JP2005190912A - Lithium secondary battery and its manufacturing method - Google Patents

Lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005190912A
JP2005190912A JP2003433152A JP2003433152A JP2005190912A JP 2005190912 A JP2005190912 A JP 2005190912A JP 2003433152 A JP2003433152 A JP 2003433152A JP 2003433152 A JP2003433152 A JP 2003433152A JP 2005190912 A JP2005190912 A JP 2005190912A
Authority
JP
Japan
Prior art keywords
electrode
lithium secondary
secondary battery
plate group
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003433152A
Other languages
Japanese (ja)
Inventor
Kazusato Fujikawa
万郷 藤川
Mikiya Shimada
幹也 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003433152A priority Critical patent/JP2005190912A/en
Publication of JP2005190912A publication Critical patent/JP2005190912A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high safety even at vibration and shock given. <P>SOLUTION: The manufacturing method of the lithium secondary battery having an electrode plate group laminating or winding round cathodes and anodes includes a process of adhering and forming a porous layer consisting of an inorganic oxide filler and a binder on an anode, winding round or laminating the cathode and the anode to make up an electrode plate group, and dipping a top and bottom end faces of the electrode group in solution consisting of an insulator and the binder to harden them. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐短絡性および耐熱性などの安全性に優れたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery excellent in safety such as short circuit resistance and heat resistance.

リチウム二次電池などの化学電池では、正極と負極との間に、それぞれの極板を電気的に絶縁し、さらに電解液を保持する役目をもつセパレータがある。リチウム二次電池では、現在、主にポリエチレンからなる微多孔性薄膜シートが使われている。
しかしながら、これら樹脂からなるシート状セパレータは、概して低温で収縮しやすく、よって内部短絡や釘のような鋭利な形状の突起物が電池を貫いた時、瞬時に発生する短絡反応熱により短絡部が拡大し、さらに多大な反応熱を発生させ、異常過熱を促進するという課題を有していた。
そこで、上記課題を含めた安全性を向上させるための技術として、従来より電極上に高耐熱性の非収縮性絶縁層を配する技術があり、目的は異なるが、電極上に固体微粒子材とポリマー結合材からなる多孔質層を形成する技術(特許文献1参照)が提案されている。
特開平10−106530号公報
In a chemical battery such as a lithium secondary battery, there is a separator between the positive electrode and the negative electrode that electrically insulates each electrode plate and holds an electrolyte solution. In lithium secondary batteries, microporous thin film sheets mainly made of polyethylene are currently used.
However, sheet-like separators made of these resins generally tend to shrink at low temperatures, so that when a sharply shaped protrusion such as an internal short circuit or a nail penetrates the battery, the short circuit part is caused by a short circuit reaction heat that is instantaneously generated. It had the problem of expanding and generating much more heat of reaction and promoting abnormal overheating.
Therefore, as a technique for improving the safety including the above-mentioned problems, there is a technique for arranging a high heat-resistant non-shrinkable insulating layer on the electrode, and the purpose is different. A technique for forming a porous layer made of a polymer binder (see Patent Document 1) has been proposed.
Japanese Patent Laid-Open No. 10-106530

しかしながら上記従来の技術をリチウム二次電池に応用した場合、一般的に正極よりも負極の幅方向の長さが長いため、正極のみに多孔質層を形成した場合は、上下端面での内部短絡が発生する危険がある。また、負極上または正極、負極の両方に多孔質層を形成した場合は、正極の上下端面部(正極、負極の両方に多孔質層が形成されている場合は正極上に形成された多孔質層の上下端面部)が、対向する負極上の多孔質層に接触し、特に振動や衝撃に伴い多孔質層のはがれや割れが生じ、内部短絡が発生する危険がある。   However, when the above conventional technology is applied to a lithium secondary battery, the length in the width direction of the negative electrode is generally longer than that of the positive electrode, so when a porous layer is formed only on the positive electrode, an internal short circuit at the upper and lower end surfaces There is a risk of occurrence. In addition, when a porous layer is formed on the negative electrode or on both the positive electrode and the negative electrode, the upper and lower end surfaces of the positive electrode (if the porous layer is formed on both the positive electrode and the negative electrode, the porous formed on the positive electrode The upper and lower end face portions of the layer are in contact with the porous layer on the opposing negative electrode, and there is a risk that the porous layer will be peeled off or cracked particularly due to vibration or impact, causing an internal short circuit.

