A negative electrode was produced in the same manner as in Comparative Example 3 except that 2 parts by weight was added (Example 2). Further, a negative electrode was produced in the same manner by using an acrylic-modified rubber binder AD-211 instead of the styrene-butadiene rubber binder (Example 3).

これら実施例および比較例の負極のうち外観状の良品を、比較例1の正極および20μm厚のポリエチレン製微多孔フィルムセパレータとともに渦巻き状に捲回し、所定の長さで切断して電槽缶内に挿入した。次いで、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとを体積比1:1:1の割合で混合した溶媒にLiPF6を1Mおよびビニレンカーボネートを3重量%溶解させた電解液を5.5g注液して封口し、設計容量2Ahの円筒型18650リチウムイオン電池を作製した。 Out of the negative electrodes of these examples and comparative examples, the non-defective external appearance was wound together with the positive electrode of comparative example 1 and a polyethylene microporous film separator having a thickness of 20 μm in a spiral shape, cut into a predetermined length, and then inside the battery case Inserted into. Next, 5.5 g of an electrolytic solution in which 1M of LiPF 6 and 3% by weight of vinylene carbonate were dissolved in a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 1: 1: 1 was injected. A cylindrical 18650 lithium ion battery with a design capacity of 2 Ah was produced.

これらの電池を、以下に示す方法にて評価した。その結果を、構成条件と併せて表1に記す。   These batteries were evaluated by the following method. The results are shown in Table 1 together with the configuration conditions.

Figure 2005339938
Figure 2005339938

[負極外観]
負極上に多孔膜ペーストを塗布、乾燥して多孔膜を形成した直後の負極の状態を目視観察した。
[Negative electrode appearance]
The state of the negative electrode immediately after forming the porous film by applying and drying the porous film paste on the negative electrode was visually observed.

[多孔膜の柔軟性]
正極、多孔膜を形成した負極およびポリエチレン製微多孔フィルムセパレータを捲回構成する際、主に巻芯近くの多孔膜の状態を目視観察した。各10個ずつの捲回仕掛品について、捲回によって欠けやクラック、脱落が生じた仕掛品の数量を表1中に示した。
[Porosity of porous membrane]
When the positive electrode, the negative electrode on which the porous film was formed, and the polyethylene microporous film separator were wound, the state of the porous film near the core was visually observed. Table 1 shows the number of work-in-process items that were chipped, cracked, or dropped out due to each of the 10 work-in-process items.

[電池の放電特性]
封口後の完成電池、すなわち捲回による欠け、クラック、および脱落のない良品について2度慣らし充放電を行い、45℃環境で7日間保存した後、以下の充放電を行った。
[Battery discharge characteristics]
The finished battery after sealing, that is, a non-defective product with no chipping, cracking, and dropping off, was charged and discharged twice and stored for 7 days in a 45 ° C. environment, and then charged and discharged as follows.

(1)充電:1400mAの定電流で4.2Vまで充電し、次いで4.2Vの定電圧で電流が100mAに低下するまで充電する。放電:400mAの電流で終止電圧3Vまで放電する。
(2)充電:上と同じ。放電:4000mAの電流で終止電圧3Vまで放電する。
このときの4000mA放電容量と400mA放電容量との比を放電特性の尺度とし、表1中に示した。
(1) Charging: Charge to 4.2 V with a constant current of 1400 mA, then charge until the current drops to 100 mA with a constant voltage of 4.2 V. Discharge: Discharge to a final voltage of 3 V with a current of 400 mA.
(2) Charging: Same as above. Discharge: Discharge to a final voltage of 3 V with a current of 4000 mA.
The ratio between the 4000 mA discharge capacity and the 400 mA discharge capacity at this time is shown in Table 1 as a measure of discharge characteristics.

[釘刺し安全性]
電池の充放電特性を評価した後の電池について、1400mAの定電流で4.25Vまで充電し、次いで4.25Vの定電圧で電流が100mAに低下するまで充電した。この充電後の電池について、2.7mm径の鉄製丸釘を、20℃環境下で5および180mm/秒の速度で貫通させたときの発熱状態を観測した。この電池の貫通箇所における1秒後および90秒後の到達温度を表1中に示した。
[Nail penetration safety]
The battery after the charge / discharge characteristics of the battery were evaluated was charged to 4.25 V at a constant current of 1400 mA, and then charged until the current decreased to 100 mA at a constant voltage of 4.25 V. Regarding the battery after charging, the heat generation state was observed when a 2.7 mm diameter iron round nail was penetrated at a speed of 5 and 180 mm / sec in a 20 ° C. environment. Table 1 shows the temperature reached after 1 second and 90 seconds after the penetration of the battery.

以下に評価結果を記す。
まず、多孔膜を有さない比較例1の負極を用いた電池は、特に釘を低速で刺した場合に顕著な過熱が見られた。従来のポリエチレン製微多孔フィルムセパレータは、釘刺し短絡時に発生する熱によって溶融するため、短絡個所の拡大による過熱を伴う短絡反応が抑止できない。
The evaluation results are described below.
First, in the battery using the negative electrode of Comparative Example 1 having no porous film, remarkable overheating was observed particularly when a nail was pierced at a low speed. Since the conventional polyethylene microporous film separator is melted by heat generated at the time of nail penetration, a short-circuit reaction accompanied by overheating due to expansion of a short-circuit portion cannot be suppressed.

