JP2005259639A - Lithium secondary battery and its manufacturing method - Google Patents

Lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005259639A
JP2005259639A JP2004072574A JP2004072574A JP2005259639A JP 2005259639 A JP2005259639 A JP 2005259639A JP 2004072574 A JP2004072574 A JP 2004072574A JP 2004072574 A JP2004072574 A JP 2004072574A JP 2005259639 A JP2005259639 A JP 2005259639A
Authority
JP
Japan
Prior art keywords
porous layer
electrode
lithium secondary
secondary battery
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004072574A
Other languages
Japanese (ja)
Inventor
Kazusato Fujikawa
万郷 藤川
Mikiya Shimada
幹也 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004072574A priority Critical patent/JP2005259639A/en
Publication of JP2005259639A publication Critical patent/JP2005259639A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent lithium secondary battery wherein safety such as short-circuit resistance and heat resistance is compatible with electrical characteristics. <P>SOLUTION: In this lithium secondary battery having a group of electrodes formed by laminating or winding a positive electrode 1 and a negative electrode 5, a heat resistant insulating layer 3 composed of a filler and a binding agent is formed on a porous layer 4 as an object to electrically insulating the positive electrode from the negative electrode, and the porous layer is integrated with the positive electrode or the negative electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐短絡性および耐熱性などの安全性と電気特性を両立した優れたリチウム二次電池およびその製造方法に関する。   The present invention relates to an excellent lithium secondary battery having both safety and electric characteristics such as short circuit resistance and heat resistance, and a method for producing the same.

リチウム二次電池などの化学電池では、正極と負極との間に、それぞれの極板を電気的に絶縁し、さらに電解液を保持する役目をもつセパレータがある。リチウム二次電池では、現在、主にポリエチレンからなる微多孔性薄膜シートが使われている。
しかしながら、これら樹脂からなるシート状セパレータは、概して低温で収縮しやすく、よって内部短絡や釘のような鋭利な形状の突起物が電池を貫いた時、瞬時に発生する短絡反応熱により短絡部が拡大し、さらに多大な反応熱を発生させ、異常過熱を促進するという課題を有していた。
そこで、上記課題を含めた安全性を向上させるための技術として、従来より高分子セパレータ上にセラミックス粒子とポリマーマトリックスからなる溶液を塗布し、高耐熱性の絶縁層を形成する技術(特許文献1参照)や、高分子セパレータと電極を、フィラーを含む接着性樹脂で接合する技術(特許文献2参照)が提案されている。
特開2001−319634号公報 WO/99/36981号公報
In a chemical battery such as a lithium secondary battery, there is a separator between the positive electrode and the negative electrode that electrically insulates each electrode plate and holds an electrolyte solution. In lithium secondary batteries, microporous thin film sheets mainly made of polyethylene are currently used.
However, sheet-like separators made of these resins generally tend to shrink at low temperatures, so that when a sharply shaped protrusion such as an internal short circuit or a nail penetrates the battery, the short circuit part is caused by a short circuit reaction heat that is instantaneously generated. It had the problem of expanding and generating much more heat of reaction and promoting abnormal overheating.
Therefore, as a technique for improving safety including the above-described problems, a technique for forming a highly heat-resistant insulating layer by applying a solution comprising ceramic particles and a polymer matrix on a polymer separator has been conventionally used (Patent Document 1). And a technique for joining a polymer separator and an electrode with an adhesive resin containing a filler (see Patent Document 2).
JP 2001-319634 A WO / 99/36981

しかしながら高分子セパレータ上にセラミックス粒子とポリマーマトリックスからなる溶液を塗布し、高耐熱性の絶縁層を形成する技術については、電極とポリマーセパレータが接着されていないので、釘刺し試験などで内部短絡が発生した時に、その発熱によってポリマーセパレータが収縮するのに伴って、耐熱性絶縁層も収縮してしまい、更に発熱が促進されるという欠点を有する。また、電極群構成時のポリマーセパレータの巻きずれ等による内部短絡が発生する可能性があるという欠点を有する。   However, regarding the technology for applying a solution consisting of ceramic particles and a polymer matrix on a polymer separator to form a highly heat-resistant insulating layer, the electrode and polymer separator are not bonded together, so internal short circuits may occur in nail penetration tests. When generated, as the polymer separator contracts due to the heat generation, the heat-resistant insulating layer also contracts, and the heat generation is further promoted. In addition, there is a drawback in that an internal short circuit may occur due to winding deviation of the polymer separator when the electrode group is configured.

また高分子セパレータと電極を、フィラーを含む接着性樹脂で接合する技術については、接着性樹脂が電極活物質の凹凸を埋めることになるため、形成される耐熱性絶縁層の厚みにばらつきが生じる。つまり抵抗にばらつきが生じるため、充放電反応の均一性が低下し、電池特性が低下するという欠点を有する。   In addition, regarding the technique of joining the polymer separator and the electrode with an adhesive resin containing a filler, the adhesive resin fills the unevenness of the electrode active material, resulting in variations in the thickness of the formed heat-resistant insulating layer. . That is, since the resistance varies, there is a disadvantage that the uniformity of the charge / discharge reaction is lowered and the battery characteristics are lowered.

本発明は上記従来の課題を解決するもので、耐短絡性および耐熱性などの安全性と電気特性を両立した、優れたリチウム二次電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide an excellent lithium secondary battery having both safety such as short circuit resistance and heat resistance and electrical characteristics.

本発明のリチウム二次電池は、正極と、負極と、樹脂からなる多孔質層とを積層または捲回した電極群をもつリチウム二次電池において、フィラーおよび結着剤からなる耐熱性絶縁層が前記多孔質層の片面上に形成され、さらに前記多孔質層のもう一方の面が前記正極または負極のいずれかの極板と接して、前記多孔質層と前記極板が一体化されているものである。   The lithium secondary battery of the present invention is a lithium secondary battery having an electrode group in which a positive electrode, a negative electrode, and a porous layer made of a resin are laminated or wound, and a heat-resistant insulating layer made of a filler and a binder is provided. The porous layer is formed on one surface of the porous layer, and the other surface of the porous layer is in contact with either the positive electrode or the negative electrode, so that the porous layer and the electrode plate are integrated. Is.

本構成においては、耐熱性絶縁層を多孔質層上に形成しているため、厚さの均一な耐熱性絶縁層を配することができ、電池反応の均一性を高く保つことができる。また耐熱性絶縁層を形成した多孔質層が電極と一体化されているため、巻きずれ等による内部短絡が起こることもなく、上記課題を解決することができる。   In this configuration, since the heat-resistant insulating layer is formed on the porous layer, the heat-resistant insulating layer having a uniform thickness can be disposed, and the uniformity of the battery reaction can be kept high. Further, since the porous layer on which the heat-resistant insulating layer is formed is integrated with the electrode, the above problem can be solved without causing an internal short circuit due to winding deviation or the like.

さらに、上記多孔質層の溶融温度が200℃以下であることにより、電極成分を変質させることなく上記課題を解決することができる。   Furthermore, when the melting temperature of the porous layer is 200 ° C. or lower, the above-mentioned problem can be solved without altering the electrode components.

さらに、多孔質層として不織布を用いることにより、電極と一体化させた後も電極間のイオンの移動のために十分な多孔度を確保することができる。   Furthermore, by using a non-woven fabric as the porous layer, sufficient porosity can be secured for the movement of ions between the electrodes even after being integrated with the electrodes.

さらに、上述のリチウム二次電池において、さらに電極間にポリエチレン、またはポリプロピレンからなる層を配することにより、内部短絡等によって電池内部が発熱した場合に、その融点以上に電池温度が昇温した時はその細孔を閉鎖し、イオンの通過を停止させることができ、さらに短絡に対する安全性を高めることができる。   Furthermore, in the above-described lithium secondary battery, when the inside of the battery generates heat due to an internal short circuit or the like by further disposing a layer made of polyethylene or polypropylene between the electrodes, the battery temperature rises above its melting point. Can close the pores, stop the passage of ions, and can further improve safety against short circuit.

また、製造方法として、多孔質層上に、フィラー、結着剤を溶媒中に分散させた溶液を塗布、乾燥させて耐熱性絶縁層を形成した後に、多孔質層を溶着によって正極、または負極と一体化させた電極を用いてリチウム二次電池を製造するものである。   As a manufacturing method, a porous layer is coated with a solution in which a filler and a binder are dispersed in a solvent and dried to form a heat-resistant insulating layer. A lithium secondary battery is manufactured using an electrode integrated with the above.

以上のように本発明によれば、内部短絡に対する安全性と電池特性を両立した優れたリチウム二次電池を提供することが可能となる。   As described above, according to the present invention, it is possible to provide an excellent lithium secondary battery having both safety against internal short circuit and battery characteristics.

本発明の好ましい形態を以下に示す。   Preferred embodiments of the present invention are shown below.

図1に本発明におけるリチウム二次電池の構造の模式図を示す。1は正極、2はポリエチレンセパレータ、3は多孔質層上に形成した耐熱性絶縁層、4はポリプロピレン不織布、5は負極である。   FIG. 1 shows a schematic diagram of the structure of a lithium secondary battery according to the present invention. 1 is a positive electrode, 2 is a polyethylene separator, 3 is a heat-resistant insulating layer formed on the porous layer, 4 is a polypropylene nonwoven fabric, and 5 is a negative electrode.

多孔質層として用いられるのは、電極と一体化した際にも十分な多孔度を有するものが望ましく、また、一体化させる電極成分を変質させない温度で一体化できるものが望ましい。例えば、ポリエチレン、ポリプロピレン、ナイロンからなる微多孔膜、もしくは不織布などが挙げられるが、その中でも、溶融温度が200℃以下であるポリエチレン、もしくはポリプロピレンからなる不織布が好ましい。   The porous layer is preferably one having sufficient porosity even when integrated with an electrode, and one that can be integrated at a temperature that does not alter the electrode components to be integrated. For example, a microporous film made of polyethylene, polypropylene, nylon, or a nonwoven fabric may be mentioned. Among them, a nonwoven fabric made of polyethylene or polypropylene having a melting temperature of 200 ° C. or less is preferable.

さらに、耐熱性絶縁層に結着剤として用いられるのは、耐熱性が高く、ゴム弾性を有する、ポリアクリロニトリル単位を含むゴム性状高分子であることが好ましい。   Further, a rubbery polymer containing a polyacrylonitrile unit having high heat resistance and rubber elasticity is preferably used as a binder for the heat resistant insulating layer.

さらに耐熱性絶縁層にフィラーとして用いられるのは、無機酸化物が好ましい。各種樹脂微粒子もフィラーとしては一般的であるが、前述のように耐熱性が必要である上に、リチウム二次電池の使用範囲内で電気化学的に安定である必要があり、これら要件を満たしつつ塗料化に適する材料としては無機酸化物、特にアルミナが好ましい。この無機酸化物は複数種を混合あるいは多層化して用いても良い。   Furthermore, an inorganic oxide is preferably used as a filler in the heat resistant insulating layer. Various resin fine particles are also commonly used as fillers. However, as described above, they need heat resistance and must be electrochemically stable within the range of use of lithium secondary batteries. However, an inorganic oxide, particularly alumina, is preferable as a material suitable for coating. This inorganic oxide may be used as a mixture of a plurality of types or in multiple layers.

正極については、活物質としてコバルト酸リチウムおよびその変性体・ニッケル酸リチウムおよびその変性体・マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。結着剤としてはポリテトラフルオロエチレン(PTFE)・ポリフッ化ビニリデン(PVDF)等を単独または組み合わせて用いても良い。導電剤としてはアセチレンブラック・ケッチェンブラック(登録商標)・各種グラファイトを単独あるいは組み合わせて用いて良い。   With respect to the positive electrode, examples of the active material include composite oxides such as lithium cobaltate and its modified body / lithium nickelate and its modified body / lithium manganate and its modified body. As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) or the like may be used alone or in combination. As the conductive agent, acetylene black, ketjen black (registered trademark), and various graphites may be used alone or in combination.

負極については、活物質として各種天然黒鉛および人造黒鉛・シリサイドなどのシリコ
ン系複合材料・リチウム金属および各種合金組成材料を用いることができる。結着剤としてはPVDFおよびその変性体をはじめ各種バインダーを用いることができる。
For the negative electrode, various natural graphites, silicon-based composite materials such as artificial graphite and silicide, lithium metal, and various alloy composition materials can be used as the active material. Various binders such as PVDF and modified products thereof can be used as the binder.

また、本発明において正極と負極を電気的に絶縁するものとして、多孔質層上に形成する高耐熱絶縁層以外に、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂からなるセパレータをあわせて用いてもかまわない。  In the present invention, a separator made of a polyolefin resin such as a polyethylene resin or a polypropylene resin may be used in addition to the high heat-resistant insulating layer formed on the porous layer as a material for electrically insulating the positive electrode and the negative electrode. Absent.

電解液については、塩としてLiPF6およびLiBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)を単独および組み合わせて用いることができる。 For the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as a salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) can be used alone or in combination as a solvent.

本発明の電池の製造方法は、
(a)前記多孔質層片面上に、フィラー、結着剤を溶媒中に分散させた溶液を塗布する工程、
(b)溶液を塗布した多孔質層を乾燥してフィラーおよび結着剤からなる耐熱性絶縁層を形成する工程、
(c)前記多孔質層のもう一方の面を前記正極または負極のいずれかの極板と重ね合わせ、溶着によって前記多孔質層と前記極板を一体化する工程を含むものである。
The battery manufacturing method of the present invention comprises:
(A) applying a solution in which a filler and a binder are dispersed in a solvent on one surface of the porous layer;
(B) drying the porous layer coated with the solution to form a heat-resistant insulating layer comprising a filler and a binder;
(C) The other surface of the porous layer is overlapped with either the positive electrode or the negative electrode, and the porous layer and the electrode plate are integrated by welding.

まず(a)の工程において、分散媒として用いるものについては、均一に分散することが可能であり、フィラー、結着剤、塗布する多孔質層成分に対して不活性なものである必要がある。また、フィラー、結着剤、多孔質層成分が変質しない温度で蒸発させる必要がある。このような観点から、有機系溶媒であることが望ましい。例えば、N−メチルピロリドン(NMP)、メチルエチルケトン(MEK)、トルエンなどが挙げられる。   First, in the step (a), the material used as a dispersion medium can be uniformly dispersed and must be inert to the filler, the binder, and the porous layer component to be applied. . Further, it is necessary to evaporate at a temperature at which the filler, binder, and porous layer component do not change. From such a viewpoint, an organic solvent is desirable. For example, N-methylpyrrolidone (NMP), methyl ethyl ketone (MEK), toluene and the like can be mentioned.

分散装置としては、各種分散装置を用いることができる。例えば、インターナルミキサー、双腕型ミキサー、ヘンシェルミキサー、パドルミキサーなどが挙げられる。   Various dispersing devices can be used as the dispersing device. For example, an internal mixer, a double-arm mixer, a Henschel mixer, a paddle mixer, and the like can be given.

溶液の塗布に関しては、ダイコート方式、グラビアコート方式、コンマコート方式等の各種塗布方式により塗布することができる。   As for the application of the solution, it can be applied by various application methods such as a die coating method, a gravure coating method, and a comma coating method.

また、(b)の工程において、溶液を塗布した多孔質層の乾燥に関しては、フィラー、結着剤、多孔質層成分が変質しない温度で行うことが必要である。減圧環境で行ってもかまわない。   In the step (b), the porous layer coated with the solution needs to be dried at a temperature at which the filler, the binder, and the porous layer component do not change. It may be performed in a reduced pressure environment.

そして、(c)の工程において、多孔質層を極板と溶着させる方法としては、熱板溶着、超音波溶着、高周波溶着などが挙げられる。局部的に多孔質層の融点以上の温度にして多孔質層を溶融することにより、多孔質層と極板を一体化させることができる。   In the step (c), examples of the method for welding the porous layer to the electrode plate include hot plate welding, ultrasonic welding, and high frequency welding. The porous layer and the electrode plate can be integrated by melting the porous layer locally at a temperature equal to or higher than the melting point of the porous layer.

次に本発明の実施例を説明する。本実施例では、前述した図1に基づいて構成した。まず、コバルト酸リチウム3kgを、呉羽化学(株)製PVDF#1320(固形分12%のNMP溶液)1kg、アセチレンブラック90gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極ペーストを作製した。このペーストを15μm厚のアルミニウム箔に塗布乾燥し、総厚が160μmとなるように圧延した後、円筒型18650に挿入可能な幅にスリットし、正極1を得た。   Next, examples of the present invention will be described. The present embodiment is configured based on FIG. 1 described above. First, 3 kg of lithium cobaltate was stirred with a double-arm kneader together with 1 kg of PVDF # 1320 (NMP solution having a solid content of 12%) manufactured by Kureha Chemical Co., Ltd., 90 g of acetylene black, and an appropriate amount of NMP. Produced. The paste was applied and dried on a 15 μm thick aluminum foil, rolled to a total thickness of 160 μm, and then slit into a width that could be inserted into a cylindrical mold 18650 to obtain the positive electrode 1.

一方、人造黒鉛3kgを、日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム粒子結着剤BM−400B(固形分40%)75g、CMC30gおよび適量の水とともに双
腕式練合機にて攪拌し、負極ペーストを作製した。このペーストを10μm厚の銅箔に塗布乾燥し、総厚が180μmとなるように圧延した後、円筒型18650に挿入可能な幅にスリットし、負極5を得た。
On the other hand, 3 kg of artificial graphite was stirred in a double-arm kneader together with 75 g of styrene-butadiene copolymer rubber particle binder BM-400B (solid content 40%), 30 g of CMC and an appropriate amount of water manufactured by Nippon Zeon Co., Ltd. A negative electrode paste was prepared. This paste was applied and dried on a copper foil having a thickness of 10 μm, rolled to a total thickness of 180 μm, and then slit into a width that could be inserted into a cylindrical mold 18650 to obtain the negative electrode 5.

一方、メディアン径0.3μmのアルミナ970gを、日本ゼオン(株)製ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8%)375gおよび適量のNMPとともに双腕式練合機にて攪拌し、絶縁層ペーストを作製した。このペーストを厚さ10μmのポリプロピレン不織布4上にグラビア方式により10μm塗布し、120℃真空減圧下で10時間乾燥した。   On the other hand, 970 g of alumina having a median diameter of 0.3 μm was stirred in a double arm kneader together with 375 g of polyacrylonitrile modified rubber binder BM-720H (solid content 8%) manufactured by Nippon Zeon Co., Ltd. and an appropriate amount of NMP. An insulating layer paste was prepared. This paste was applied to a 10 μm thick polypropylene nonwoven fabric 4 by a gravure method and dried at 120 ° C. under vacuum under reduced pressure for 10 hours.

次に、高耐熱絶縁層3を配したポリプロピレン不織布4の、絶縁層を配していない面を負極5の両側に重ね合わせて、180℃で熱板溶着させた。さらにこうして作製した負極板と正極1とをポリエチレンセパレータ2を介して重ね合わせて捲回構成し、所定の長さで切断して電極群を作製した。次に電極群を電槽缶内に挿入し、EC・DMC・EMC混合溶媒にLiPF6を1MとVCを3%溶解させた電解液を、5.5g添加して封口し、円筒型18650リチウム二次電池を作製した。これを実施例1とする。 Next, the surface of the polypropylene nonwoven fabric 4 provided with the high heat-resistant insulating layer 3 on which the insulating layer was not provided was superposed on both sides of the negative electrode 5 and was hot-plate welded at 180 ° C. Furthermore, the negative electrode plate thus produced and the positive electrode 1 were overlapped via a polyethylene separator 2 to form a winding, and cut into a predetermined length to produce an electrode group. Next, the electrode group was inserted into a battery case, and 5.5 g of an electrolytic solution in which 1M of LiPF 6 and 3% of VC were dissolved in an EC / DMC / EMC mixed solvent was added and sealed. A secondary battery was produced. This is Example 1.

次に本発明の実施例2を説明する。図2は本実施例2におけるリチウム二次電池の電極の構成図である。なお、以下実施例1の構成と同じ部分については同一の符号を付与してある。   Next, a second embodiment of the present invention will be described. FIG. 2 is a configuration diagram of electrodes of the lithium secondary battery in the second embodiment. In the following description, the same parts as those in the first embodiment are denoted by the same reference numerals.

実施例1と同様にして耐熱性絶縁層3を形成し、ポリプロピレン不織布4と一体化させた負極5と正極1とを、ポリエチレンセパレータ2を用いずに重ね合わせて捲回構成し、以下実施例1と同様にして、リチウム二次電池を作製した。これを実施例2とする。   In the same manner as in Example 1, the heat-resistant insulating layer 3 was formed, and the negative electrode 5 and the positive electrode 1 integrated with the polypropylene nonwoven fabric 4 were overlapped without using the polyethylene separator 2, and were wound. In the same manner as in Example 1, a lithium secondary battery was produced. This is Example 2.

次に比較例1、2、3を説明する。図3、4、5はそれぞれ比較例1、2、3におけるリチウム二次電池の電極の構成図である。   Next, Comparative Examples 1, 2, and 3 will be described. 3, 4, and 5 are configuration diagrams of electrodes of lithium secondary batteries in Comparative Examples 1, 2, and 3, respectively.

実施例1と同様にして耐熱性絶縁層3をポリプロピレン不織布4上に塗布形成し、負極5と一体化させることなく、正極1及び負極5と重ね合わせて捲回構成し、以下実施例1と同様にして、リチウム二次電池を作製した。これを比較例1とする。   The heat-resistant insulating layer 3 was applied and formed on the polypropylene nonwoven fabric 4 in the same manner as in Example 1 and was wound up with the positive electrode 1 and the negative electrode 5 without being integrated with the negative electrode 5. Similarly, a lithium secondary battery was produced. This is referred to as Comparative Example 1.

さらに、実施例1と同様にして作製した絶縁層ペーストを、負極5の両側にグラビア方式で塗布し、ポリプロピレン不織布4を両側に貼り合せて120℃真空減圧下で10時間乾燥した。次に、こうして作製した負極板と正極1とをポリエチレンセパレータ2を介して重ね合わせて捲回構成し、以下実施例1と同様にして、リチウム二次電池を作製した。これを比較例2とする。   Furthermore, the insulating layer paste produced in the same manner as in Example 1 was applied to both sides of the negative electrode 5 by a gravure method, and the polypropylene nonwoven fabric 4 was bonded to both sides and dried at 120 ° C. under vacuum under reduced pressure for 10 hours. Next, the negative electrode plate thus produced and the positive electrode 1 were overlapped with a polyethylene separator 2 to form a wound, and a lithium secondary battery was produced in the same manner as in Example 1 below. This is referred to as Comparative Example 2.

さらに、耐熱性絶縁層3を形成せずに、正極1と負極5とをポリエチレンセパレータ2を介して重ね合わせて捲回構成し、以下実施例1と同様にして、リチウム二次電池を作製した。これを比較例3とする。   Furthermore, without forming the heat-resistant insulating layer 3, the positive electrode 1 and the negative electrode 5 were overlapped with each other via a polyethylene separator 2, and then a lithium secondary battery was manufactured in the same manner as in Example 1. . This is referred to as Comparative Example 3.

これらの電池を、以下に示す方法にて評価した。
(絶縁試験)
上述した実施例1、2及び比較例1、2、3の電池について、電解液を添加する前の状態で正・負極間の抵抗値を測定し、捲回時の巻きずれによる絶縁不良の発生頻度を評価した。その結果を表1中に示す。
(サイクル試験)
上述した実施例1、2及び比較例1、2、3の電池を20℃環境において以下の条件で500サイクルのサイクル試験を行った。2サイクル目の放電容量に対する500サイク
ル後の放電容量(容量維持率)を評価した。その結果を表1中に示す。
(1) 定電流充電:1400mA(終止電圧4.2V)
(2) 定電圧充電:4.2V(終止電流100mA)
(3) 定電流放電:2000mA(終止電圧3V)
(釘刺し安全性)
上述した実施例1、2及び比較例1、2、3の電池を20℃環境において、以下の充電を行い、釘刺し試験を行なった。
These batteries were evaluated by the following method.
(Insulation test)
For the batteries of Examples 1 and 2 and Comparative Examples 1, 2 and 3 described above, the resistance value between the positive and negative electrodes was measured before the electrolyte was added, and insulation failure occurred due to winding deviation during winding. Frequency was evaluated. The results are shown in Table 1.
(Cycle test)
The batteries of Examples 1 and 2 and Comparative Examples 1, 2, and 3 described above were subjected to a cycle test of 500 cycles under the following conditions in a 20 ° C. environment. The discharge capacity (capacity retention rate) after 500 cycles with respect to the discharge capacity at the second cycle was evaluated. The results are shown in Table 1.
(1) Constant current charging: 1400 mA (end voltage 4.2 V)
(2) Constant voltage charging: 4.2V (end current 100mA)
(3) Constant current discharge: 2000 mA (end voltage 3 V)
(Nail penetration safety)
The batteries of Examples 1 and 2 and Comparative Examples 1, 2 and 3 described above were charged in the environment of 20 ° C. and subjected to a nail penetration test.

(1)定電流充電:1400mA(終止電圧4.25V)
(2)定電圧充電:4.25V(終止電流100mA)
充電後の電池について、2.7mm径の鉄製丸釘を、20℃環境下で5mm/秒の速度で貫通させたときの発熱状態を観測した。この電池の貫通箇所における60秒後の到達温度を表1中に示した。
(1) Constant current charging: 1400 mA (end voltage 4.25 V)
(2) Constant voltage charging: 4.25V (end current 100mA)
Regarding the battery after charging, a heat generation state was observed when a 2.7 mm diameter iron round nail was penetrated at a speed of 5 mm / second in a 20 ° C. environment. Table 1 shows the temperature reached after 60 seconds at the penetration portion of the battery.

以下、順を追って評価結果を記す。   The evaluation results are described below in order.

まず絶縁試験の結果であるが、耐熱性絶縁層ないしはポリプロピレン不織布が電極と一体化していない比較例1及び3において絶縁不良となる電池が見られた。これらの電池を分解観察したところ、捲回構成時のものと思われる電極等の巻きずれが確認された。それに対し、耐熱性絶縁層ないしはポリプロピレン不織布が電極と一体化された実施例1、2、比較例2の電池では絶縁不良は見られなかった。このことから、耐熱性絶縁層ないしはポリプロピレン不織布を電極と一体化させることにより、巻きずれによる絶縁不良を防ぐ効果があることがわかった。   First, as a result of the insulation test, a battery having insulation failure was found in Comparative Examples 1 and 3 in which the heat-resistant insulating layer or the polypropylene nonwoven fabric was not integrated with the electrode. As a result of disassembling and observing these batteries, it was confirmed that windings of electrodes and the like considered to be those at the time of the winding configuration were lost. On the other hand, in the batteries of Examples 1 and 2 and Comparative Example 2 in which the heat-resistant insulating layer or the polypropylene nonwoven fabric was integrated with the electrode, no insulation failure was observed. From this, it has been found that by integrating a heat-resistant insulating layer or a polypropylene nonwoven fabric with the electrode, there is an effect of preventing insulation failure due to winding deviation.

次にサイクル試験の結果であるが、比較例2の電池が実施例1、2及び比較例1、3の電池に比べ、500サイクル後の容量維持率が低かった。これは、電極とポリプロピレン不織布を、フィラーと結着剤の混合物で接着しているため、電極の凹凸を埋めるようにフィラーと結着剤が存在し、その結果電極間の抵抗にばらつきが生じたためと考えられる。電極間の抵抗にばらつきが生じたことにより局所的に電流が集中し、その結果、電池の劣化が促進されたものと考えられる。   Next, as a result of the cycle test, the capacity retention rate after 500 cycles was lower in the battery of Comparative Example 2 than in the batteries of Examples 1 and 2 and Comparative Examples 1 and 3. This is because the electrode and polypropylene nonwoven fabric are bonded with a mixture of filler and binder, so the filler and binder exist to fill the unevenness of the electrode, resulting in variations in resistance between the electrodes. it is conceivable that. It is considered that current was concentrated locally due to variations in resistance between the electrodes, and as a result, deterioration of the battery was promoted.

次に釘刺し試験の結果について説明する。   Next, the results of the nail penetration test will be described.

耐熱性絶縁層の有無についてであるが、耐熱性絶縁層が存在しない比較例3が大きく過熱していた。その一方で耐熱絶縁層が電極と一体化されている実施例1、2及び比較例4は釘刺し後の過熱が大幅に抑制されていることがわかる。これら試験後の電池を分解観察したところ、ポリエチレンセパレータについては広範囲に溶融しているが、実施例1、2及び比較例2については、耐熱性絶縁層がその原形を留めていることがわかった。このこ
とから、耐熱性絶縁層の耐熱性が十分な場合、釘刺し後に起こる短絡による発熱においても膜構造は破壊されず、短絡箇所の拡大を抑止できたため、大幅な過熱を防げたものと考えられる。
Regarding the presence or absence of the heat-resistant insulating layer, Comparative Example 3 in which no heat-resistant insulating layer was present was greatly overheated. On the other hand, in Examples 1 and 2 and Comparative Example 4 in which the heat-resistant insulating layer is integrated with the electrode, it can be seen that overheating after nail penetration is greatly suppressed. When the batteries after these tests were disassembled and observed, the polyethylene separator was melted in a wide range, but in Examples 1, 2 and Comparative Example 2, it was found that the heat-resistant insulating layer retained its original shape. . From this, when the heat resistance of the heat-resistant insulating layer is sufficient, the film structure was not destroyed in the heat generation caused by the short circuit that occurred after nail penetration, and the expansion of the short-circuited part could be suppressed, so it was considered that the overheating was prevented. It is done.

一方、耐熱性絶縁層がポリプロピレン不織布上に形成され、電極と一体化させることなく作製された比較例1は、比較例3の電池よりは低い温度であるが、過熱されていることがわかる。電池を分解して調べたところ、前述したポリプロピレン不織布の収縮に伴い、耐熱性絶縁層も変形していることが確認できた。この理由として、耐熱性絶縁層の構造は接着形成される基板(本比較例1においてはポリプロピレン不織布)によって保持されるため、如何に絶縁層自身に耐熱性があっても、収縮のような基板の形状変化にやむなく追従せざるを得ないことが反映された結果といえる。  On the other hand, it can be seen that Comparative Example 1 in which the heat-resistant insulating layer was formed on the polypropylene nonwoven fabric and was not integrated with the electrode had a lower temperature than the battery of Comparative Example 3, but was overheated. When the battery was disassembled and examined, it was confirmed that the heat-resistant insulating layer was also deformed with the shrinkage of the polypropylene nonwoven fabric described above. The reason for this is that the structure of the heat-resistant insulating layer is held by a substrate that is formed by adhesion (in this comparative example 1, a polypropylene nonwoven fabric). It can be said that the result reflects the necessity of following the shape change.

また、実施例1、2及び比較例2を比較すると、ポリエチレンセパレータのない実施例2の電池の釘刺し試験後の温度が高かった。これは、100℃を越える高温になった場合、ポリエチレンセパレータが溶融し、それ自身が持つ細孔を閉ざすことによりイオンの移動を遮断し、短絡の継続を止めたため(シャットダウン機能)と考えられる。高耐熱性絶縁層の存在によって、短絡点の拡大を防ぎ、異常過熱を抑制することができるが、本実施例のように、ポリエチレン、ポリプロピレンセパレータのようなシャットダウン機能をもつ膜を併用することにより、さらに電池の安全性を高めることができる。   Moreover, when Example 1, 2 and Comparative Example 2 were compared, the temperature after the nail penetration test of the battery of Example 2 without a polyethylene separator was high. This is thought to be because when the temperature exceeded 100 ° C., the polyethylene separator melted and the movement of ions was blocked by closing the pores of the polyethylene separator, thereby stopping the short circuit (shutdown function). The presence of a high heat-resistant insulating layer can prevent the expansion of short-circuit points and suppress abnormal overheating, but by using a film having a shutdown function such as polyethylene and polypropylene separators in combination with this example. Furthermore, the safety of the battery can be improved.

本発明にかかるリチウム二次電池は優れた安全性と電気特性を有し、携帯電子機器等の電源として有用である。   The lithium secondary battery according to the present invention has excellent safety and electrical characteristics, and is useful as a power source for portable electronic devices and the like.

本発明の一実施の形態におけるリチウム二次電池の構造の模式図Schematic diagram of the structure of a lithium secondary battery in one embodiment of the present invention 本発明の実施例2におけるリチウム二次電池の構造の模式図Schematic diagram of the structure of the lithium secondary battery in Example 2 of the present invention 本発明の比較例1におけるリチウム二次電池の構造の模式図The schematic diagram of the structure of the lithium secondary battery in the comparative example 1 of this invention 本発明の比較例2におけるリチウム二次電池の構造の模式図Schematic diagram of the structure of a lithium secondary battery in Comparative Example 2 of the present invention 本発明の比較例3におけるリチウム二次電池の構造の模式図Schematic diagram of the structure of the lithium secondary battery in Comparative Example 3 of the present invention

符号の説明Explanation of symbols

1 正極
2 ポリエチレンセパレータ
3 ポリプロピレン不織布上に形成した耐熱性絶縁層
4 ポリプロピレン不織布
5 負極

DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Polyethylene separator 3 The heat resistant insulating layer formed on the polypropylene nonwoven fabric 4 Polypropylene nonwoven fabric 5 Negative electrode

Claims (5)

正極と、負極と、樹脂からなる多孔質層とを積層または捲回した電極群をもつリチウム二次電池において、フィラーおよび結着剤からなる耐熱性絶縁層が前記多孔質層の片面上に形成され、さらに前記多孔質層のもう一方の面が前記正極または負極のいずれかの極板と接して、前記多孔質層と前記極板が一体化されていることを特徴とするリチウム二次電池。 In a lithium secondary battery having an electrode group in which a positive electrode, a negative electrode, and a porous layer made of a resin are laminated or wound, a heat-resistant insulating layer made of a filler and a binder is formed on one side of the porous layer Further, the other surface of the porous layer is in contact with the electrode plate of either the positive electrode or the negative electrode, and the porous layer and the electrode plate are integrated. . 前記多孔質層の溶融温度が200℃以下であることを特徴とする請求項1記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein a melting temperature of the porous layer is 200 ° C. or less. 前記多孔質層が不織布からなることを特徴とする請求項1記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the porous layer is made of a nonwoven fabric. 多孔質層と一体化していない電極と、前記耐熱性絶縁層の間にポリエチレン又はポリプロピレン層を有することを特徴とする請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, further comprising a polyethylene or polypropylene layer between the electrode not integrated with the porous layer and the heat-resistant insulating layer. 正極と、負極と、樹脂からなる多孔質層とを積層または捲回した電極群をもつリチウム二次電池の製造方法において、前記多孔質層片面上に、フィラー、結着剤を溶媒中に分散させた溶液を塗布する工程、溶液を塗布した多孔質層を乾燥してフィラーおよび結着剤からなる耐熱性絶縁層を形成する工程、前記多孔質層のもう一方の面を前記正極または負極のいずれかの極板と重ね合わせ、溶着によって前記多孔質層と前記極板を一体化する工程を含むリチウム二次電池の製造方法。

In a method for producing a lithium secondary battery having an electrode group in which a positive electrode, a negative electrode, and a porous layer made of a resin are laminated or wound, a filler and a binder are dispersed in a solvent on one surface of the porous layer A step of applying the solution, a step of drying the porous layer to which the solution has been applied to form a heat-resistant insulating layer made of a filler and a binder, and the other surface of the porous layer is connected to the positive electrode or the negative electrode. A method for producing a lithium secondary battery, comprising the steps of superimposing and welding the porous layer and the electrode plate on any electrode plate.

JP2004072574A 2004-03-15 2004-03-15 Lithium secondary battery and its manufacturing method Pending JP2005259639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072574A JP2005259639A (en) 2004-03-15 2004-03-15 Lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072574A JP2005259639A (en) 2004-03-15 2004-03-15 Lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005259639A true JP2005259639A (en) 2005-09-22

Family

ID=35085134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072574A Pending JP2005259639A (en) 2004-03-15 2004-03-15 Lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005259639A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064775A1 (en) * 2004-12-13 2006-06-22 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2006134833A1 (en) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007165224A (en) * 2005-12-16 2007-06-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2007194203A (en) * 2005-12-19 2007-08-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
WO2007108426A1 (en) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery and method for manufacturing same
JP2007280911A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacturing method thereof
JP2007280917A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007280918A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2008053206A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2008053207A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2008053208A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2008192483A (en) * 2007-02-06 2008-08-21 Hitachi Maxell Ltd Separator for battery, and lithium secondary battery
JP2009535780A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Lithium secondary battery and manufacturing method thereof
JP2011023186A (en) * 2009-07-15 2011-02-03 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element and method of manufacturing the same
JP2013109946A (en) * 2011-11-21 2013-06-06 Hitachi Ltd Laminate type battery
WO2013105548A1 (en) * 2012-01-12 2013-07-18 日産自動車株式会社 Method for manufacturing packed electrode, packed electrode, secondary battery, and heat sealing machine
JP2013219057A (en) * 2006-05-15 2013-10-24 Lg Chem Ltd Electrolyte assembly for secondary battery with novel lamination structure
WO2014041793A1 (en) * 2012-09-11 2014-03-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015043311A (en) * 2013-08-26 2015-03-05 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium secondary battery
US9077024B2 (en) 2006-03-17 2015-07-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
JP2016055254A (en) * 2014-09-10 2016-04-21 株式会社ジェイテクト Coating method and coating apparatus
JP2018530106A (en) * 2015-08-17 2018-10-11 セルガード エルエルシー Improved battery separator and related methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237622A (en) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd Organic battery
JPH10321220A (en) * 1997-05-22 1998-12-04 Nippon Glass Fiber Co Ltd Manufacture of rolled electrode body for secondary battery
JPH1180395A (en) * 1997-09-09 1999-03-26 Nitto Denko Corp Porous film and separator for nonaqueous electrolyte cell or battery
JP2000100408A (en) * 1998-09-21 2000-04-07 Sumitomo Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2000195494A (en) * 1998-10-21 2000-07-14 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
JP2001266949A (en) * 2000-03-17 2001-09-28 Sumitomo Chem Co Ltd Lithium ion secondary battery
JP2001266828A (en) * 2000-03-17 2001-09-28 Nippon Muki Co Ltd Separator for non-aqueous electrolyte battery
JP2003151538A (en) * 2001-11-15 2003-05-23 Toray Eng Co Ltd Manufacturing method of electrode composite for secondary battery and its device
JP2003331825A (en) * 2002-05-16 2003-11-21 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237622A (en) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd Organic battery
JPH10321220A (en) * 1997-05-22 1998-12-04 Nippon Glass Fiber Co Ltd Manufacture of rolled electrode body for secondary battery
JPH1180395A (en) * 1997-09-09 1999-03-26 Nitto Denko Corp Porous film and separator for nonaqueous electrolyte cell or battery
JP2000100408A (en) * 1998-09-21 2000-04-07 Sumitomo Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2000195494A (en) * 1998-10-21 2000-07-14 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
JP2001266949A (en) * 2000-03-17 2001-09-28 Sumitomo Chem Co Ltd Lithium ion secondary battery
JP2001266828A (en) * 2000-03-17 2001-09-28 Nippon Muki Co Ltd Separator for non-aqueous electrolyte battery
JP2003151538A (en) * 2001-11-15 2003-05-23 Toray Eng Co Ltd Manufacturing method of electrode composite for secondary battery and its device
JP2003331825A (en) * 2002-05-16 2003-11-21 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006064775A1 (en) * 2004-12-13 2008-06-12 松下電器産業株式会社 Lithium ion secondary battery
WO2006064775A1 (en) * 2004-12-13 2006-06-22 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2006134833A1 (en) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007165224A (en) * 2005-12-16 2007-06-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2007194203A (en) * 2005-12-19 2007-08-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2008053208A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
US10388960B2 (en) 2006-03-17 2019-08-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
JP2007280918A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2008053206A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2008053207A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
US9077024B2 (en) 2006-03-17 2015-07-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
JP2007280911A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacturing method thereof
JP2007280917A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US9761880B2 (en) 2006-03-17 2017-09-12 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
WO2007108426A1 (en) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery and method for manufacturing same
JP2009535780A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Lithium secondary battery and manufacturing method thereof
US9825267B2 (en) 2006-05-04 2017-11-21 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
JP2013219057A (en) * 2006-05-15 2013-10-24 Lg Chem Ltd Electrolyte assembly for secondary battery with novel lamination structure
JP2008192483A (en) * 2007-02-06 2008-08-21 Hitachi Maxell Ltd Separator for battery, and lithium secondary battery
JP2011023186A (en) * 2009-07-15 2011-02-03 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element and method of manufacturing the same
JP2013109946A (en) * 2011-11-21 2013-06-06 Hitachi Ltd Laminate type battery
WO2013105548A1 (en) * 2012-01-12 2013-07-18 日産自動車株式会社 Method for manufacturing packed electrode, packed electrode, secondary battery, and heat sealing machine
CN104584279A (en) * 2012-09-11 2015-04-29 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery
JPWO2014041793A1 (en) * 2012-09-11 2016-08-12 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US9660262B2 (en) 2012-09-11 2017-05-23 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery
WO2014041793A1 (en) * 2012-09-11 2014-03-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
EP2843730A3 (en) * 2013-08-26 2015-04-01 Samsung SDI Co., Ltd. Rechargeable lithium battery
US9620821B2 (en) 2013-08-26 2017-04-11 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN104425847A (en) * 2013-08-26 2015-03-18 三星Sdi株式会社 Rechargeable lithium battery
JP2015043311A (en) * 2013-08-26 2015-03-05 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium secondary battery
KR101815711B1 (en) * 2013-08-26 2018-01-05 삼성에스디아이 주식회사 Rechargeable lithium battery
CN104425847B (en) * 2013-08-26 2018-10-09 三星Sdi株式会社 Lithium rechargeable battery
JP2016055254A (en) * 2014-09-10 2016-04-21 株式会社ジェイテクト Coating method and coating apparatus
JP2018530106A (en) * 2015-08-17 2018-10-11 セルガード エルエルシー Improved battery separator and related methods

Similar Documents

Publication Publication Date Title
JP4649993B2 (en) Lithium secondary battery and manufacturing method thereof
JP2005259639A (en) Lithium secondary battery and its manufacturing method
JP4739958B2 (en) Lithium ion secondary battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP5129895B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP3677975B2 (en) Electrode and battery using the same
US20080274411A1 (en) Lithium Ion Secondary Battery
JP2006351386A (en) Battery and its manufacturing method
WO2005117169A1 (en) Wound nonaqueous secondary battery and electrode plate used therein
US10199623B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP4207439B2 (en) Manufacturing method of lithium ion secondary battery
JP2014127242A (en) Lithium secondary battery
JP2007324073A (en) Lithium secondary battery, its separator and its manufacturing method
WO2012137377A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2007027100A (en) Nonaqueous electrolyte secondary battery
JP4988973B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2009238487A (en) Electrochemical device
WO2014157405A1 (en) Collector, electrode structure, battery and capacitor
WO2008035499A1 (en) Method of producing electrode for secondary battery, and secondary battery
KR20130105362A (en) Positive electrode for electrical device and electrical device using the same
JPWO2014021291A1 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2007287390A (en) Lithium secondary battery
KR20100101626A (en) Battery
JP4529511B2 (en) Lithium ion battery
JP2005190912A (en) Lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720