また、極板端面には絶縁層が存在しないため、同様に振動や衝撃に伴って内部短絡が発生する危険がある。   In addition, since there is no insulating layer on the end face of the electrode plate, there is a risk that an internal short circuit may occur due to vibration or impact.

本発明は上記従来の課題を解決するもので、振動や衝撃を受けた際にも安全性の高いリチウム二次電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a lithium secondary battery having high safety even when subjected to vibration or impact.

本発明のリチウム二次電池は、正極と負極とを積層または捲回した極板群をもつリチウム二次電池において、前記負極は無機酸化物フィラーおよび結着剤からなる多孔質層が極板上に接着形成されており、前記極板群の端面が絶縁体によって保護されている。極板群の端面を絶縁体で保護することによって振動や衝撃に伴う極板の動きが抑制されるため、上記課題を回避することができる。   The lithium secondary battery of the present invention is a lithium secondary battery having an electrode plate group in which a positive electrode and a negative electrode are laminated or wound, and the negative electrode has a porous layer made of an inorganic oxide filler and a binder on the electrode plate. The end face of the electrode plate group is protected by an insulator. By protecting the end face of the electrode plate group with an insulator, the movement of the electrode plate due to vibration or impact is suppressed, so that the above problem can be avoided.

ここで、前記多孔質層は、セパレータとして負極上に接着形成されており、なおかつ正極と負極の幅方向の長さの違いによって生じる空間が絶縁体によって満たされているいると、本発明の効果が顕著になり好ましい。   Here, when the porous layer is bonded and formed on the negative electrode as a separator, and the space generated by the difference in length in the width direction between the positive electrode and the negative electrode is filled with an insulator, the effect of the present invention is achieved. Becomes remarkable and is preferable.

また、絶縁体が絶縁性微粒子と接着剤からなるため、絶縁体は多孔質となり、電解液の注液性や電池内で発生するガスの放出性がよく、機械的な強度も確保することができる。   In addition, since the insulator is made of insulating fine particles and an adhesive, the insulator becomes porous, so that the electrolyte can be injected, the gas emitted from the battery can be released, and the mechanical strength can be secured. it can.

また、上記正極と負極を捲回、または積層して極板群を作製し、極板群の上下端面を絶縁体と接着剤からなる溶液に浸漬して硬化させることによってリチウム二次電池を製造す
ることにより、極板群端部を絶縁体で保護することができるだけでなく、絶縁体を介して極板群の端部の正極と負極を強固に接着することができ、より電極の移動を抑制することができるため上記課題を回避することができる。
Further, a lithium secondary battery is manufactured by winding or laminating the positive electrode and the negative electrode to produce an electrode plate group, and immersing and curing the upper and lower end surfaces of the electrode plate group in a solution comprising an insulator and an adhesive. As a result, not only can the end of the electrode plate group be protected by an insulator, but also the positive electrode and the negative electrode at the end of the electrode plate group can be firmly bonded via the insulator to further move the electrode. Since it can suppress, the said subject can be avoided.

以上のように本発明によれば、振動や衝撃があっても、極板の動きが抑制されているため、内部短絡の発生が起こりにくい安全性の高いリチウム二次電池を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a highly safe lithium secondary battery in which the occurrence of an internal short circuit is unlikely to occur because the movement of the electrode plate is suppressed even when there is vibration or impact. It becomes.

本発明の好ましい形態を以下に示す。   Preferred embodiments of the present invention are shown below.

図1に本発明におけるリチウム二次電池の構造の模式図を示す。1は極板上に形成した多孔質層、2は負極、3は絶縁体、4は正極である。なお、図1は負極のみに多孔質層を形成したときの模式図である。リチウム二次電池の設計上、負極2の幅は正極4よりも長いため、正極4の上下端面部が、対向する負極2上の多孔質層1に接触し、特に振動や衝撃によって多孔質層1のはがれや割れが生じ、内部短絡が発生する危険がある。しかし、極板群の上下端面を絶縁体3によって保護することにより、振動や衝撃があっても、極板の動きが抑制されるため、内部短絡の発生を抑えることができる。   FIG. 1 shows a schematic diagram of the structure of a lithium secondary battery according to the present invention. 1 is a porous layer formed on the electrode plate, 2 is a negative electrode, 3 is an insulator, and 4 is a positive electrode. FIG. 1 is a schematic view when a porous layer is formed only on the negative electrode. Since the width of the negative electrode 2 is longer than that of the positive electrode 4 due to the design of the lithium secondary battery, the upper and lower end surface portions of the positive electrode 4 are in contact with the porous layer 1 on the opposite negative electrode 2, and the porous layer is particularly affected by vibration or impact. There is a risk of peeling or cracking of 1 and causing an internal short circuit. However, since the upper and lower end surfaces of the electrode plate group are protected by the insulator 3, the movement of the electrode plate is suppressed even when there is vibration or impact, and therefore the occurrence of an internal short circuit can be suppressed.

絶縁体については、電解液の注液性や電池内で発生するガスの放出性を考慮し、多孔質のものが好ましい。また、耐熱性が高く、機械的な強度の高いものである必要がある。以上のような性質を有するものとして、絶縁性微粒子と接着剤との混合物が挙げられる。   The insulator is preferably a porous material in consideration of the pouring property of the electrolytic solution and the release property of the gas generated in the battery. Moreover, it must have high heat resistance and high mechanical strength. As a material having the above properties, a mixture of insulating fine particles and an adhesive may be mentioned.

絶縁体を施す方法については、正極、及び多孔質層を接着形成した負極を重ね合わせて巻回、もしくは積層した極板群を作製する工程と、上記極板群端面を絶縁性微粒子と接着剤の混合溶液に浸漬し、硬化させる工程を含む。   For the method of applying an insulator, a step of producing a plate group in which a positive electrode and a negative electrode formed by bonding a porous layer are overlapped and wound or laminated, and the end surface of the electrode plate group is formed of insulating fine particles and an adhesive. A step of immersing in a mixed solution of

絶縁性微粒子としては耐熱性の高いアルミナ、酸化チタン、シリカ等の無機酸化物もしくはリチウムイオン伝導性を有する固体電解質、もしくはそれらの混合物が好ましい。   The insulating fine particles are preferably inorganic oxides such as alumina, titanium oxide and silica having high heat resistance, solid electrolytes having lithium ion conductivity, or mixtures thereof.

絶縁体に用いる接着剤とは、接着力の強い結着剤で熱可塑性樹脂、UV硬化性樹脂、合成ゴム系接着剤等が好ましい。   The adhesive used for the insulator is a binder having a strong adhesive force, and is preferably a thermoplastic resin, a UV curable resin, a synthetic rubber adhesive, or the like.

負極上に形成する多孔質層については、少なくとも以下に詳述する負極上に接着形成されていなければならない。正極上のみに形成した場合、幅方向の端部において正極端部と負極の接触が起こりやすくなり、好ましくない。   The porous layer formed on the negative electrode must be bonded and formed on at least the negative electrode described in detail below. When formed only on the positive electrode, contact between the positive electrode end and the negative electrode tends to occur at the end in the width direction, which is not preferable.

また、多孔質層に結着剤として用いられるのは、耐熱性が高く、非結晶性のものが望ましい。リチウム二次電池において内部短絡が発生するとその発熱温度は局所的に数百℃を超えることがある。このため、結晶性であり結晶融点が低いものや、非結晶性であっても分解開始温度が低いものは、樹脂の軟化や焼失による多孔質層の変形に伴って、内部短絡が拡大する危険を伴う。こうした観点から、非結晶性で耐熱性が高くゴム弾性を有する、ポリアクリロニトリル基を含むゴム性状高分子であることが好ましい。   Also, it is desirable that the porous layer is used as a binder because it has high heat resistance and is non-crystalline. When an internal short circuit occurs in a lithium secondary battery, the heat generation temperature may locally exceed several hundred degrees Celsius. For this reason, those that are crystalline and have a low crystal melting point, and those that are non-crystalline but have a low decomposition start temperature, may cause the internal short circuit to expand as the porous layer is deformed due to softening or burning of the resin. Accompanied by. From this point of view, the polymer is preferably a rubbery polymer containing a polyacrylonitrile group that is non-crystalline, has high heat resistance, and has rubber elasticity.

さらに多孔質層にフィラーとして用いられるのは、無機酸化物が好ましい。各種樹脂微粒子もフィラーとしては一般的であるが、前述のように耐熱性が必要である上に、リチウム二次電池の使用範囲内で電気化学的に安定である必要があり、これら要件を満たしつつ塗料化に適する材料としては無機酸化物が最も好ましい。またこの無機酸化物は電気化学的安定性の観点からアルミナであり、それの多孔質層に占める含有率が50重量部以上9
9重量部以下であることがより好ましい。50重量部を下回る結着剤過多な場合、アルミナ間の隙間で構成される細孔構造の制御が困難になりやすく、99重量部を上回る結着剤過少な場合、多孔質層の密着性が低下するため脱落による機能の損失が引き起こされる可能性があるからである。この無機酸化物は複数種を混合あるいは多層化して用いても良い。
Furthermore, an inorganic oxide is preferably used as a filler in the porous layer. Various resin fine particles are also commonly used as fillers. However, as described above, they need heat resistance and must be electrochemically stable within the range of use of lithium secondary batteries. However, inorganic materials are most preferable as materials suitable for coating. The inorganic oxide is alumina from the viewpoint of electrochemical stability, and the content of the inorganic oxide in the porous layer is 50 parts by weight or more and 9
More preferably, it is 9 parts by weight or less. When the amount of the binder is less than 50 parts by weight, it is difficult to control the pore structure formed by the gaps between the alumina, and when the amount of the binder is more than 99 parts by weight, the adhesion of the porous layer is low. This is because the function may be lost due to dropout due to the decrease. This inorganic oxide may be used as a mixture of a plurality of types or in multiple layers.

正極については、活物質としてコバルト酸リチウムおよびその変性体(アルミニウムやマグネシウムを共晶させたものなど)・ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)・マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。結着剤としてはポリテトラフルオロエチレン(PTFE)・変性アクリロニトリルゴム粒子バインダー(日本ゼオン(株)製BM−500B)等を増粘効果のあるカルボキシメチルセルロース(CMC)・ポリエチレンオキシド(PEO)・可溶性変性アクリロニトリルゴム(日本ゼオン(株)製BM−720H)等と組み合わせても良く、また単一で結着性・増粘性の双方を有するポリフッ化ビニリデン(PVDF)およびその変性体を単独または組み合わせて用いても良い。導電剤としてはアセチレンブラック・ケッチェンブラック・各種グラファイトを単独あるいは組み合わせて用いて良い。   For the positive electrode, lithium cobaltate and its modified products (such as those obtained by eutectic aluminum and magnesium), lithium nickelate and its modified products (such as those in which nickel has been partially substituted with cobalt), and lithium manganate And composite oxides such as modified products thereof. As a binder, polytetrafluoroethylene (PTFE), modified acrylonitrile rubber particle binder (BM-500B manufactured by Nippon Zeon Co., Ltd.) and the like are used for thickening carboxymethylcellulose (CMC), polyethylene oxide (PEO), soluble modification It may be combined with acrylonitrile rubber (BM-720H manufactured by Nippon Zeon Co., Ltd.), etc., and a single polyvinylidene fluoride (PVDF) having both binding properties and thickening properties and a modified product thereof are used alone or in combination. May be. As the conductive agent, acetylene black, ketjen black, and various graphites may be used alone or in combination.

負極については、活物質として各種天然黒鉛および人造黒鉛・シリサイドなどのシリコン系複合材料・リチウム金属および各種合金組成材料を用いることができる。結着剤としてはPVDFおよびその変性体をはじめ各種バインダーを用いることができるが、前述のようにリチウムイオン受入れ性向上の観点から、スチレンブタジエンラバー(SBR)およびその変性体をCMCをはじめとするセルロース系樹脂と併用・少量添加するのがより好ましいといえる。   For the negative electrode, various natural graphites, silicon-based composite materials such as artificial graphite and silicide, lithium metal, and various alloy composition materials can be used as the active material. Various binders such as PVDF and modified products thereof can be used as the binder. From the viewpoint of improving the lithium ion acceptability as described above, styrene butadiene rubber (SBR) and modified products thereof including CMC are used. It can be said that it is more preferable to add a small amount together with the cellulose resin.

また、本発明において正極と負極を電気的に絶縁するものとして、負極上に形成する多孔質層以外に、従来リチウム二次電池に用いられる微多孔性高分子膜をあわせて用いてもかまわない。この場合用いる高分子膜の種類としては、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂の微多孔膜や不織布からなる単層または多層構造で構成されているものが好ましい。  Further, in the present invention, as a material for electrically insulating the positive electrode and the negative electrode, in addition to the porous layer formed on the negative electrode, a microporous polymer film conventionally used for lithium secondary batteries may be used together. . The polymer film used in this case preferably has a single-layer or multi-layer structure made of a microporous film of polyolefin resin such as polyethylene resin or polypropylene resin or a nonwoven fabric.

電解液については、塩としてLiPF6およびLiBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)を単独および組み合わせて用いることができる。また正負極上に良好な皮膜を形成させたり、過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも可能である。 For the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as a salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) can be used alone or in combination as a solvent. In addition, vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof can be used in order to form a good film on the positive and negative electrodes and to ensure stability during overcharge.

コバルト酸リチウム3kgを、呉羽化学(株)製PVDF#1320(固形分12重量部のN−メチルピロリドン(NMP)溶液)1kg、アセチレンブラック90gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極ペーストを作製した。このペーストを15μm厚のアルミニウム箔に塗布乾燥し、総厚が160μmとなるように圧延した後、円筒型18650に挿入可能な幅にスリットし、正極フープを得た。   3 kg of lithium cobaltate was stirred in a double-arm kneader together with 1 kg of PVDF # 1320 (N-methylpyrrolidone (NMP) solution with a solid content of 12 parts by weight), 90 g of acetylene black and an appropriate amount of NMP. A positive electrode paste was prepared. This paste was applied and dried on a 15 μm thick aluminum foil, rolled to a total thickness of 160 μm, and then slit to a width that could be inserted into a cylindrical mold 18650 to obtain a positive electrode hoop.

一方、人造黒鉛3kgを、日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム粒子結着剤BM−400B(固形分40重量部)75g、CMC30gおよび適量の水とともに双腕式練合機にて攪拌し、負極ペーストを作製した。このペーストを10μm厚の銅箔に塗布乾燥し、総厚が180μmとなるように圧延した後、円筒型18650に挿入可能な幅にスリットし、負極フープを得た。   On the other hand, 3 kg of artificial graphite was mixed with Nippon Zeon Co., Ltd. styrene-butadiene copolymer rubber particle binder BM-400B (solid content 40 parts by weight) 75 g, CMC 30 g and an appropriate amount of water in a double arm kneader. Stirring to prepare a negative electrode paste. This paste was applied to and dried on a 10 μm thick copper foil, rolled to a total thickness of 180 μm, and then slit into a width that could be inserted into a cylindrical mold 18650 to obtain a negative electrode hoop.

一方、メディアン径0.3μmのアルミナ970gを、日本ゼオン(株)製ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量部)375gおよび適量のNMPとともに双腕式練合機にて攪拌し、多孔膜ペーストを作製した。このペーストを上記の負極フープ上に片側20μmずつ塗布乾燥した。   On the other hand, 970 g of alumina having a median diameter of 0.3 μm was stirred with a double arm kneader together with 375 g of polyacrylonitrile modified rubber binder BM-720H (solid content 8 parts by weight) manufactured by Nippon Zeon Co., Ltd. and an appropriate amount of NMP. Thus, a porous film paste was produced. This paste was applied and dried on the above negative electrode hoop by 20 μm on each side.

これらの正負極を重ね合わせて捲回構成し、所定の長さで切断して極板群を作製した。一方、アルミナ1000gとホットメルト性接着剤1000gを混合し、加熱した溶液に上記極板群の上下端面を浸漬し、冷却させて極板群端面を絶縁体によって満たした極板群を作製した。 次に極板群を電槽缶内に挿入し、EC・DMC・EMC混合溶媒にLiPF6を1MとVCを3重量%溶解させた電解液を、5.5g添加して封口し、円筒型18650リチウム二次電池を1000個作製した。これを実施例1とする。 These positive and negative electrodes were overlapped to form a winding, and were cut at a predetermined length to produce an electrode plate group. On the other hand, 1000 g of alumina and 1000 g of hot melt adhesive were mixed, and the upper and lower end surfaces of the electrode plate group were immersed in a heated solution and cooled to prepare an electrode plate group in which the end surfaces of the electrode plate group were filled with an insulator. Next, the electrode plate group is inserted into a battery case, and 5.5 g of an electrolytic solution in which 1% of LiPF 6 and 3% by weight of VC are dissolved in an EC / DMC / EMC mixed solvent is added and sealed. 1,000 18650 lithium secondary batteries were produced. This is Example 1.

一方、実施例1と同様にして、正極と、多孔膜ペーストを塗布した負極を重ね合わせて捲回構成し、所定の長さで切断して作製した極板群を電槽缶内に挿入し、EC・DMC・EMC混合溶媒にLiPF6を1MとVCを3重量部溶解させた電解液を、5.5g添加して封口し、円筒型18650リチウム二次電池を1000個作製した。これを比較例1とする。 On the other hand, in the same manner as in Example 1, the positive electrode and the negative electrode coated with the porous film paste were overlapped to form a wound, and the electrode plate group produced by cutting at a predetermined length was inserted into the battery case. Then, 5.5 g of an electrolytic solution in which 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in an EC / DMC / EMC mixed solvent was added and sealed to prepare 1000 cylindrical 18650 lithium secondary batteries. This is referred to as Comparative Example 1.

これらの電池を、以下に示す方法にて評価した。
(落下試験)
上述した2000個の電池を1400mAの定電流で充電電圧が4.2Vになるまで充電した後、4.2Vの定電圧で充電電流が100mAになるまで充電した後、地上から1.5mの高さから5回落下させた後のOCVを測定し、内部短絡の発生頻度を評価した。
These batteries were evaluated by the following method.
(Drop test)
After charging the above-mentioned 2000 batteries at a constant current of 1400 mA until the charging voltage is 4.2 V, the battery is charged at a constant voltage of 4.2 V until the charging current is 100 mA, and then 1.5 m high from the ground. Then, the OCV after dropping 5 times was measured, and the occurrence frequency of internal short circuit was evaluated.

その結果を(表1)に記す。   The results are shown in (Table 1).

(表1)に示すように極板群の端面を保護していない比較例1では落下による衝撃によって内部短絡の発生したものがあった。その一方、極板群の端面を保護した実施例1は落下による内部短絡は発生しなかった。   As shown in Table 1, in Comparative Example 1 in which the end face of the electrode plate group was not protected, there was an internal short circuit caused by an impact caused by dropping. On the other hand, in Example 1 in which the end face of the electrode plate group was protected, an internal short circuit due to dropping did not occur.

これは極板群の端面を絶縁体によって保護したことにより、落下の衝撃による極板の動きが抑制されるためと考える。   This is considered to be because the movement of the electrode plate due to the impact of dropping is suppressed by protecting the end face of the electrode plate group with an insulator.

本実施例のように、絶縁性微粒子と接着剤からなる溶液に極板群を浸漬し硬化させる工法を用いると、極板群端面を絶縁体で保護することができるだけでなく、絶縁体を介して極板群の端部の正極と負極を強固に接着することができ、より極板の移動を抑制することができた。   As in this example, using a method of immersing and curing the electrode group in a solution composed of insulating fine particles and an adhesive, not only can the end surface of the electrode group be protected by an insulator, but also through the insulator. Thus, the positive electrode and the negative electrode at the end of the electrode plate group can be firmly bonded, and the movement of the electrode plate can be further suppressed.

本発明にかかるリチウム二次電池は優れた安全性を有し、携帯電子機器等の電源として
有用である。
The lithium secondary battery according to the present invention has excellent safety and is useful as a power source for portable electronic devices and the like.

本発明におけるリチウム二次電池の構造の模式図Schematic diagram of the structure of the lithium secondary battery in the present invention

符号の説明Explanation of symbols

1 電極上に塗布した多孔質層
2 負極
3 絶縁体
4 正極


DESCRIPTION OF SYMBOLS 1 Porous layer apply | coated on electrode 2 Negative electrode 3 Insulator 4 Positive electrode


Claims (3)

正極と負極とを積層または捲回した極板群をもつリチウム二次電池において、
前記負極は無機酸化物フィラーおよび結着剤からなる多孔質層が極板上に接着形成されており、前記極板群の端面が絶縁体によって保護されていることを特徴とするリチウム二次電池。
In a lithium secondary battery having an electrode plate group in which a positive electrode and a negative electrode are laminated or wound,
A lithium secondary battery, wherein the negative electrode has a porous layer made of an inorganic oxide filler and a binder adhered on an electrode plate, and an end face of the electrode plate group is protected by an insulator. .
前記絶縁体が絶縁性微粒子と接着剤からなることを特徴とする請求項1記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the insulator includes insulating fine particles and an adhesive. 正極と負極とを積層または捲回した極板群をもつリチウム二次電池の製造方法において、無機酸化物フィラーおよび結着剤からなる多孔質層を負極上に接着形成し、前記正極と前記負極とを倦回、または積層して極板群を作製し、極板群の上下端面を絶縁体と接着剤からなる溶液に浸漬して硬化する工程を含むリチウム二次電池の製造方法。


In a method for producing a lithium secondary battery having an electrode plate group in which a positive electrode and a negative electrode are laminated or wound, a porous layer comprising an inorganic oxide filler and a binder is formed on the negative electrode, and the positive electrode and the negative electrode A method for producing a lithium secondary battery, comprising: producing a plate group by winding or laminating and laminating the upper and lower end surfaces of the plate group in a solution comprising an insulator and an adhesive.


JP2003433152A 2003-12-26 2003-12-26 Lithium secondary battery and its manufacturing method Pending JP2005190912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433152A JP2005190912A (en) 2003-12-26 2003-12-26 Lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433152A JP2005190912A (en) 2003-12-26 2003-12-26 Lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005190912A true JP2005190912A (en) 2005-07-14

Family

ID=34790625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433152A Pending JP2005190912A (en) 2003-12-26 2003-12-26 Lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005190912A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242595A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Electrode plate for battery and its forming method as well as forming device of electrode plate for battery
WO2007145275A1 (en) * 2006-06-16 2007-12-21 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2008021644A (en) * 2006-06-16 2008-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009508298A (en) * 2005-09-08 2009-02-26 エボニック デグサ ゲーエムベーハー Laminate for Li battery consisting of separators and electrodes alternately stacked one above the other
JP2009163942A (en) * 2007-12-28 2009-07-23 Panasonic Corp Nonaqueous secondary battery, and its manufacturing method thereof
JP2009252392A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Wound-around battery and method of manufacturing the same
JP2010010117A (en) * 2008-05-30 2010-01-14 Hitachi Vehicle Energy Ltd Lithium secondary battery and its manufacturing method
US8192858B2 (en) 2006-02-07 2012-06-05 Panasonic Corporation Electrode plate for battery and method and apparatus for forming the same
JP2014017201A (en) * 2012-07-11 2014-01-30 Toyota Industries Corp Electricity storage device
WO2014091925A1 (en) * 2012-12-11 2014-06-19 株式会社 村田製作所 Electricity storage device and method for producing same
WO2016152565A1 (en) * 2015-03-25 2016-09-29 日本碍子株式会社 All solid state lithium battery
JP2018055871A (en) * 2016-09-27 2018-04-05 株式会社日立製作所 Secondary battery
CN108155418A (en) * 2016-12-06 2018-06-12 株式会社日立制作所 The manufacturing method of secondary cell and secondary cell
US10090526B2 (en) 2013-06-24 2018-10-02 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for producing the same
CN114512724A (en) * 2022-02-16 2022-05-17 天津市捷威动力工业有限公司 Laminated battery cell and preparation method and application thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508298A (en) * 2005-09-08 2009-02-26 エボニック デグサ ゲーエムベーハー Laminate for Li battery consisting of separators and electrodes alternately stacked one above the other
JP2007242595A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Electrode plate for battery and its forming method as well as forming device of electrode plate for battery
US8192858B2 (en) 2006-02-07 2012-06-05 Panasonic Corporation Electrode plate for battery and method and apparatus for forming the same
WO2007145275A1 (en) * 2006-06-16 2007-12-21 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2008021644A (en) * 2006-06-16 2008-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009163942A (en) * 2007-12-28 2009-07-23 Panasonic Corp Nonaqueous secondary battery, and its manufacturing method thereof
JP2009252392A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Wound-around battery and method of manufacturing the same
JP2010010117A (en) * 2008-05-30 2010-01-14 Hitachi Vehicle Energy Ltd Lithium secondary battery and its manufacturing method
JP2014017201A (en) * 2012-07-11 2014-01-30 Toyota Industries Corp Electricity storage device
WO2014091925A1 (en) * 2012-12-11 2014-06-19 株式会社 村田製作所 Electricity storage device and method for producing same
JPWO2014091925A1 (en) * 2012-12-11 2017-01-05 株式会社村田製作所 Electric storage device and manufacturing method thereof
US10090526B2 (en) 2013-06-24 2018-10-02 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for producing the same
WO2016152565A1 (en) * 2015-03-25 2016-09-29 日本碍子株式会社 All solid state lithium battery
JP2018055871A (en) * 2016-09-27 2018-04-05 株式会社日立製作所 Secondary battery
CN108155418A (en) * 2016-12-06 2018-06-12 株式会社日立制作所 The manufacturing method of secondary cell and secondary cell
CN114512724A (en) * 2022-02-16 2022-05-17 天津市捷威动力工业有限公司 Laminated battery cell and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4739958B2 (en) Lithium ion secondary battery
JP5670626B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
US7759004B2 (en) Electrode for lithium ion secondary batteries, lithium ion secondary battery using the same, and method for manufacturing the battery
JP4541324B2 (en) Nonaqueous electrolyte secondary battery
JP4649993B2 (en) Lithium secondary battery and manufacturing method thereof
JP4657001B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2012137377A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4988973B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4529436B2 (en) Electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2014127242A (en) Lithium secondary battery
JP2009163942A (en) Nonaqueous secondary battery, and its manufacturing method thereof
JP2005259639A (en) Lithium secondary battery and its manufacturing method
US20060281006A1 (en) Lithium secondary battery
JP2005190912A (en) Lithium secondary battery and its manufacturing method
JP2015211004A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2007287390A (en) Lithium secondary battery
JP6933149B2 (en) Non-aqueous electrolyte secondary battery
JP4529511B2 (en) Lithium ion battery
JP5702873B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP4531444B2 (en) Method for producing electrode for lithium ion secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2009176552A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP6852706B2 (en) Non-aqueous electrolyte secondary battery
JP4904857B2 (en) Non-aqueous electrolyte secondary battery
JP4794820B2 (en) Lithium ion secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223