上記のような短絡時の過熱を解決すべく、有機溶剤系の結着剤を用いて多孔膜を塗布形成した比較例2の負極は、作製過程において問題ないものの、放電特性が著しく劣化した。これは電解液と多孔膜中の結着剤との親和性が高く、結着剤が膨潤したために起こったことによると考えられる。   In order to solve the overheating at the time of short circuit as described above, the negative electrode of Comparative Example 2 in which a porous film was applied and formed using an organic solvent-based binder had no problem in the production process, but the discharge characteristics were significantly deteriorated. This is presumably due to the fact that the affinity between the electrolyte and the binder in the porous membrane is high and the binder has swelled.

一方、一般的な水溶性結着剤であるポリアクリル酸を用いて多孔膜を塗布形成した比較例3の負極は、乾燥後の変形が著しい。これは多孔膜用塗料の分散媒である水が負極内に浸透し、負極合剤層中のCMCを膨潤させたために起こったものと考えられる。この比較例3の負極からはその後の捲回工程に適した良品が選定できなかったため、以降に示す電池の諸特性評価を断念した。比較例3以外の負極には、外観不良はみられなかった。   On the other hand, the negative electrode of Comparative Example 3 in which a porous film is applied and formed using polyacrylic acid, which is a general water-soluble binder, is significantly deformed after drying. This is considered to have occurred because water, which is a dispersion medium for the coating material for the porous film, permeates into the negative electrode and swells CMC in the negative electrode mixture layer. Since a non-defective product suitable for the subsequent winding process could not be selected from the negative electrode of Comparative Example 3, the following evaluation of various characteristics of the battery was abandoned. The negative electrode other than Comparative Example 3 did not have a poor appearance.

以上の比較例に対し、多孔膜中にシリカを含む結着剤を用いた実施例1の負極は、同じく水を分散媒としながらも変形を免れている。前述のようにシリカ中のシラノール基が多孔膜用塗料中の水の負極中への浸透を抑制した効果として、このような改善が図れたものと考えられる。さらに、ゴム性状結着剤を併用した実施例2および3の負極では、負極の変形が回避できる上に、可撓性の向上に伴って多孔膜が柔軟になり、脱落不良がなくなるという結果が得られた。これら実施例1〜3の負極からなる電池は、表1に示すように、本発明の改善目標であった放電特性の確保と釘刺し安全性の向上とを両立させる結果となった。
上記の実施例においては、負極合剤の表面に多孔膜を形成する例を示したが、正極合剤の表面に多孔膜を形成しても同様の効果を得ることができる。
In contrast to the comparative example described above, the negative electrode of Example 1 using a binder containing silica in the porous film is similarly freed from deformation while using water as a dispersion medium. As described above, it is considered that such an improvement was achieved as an effect that the silanol group in silica suppressed the penetration of water in the porous film coating material into the negative electrode. Further, in the negative electrodes of Examples 2 and 3 in which the rubber-like binder is used in combination, the deformation of the negative electrode can be avoided, and the porous film becomes soft as the flexibility is improved. Obtained. As shown in Table 1, the batteries comprising the negative electrodes of Examples 1 to 3 achieved both the securing of discharge characteristics and the improvement of nail penetration safety, which were the improvement targets of the present invention.
In the above embodiment, an example in which a porous film is formed on the surface of the negative electrode mixture has been shown, but the same effect can be obtained even if a porous film is formed on the surface of the positive electrode mixture.

本発明による電極板を備えるリチウムイオン二次電池は、従来のシート状セパレータのみを用いた場合と同等の放電特性を有し、しかも安全性が飛躍的に向上する。従って、携帯用機器をはじめ各種用途に利用することができる。
The lithium ion secondary battery provided with the electrode plate according to the present invention has a discharge characteristic equivalent to that when only a conventional sheet separator is used, and the safety is remarkably improved. Therefore, it can be used for various applications including portable devices.

Claims (2)

無機酸化物フィラーおよび水を分散媒とする結着剤からなる多孔膜用ペーストを電極の表面に塗布し、乾燥して多孔膜を形成する工程を有する電極の製造方法であって、前記結着剤の少なくとも1つはりん片状シリカであることを特徴とするリチウムイオン二次電池用電極の製造方法。   A method for producing an electrode comprising a step of applying a porous film paste comprising an inorganic oxide filler and a binder with water as a dispersion medium to the surface of the electrode and drying to form a porous film, the binder A method for producing an electrode for a lithium ion secondary battery, wherein at least one of the agents is flake silica. 前記結着剤はさらにゴム性状高分子を含む請求項1記載のリチウムイオン二次電池用電極の製造方法。
The method for producing an electrode for a lithium ion secondary battery according to claim 1, wherein the binder further contains a rubbery polymer.
JP2004155856A 2004-05-26 2004-05-26 Method for producing electrode for lithium ion secondary battery Expired - Fee Related JP4531444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155856A JP4531444B2 (en) 2004-05-26 2004-05-26 Method for producing electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155856A JP4531444B2 (en) 2004-05-26 2004-05-26 Method for producing electrode for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005339938A true JP2005339938A (en) 2005-12-08
JP4531444B2 JP4531444B2 (en) 2010-08-25

Family

ID=35493267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155856A Expired - Fee Related JP4531444B2 (en) 2004-05-26 2004-05-26 Method for producing electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4531444B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2007081035A (en) * 2005-09-13 2007-03-29 Nippon Sheet Glass Co Ltd Electric double layer capacitor and separator therefor
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2007072595A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2009158450A (en) * 2007-12-06 2009-07-16 Panasonic Corp Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
EP2605311A1 (en) 2011-12-16 2013-06-19 Nippon Sheet Glass Company, Limited Separator
JP5236940B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
US20220013863A1 (en) * 2020-07-07 2022-01-13 Sk Innovation Co., Ltd. Separator and Electrochemical Device Using It

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255807A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JPH10255842A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
JPH10255800A (en) * 1997-03-07 1998-09-25 Mitsui Kozan Kasei Kk Negative electrode material for lithium secondary battery
JP2001332266A (en) * 2000-05-23 2001-11-30 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2003119013A (en) * 2001-10-16 2003-04-23 Kawasaki Steel Corp Method of producing granular bulk mesophase and granular graphite particle, and lithium ion secondary battery
JP2003197197A (en) * 2001-12-07 2003-07-11 Samsung Sdi Co Ltd Electrode plate, lithium battery using this, and manufacturing method for electrode plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255800A (en) * 1997-03-07 1998-09-25 Mitsui Kozan Kasei Kk Negative electrode material for lithium secondary battery
JPH10255807A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JPH10255842A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
JP2001332266A (en) * 2000-05-23 2001-11-30 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2003119013A (en) * 2001-10-16 2003-04-23 Kawasaki Steel Corp Method of producing granular bulk mesophase and granular graphite particle, and lithium ion secondary battery
JP2003197197A (en) * 2001-12-07 2003-07-11 Samsung Sdi Co Ltd Electrode plate, lithium battery using this, and manufacturing method for electrode plate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
US7687202B2 (en) 2004-12-24 2010-03-30 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2007081035A (en) * 2005-09-13 2007-03-29 Nippon Sheet Glass Co Ltd Electric double layer capacitor and separator therefor
JP4616132B2 (en) * 2005-09-13 2011-01-19 日本板硝子株式会社 Electric double layer capacitor separator and electric double layer capacitor
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
JPWO2007072595A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5236880B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5236940B2 (en) * 2005-12-20 2013-07-17 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2007072595A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
JP2009158450A (en) * 2007-12-06 2009-07-16 Panasonic Corp Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
EP2605311A1 (en) 2011-12-16 2013-06-19 Nippon Sheet Glass Company, Limited Separator
US20220013863A1 (en) * 2020-07-07 2022-01-13 Sk Innovation Co., Ltd. Separator and Electrochemical Device Using It
US11990643B2 (en) * 2020-07-07 2024-05-21 Sk Innovation Co., Ltd. Separator having inorganic composite layer including inorganic particles and one-dimensional inorganic material without polymer-based organic binder and electrochemical device using the same

Also Published As

Publication number Publication date
JP4531444B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US11326010B2 (en) Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
CN107925058B (en) Negative electrode for secondary battery, method for producing same, and secondary battery comprising same
JP4739958B2 (en) Lithium ion secondary battery
US10749172B2 (en) Electrode for energy storage devices
KR100914109B1 (en) Lithium ion secondary battery
JP4763253B2 (en) Lithium ion secondary battery
JP7111100B2 (en) ELECTROCHEMICAL DEVICE ELECTRODE, ELECTROCHEMICAL DEVICE, AND METHOD FOR MANUFACTURING ELECTROCHEMICAL DEVICE ELECTRODE
JP2007258050A (en) Nonaqueous battery
JP2012528451A (en) Positive electrode active material, positive electrode including the same, and lithium secondary battery
WO2006061940A1 (en) Lithium ion secondary battery and method for producing negative electrode thereof
EP3401982B1 (en) Electrode for energy storage devices
WO2019156031A1 (en) Lithium ion secondary battery electrode, production method for same, and lithium ion secondary battery
JP2008135262A (en) Manufacturing method of non-aqueous electrolyte secondary battery negative electrode
JP2009110883A (en) Binder for electrochemical cell
JP4531444B2 (en) Method for producing electrode for lithium ion secondary battery
JP2017033871A (en) Negative electrode and lithium ion secondary battery, and manufacturing method of the same
JP2005190912A (en) Lithium secondary battery and its manufacturing method
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP2006228544A (en) Lithium ion secondary battery
JP2005222780A (en) Lithium-ion secondary battery
WO2015132845A1 (en) All-solid-state battery
JP4904857B2 (en) Non-aqueous electrolyte secondary battery
JP2007265889A (en) Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
JP2015041570A (en) Porous film composition for lithium ion secondary batteries, porous film for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing porous film for lithium ion secondary batteries

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees