JP2000100408A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000100408A
JP2000100408A JP10266262A JP26626298A JP2000100408A JP 2000100408 A JP2000100408 A JP 2000100408A JP 10266262 A JP10266262 A JP 10266262A JP 26626298 A JP26626298 A JP 26626298A JP 2000100408 A JP2000100408 A JP 2000100408A
Authority
JP
Japan
Prior art keywords
heat
secondary battery
porous layer
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10266262A
Other languages
Japanese (ja)
Inventor
Tsutomu Takahashi
勉 高橋
Tatsuo Tateno
辰男 舘野
Yasuo Shinohara
泰雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10266262A priority Critical patent/JP2000100408A/en
Publication of JP2000100408A publication Critical patent/JP2000100408A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery further improved in safety and high energy density. SOLUTION: (1) This battery comprises a positive electrode sheet, a separator, nonaqueous electrolyte, and a negative electrode sheet. In this case, the separator is composed of a heat-resistant porous layer and a shut down layer, and the heat-resistant porous layer is arranged on the positive electrode sheet side. (2) The heat-resistant porous layer may be composed of a heat-resistant resin having the deflection temperature under load of not less than 100 deg.C, and the limiting oxygen index of not less than 20. (3) The shut down layer is a porous layer composed of a thermoplastic resin, and it may substantially become a nonporous layer at the temperature of 80 deg.C-180 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極シート、セパ
レータ、非水電解液および負極シートを含む非水電解液
二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode sheet, a separator, a non-aqueous electrolyte and a negative electrode sheet.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータ、携帯電
話、携帯情報端末などを含むポータブル情報機器の普及
が著しい。マルチメディアとしてのこれらの機器は多機
能であることが望まれるため、電源に用いられる二次電
池には小型、軽量でありながら大容量であること、即ち
高エネルギー密度であることが求められている。この点
において、従来の鉛蓄電池やニッケルカドミウム蓄電池
等の水溶液系二次電池は満足できるものではなく、より
高いエネルギー密度を実現できるリチウム二次電池、特
にコバルト酸リチウム、ニッケル酸リチウム、リチウム
マンガンスピネル等のリチウムの複合酸化物を正極活物
質とし、リチウムイオンのドープ・脱ドープが可能な炭
素材を負極活物質とするリチウム二次電池の研究開発が
さかんに行われている。
2. Description of the Related Art In recent years, portable information devices including personal computers, portable telephones, portable information terminals and the like have been remarkably spread. Since these devices as multimedia are desired to have multiple functions, secondary batteries used as power sources are required to be small, light, and have large capacity, that is, high energy density. I have. In this regard, conventional aqueous secondary batteries such as lead storage batteries and nickel cadmium storage batteries are not satisfactory, and lithium secondary batteries capable of realizing higher energy densities, especially lithium cobalt oxide, lithium nickel oxide, and lithium manganese spinel Research and development of lithium secondary batteries using a composite oxide of lithium as a positive electrode active material and a carbon material capable of doping / dedoping lithium ions as a negative electrode active material have been actively conducted.

【0003】これらのリチウム二次電池は、内在するエ
ネルギーが大きいため、内部短絡・外部短絡などの異常
時に対して、より高い安全性が求められている。このよ
うな異常が発生すると、電池の温度が上昇し熱暴走につ
ながる可能性がある。この対策として、ポリオレフィン
系の多孔質層からなるセパレータにおいては、異常発熱
時に約80℃〜180℃でポリオレフィン層が無孔化し
て電気を流さない構造で、熱暴走を防いでいる。しか
し、発熱が激しい時には、ポリオレフィン層が溶融して
収縮などにより正極と負極が直接接触し、熱暴走につな
がる可能性がある。
[0003] Since these lithium secondary batteries have large inherent energy, higher safety is required against abnormal situations such as internal short-circuits and external short-circuits. When such an abnormality occurs, the temperature of the battery may increase, leading to thermal runaway. As a countermeasure, in a separator composed of a polyolefin-based porous layer, a thermal runaway is prevented by a structure in which the polyolefin layer becomes nonporous at about 80 ° C. to 180 ° C. and does not conduct electricity at the time of abnormal heat generation. However, when heat generation is intense, the positive electrode and the negative electrode come into direct contact due to melting and shrinkage of the polyolefin layer, which may lead to thermal runaway.

【0004】一方、耐熱樹脂からなる多孔質フィルムを
単独にセパレータとして使った場合には、ポリオレフィ
ンのように溶融・収縮などはある程度回避されるが、シ
ャットダウン機能が働かず、外部または高速充放電に伴
う内部加熱に対して十分な安全性が得られない可能性が
高い。
On the other hand, when a porous film made of a heat-resistant resin is used alone as a separator, melting and shrinkage can be avoided to some extent like a polyolefin, but the shutdown function does not work and external or high-speed charging / discharging is not possible. There is a high possibility that sufficient safety against the accompanying internal heating cannot be obtained.

【0005】このため、耐熱多孔質体と主としてポリオ
レフィンから成る多孔質体とを組み合わせてセパレータ
とすることが検討されている。例えば、特開平8−87
995号公報には、ポリオレフィン層の完全溶融や溶融
亀裂を防止する目的で、ポリフェニレンサルファイドの
多孔質体との積層構造が提案されている。同じくセパレ
ータの熱溶融が引き金となる大発熱を防止する目的で、
特開平9−161757号公報には、正極シートと負極
シートのそれぞれをポリオレフィン系のセパレータで覆
う構造に加えて、該セパレータの間に耐熱性多孔膜を配
置することが記載されている。
[0005] Therefore, it has been studied to combine a heat-resistant porous body with a porous body mainly composed of polyolefin to form a separator. For example, JP-A-8-87
No. 995 proposes a laminated structure of a polyphenylene sulfide with a porous body for the purpose of preventing the polyolefin layer from being completely melted or cracked. Similarly, for the purpose of preventing large heat generation triggered by thermal melting of the separator,
Japanese Patent Application Laid-Open No. 9-161775 describes a structure in which each of a positive electrode sheet and a negative electrode sheet is covered with a polyolefin-based separator, and a heat-resistant porous film is arranged between the separators.

【0006】耐熱多孔質層とシャットダウン層との配置
について指定される場合は少ないが、少数の例が知られ
ている。特開平6−76808号公報には、フッ素樹脂
多孔質体とポリオレフィン多孔質体との積層からなるセ
パレータが提案されている。該特許では負極材料として
金属リチウムが使用されているが、フッ素樹脂は金属リ
チウムと反応して炭化するので、ポリオレフィン多孔質
体を金属リチウム側に配置して、フッ素樹脂多孔質体を
金属リチウムから隔離することが記載されている。ま
た、特開昭62−37871号公報では、いわゆる平板
電池において負極缶の表面に溶接片を取り付ける際に、
ポリオレフィン系不織布が溶融分断されることを防止す
る目的で、負極側にポリイミド不織布を配置することが
記載されている。
There are few cases where the arrangement of the heat-resistant porous layer and the shutdown layer is specified, but a few examples are known. JP-A-6-76808 proposes a separator comprising a laminate of a porous fluororesin and a porous polyolefin. In this patent, metallic lithium is used as the negative electrode material.However, since the fluororesin reacts with the metallic lithium and carbonizes, the polyolefin porous body is disposed on the metallic lithium side, and the fluororesin porous body is formed from metallic lithium. Isolation is described. In Japanese Patent Application Laid-Open No. 62-37871, when a welding piece is attached to the surface of a negative electrode can in a so-called flat battery,
It is described that a polyimide nonwoven fabric is disposed on the negative electrode side in order to prevent the polyolefin-based nonwoven fabric from being melted and divided.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、安全
性をより向上させた高エネルギー密度の非水電解液二次
電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high energy density and improved safety.

【0008】安全性に関しては、前述のような単なる内
部短絡、外部短絡に加え、強制的に局所的な発熱を伴う
ような厳しい試験にも安全が確保されていることが重要
である。特に、釘刺しまたは圧壊試験に代表されるよう
な、局部的な発熱を伴う短絡に対しては、充電された正
極活物質が、発熱により酸素を放出しながら分解し、さ
らに発熱することが知られている。このような状況下で
従来から使われているポリエチレンまたはポリプロピレ
ンからなるセパレータが短絡部で正極電極近傍に存在す
る場合、正極活物質から放出された酸素により酸化さ
れ、著しい発熱を伴うため、熱暴走に至る可能性がある
ことが示唆される。
Regarding safety, it is important that safety is ensured not only for the above-described internal short-circuit and external short-circuit, but also for a severe test involving forced local heat generation. In particular, it is known that the charged positive electrode active material decomposes while releasing oxygen due to heat generation, and further generates heat, for a short circuit involving local heat generation such as a nail penetration or crush test. Have been. Under these circumstances, if a separator made of polyethylene or polypropylene, which is conventionally used, is present near the positive electrode at the short circuit, it is oxidized by oxygen released from the positive electrode active material and generates significant heat. It is suggested that it may lead to

【0009】高エネルギー密度の非水電解液二次電池で
は、高電気容量化も技術上の課題であるが、それにもま
して、上述のような厳しい試験でも安全を確保すること
がより重要な課題となっている。
In a non-aqueous electrolyte secondary battery having a high energy density, a high electrical capacity is also a technical issue, but more importantly, ensuring safety even in the above-described severe test is a more important issue. It has become.

【0010】[0010]

【課題を解決するための手段】このような事情をみて、
本発明者らは鋭意検討を行なった結果、耐熱多孔質層と
シャットダウン層からなるセパレータを用いて、耐熱多
孔質層を正極シート側に配置することにより安全性が著
しく向上することを見出し、本発明を完成するに至っ
た。
[Means for Solving the Problems] In view of such circumstances,
As a result of intensive studies, the present inventors have found that by using a separator composed of a heat-resistant porous layer and a shutdown layer, the safety is significantly improved by disposing the heat-resistant porous layer on the positive electrode sheet side. The invention has been completed.

【0011】さらに詳しく述べると、釘刺しまたは圧壊
試験に代表されるような、局部的な発熱を伴う短絡に対
しては、充電された正極活物質が、発熱により酸素を放
出しながら分解し、さらに発熱することが知られてい
る。本発明者らは、このような状況下で従来から使われ
ているポリエチレンまたはポリプロピレンからなるセパ
レータが短絡部で正極近傍に存在する場合、正極活物質
から放出された酸素により酸化され、著しい発熱を伴う
ため、熱暴走に至る可能性があると考え、耐熱多孔質層
を正極側に配置したところ、安全性に関し著しい効果を
見出したものである。
More specifically, in the case of a short circuit involving local heat generation, such as a nail penetration or crush test, the charged positive electrode active material is decomposed while releasing oxygen due to heat generation, It is known that heat is further generated. The present inventors have found that, in such a situation, when a separator made of polyethylene or polypropylene conventionally used is present near the positive electrode at the short-circuit portion, the separator is oxidized by oxygen released from the positive electrode active material and generates significant heat. Therefore, it is thought that thermal runaway may occur, and when the heat-resistant porous layer is disposed on the positive electrode side, a remarkable effect on safety is found.

【0012】すなわち、本発明は(1)正極シート、セ
パレータ、非水電解液および負極シートを含む非水電解
液二次電池において、該セパレーターが耐熱多孔質層と
シャットダウン層からなり、該耐熱多孔質層が該正極シ
ート側に配置されてなる非水電解液二次電池に係るもの
である。また、本発明は、(2)耐熱多孔質層が、荷重
たわみ温度が100℃以上であり、かつ限界酸素指数が
20以上である耐熱樹脂からなる(1)記載の非水電解
液二次電池に係るものである。さらに本発明は、(3)
シャットダウン層が、熱可塑性樹脂からなる多孔質層で
あり、80℃〜180℃の温度で実質的に無孔性の層と
なる(1)記載の非水電解液二次電池に係るものであ
る。
That is, the present invention provides (1) a non-aqueous electrolyte secondary battery including a positive electrode sheet, a separator, a non-aqueous electrolyte and a negative electrode sheet, wherein the separator comprises a heat-resistant porous layer and a shutdown layer; The present invention relates to a non-aqueous electrolyte secondary battery having a porous layer disposed on the positive electrode sheet side. The present invention also provides (2) the non-aqueous electrolyte secondary battery according to (1), wherein the heat-resistant porous layer is made of a heat-resistant resin having a deflection temperature under load of 100 ° C. or more and a limiting oxygen index of 20 or more. It is related to. Further, the present invention provides (3)
The nonaqueous electrolyte secondary battery according to (1), wherein the shutdown layer is a porous layer made of a thermoplastic resin and becomes a substantially nonporous layer at a temperature of 80 ° C to 180 ° C. .

【0013】[0013]

【発明の実施の形態】次に、本発明を詳細に説明する。
本発明における正極シートは、正極活物質、導電材およ
び結着剤を含む合剤を集電体上に担持したものを用い
る。具体的には、該正極活物質として、リチウムイオン
をドープ・脱ドープ可能な材料を含み、導電材として炭
素質材料を含み、結着剤として熱可塑性樹脂などを含む
ものを用いることができる。該リチウムイオンをドープ
・脱ドープ可能な材料としては、V、Mn、Fe、C
o、Niなどの遷移金属を少なくとも1種含むリチウム
複合酸化物が挙げられる。中でも好ましくは、平均放電
電位が高いという点で、ニッケル酸リチウム、コバルト
酸リチウムなどのα−NaFeO2型構造を母体とする
層状リチウム複合酸化物、リチウムマンガンスピネルな
どのスピネル型構造を母体とするリチウム複合酸化物が
挙げられる。
Next, the present invention will be described in detail.
As the positive electrode sheet in the present invention, a sheet in which a mixture containing a positive electrode active material, a conductive material, and a binder is carried on a current collector is used. Specifically, a material containing a material capable of doping and undoping lithium ions, a carbonaceous material as a conductive material, and a thermoplastic resin as a binder can be used as the positive electrode active material. Materials that can be doped / undoped with lithium ions include V, Mn, Fe, C
Examples of the lithium composite oxide include at least one transition metal such as o and Ni. Among them, preferably, in terms of high average discharge potential, lithium nickelate, a layered lithium composite oxide based on α-NaFeO 2 type structure such as lithium cobaltate as a base, and a spinel type structure such as lithium manganese spinel as a base. And a lithium composite oxide.

【0014】該リチウム複合酸化物は、種々の添加元素
を含んでもよく、特にTi、V、Cr、Mn、Fe、C
o、Cu、Ag、Mg、Al、Ga、InおよびSnか
らなる群から選ばれた少なくとも1種の金属のモル数と
ニッケル酸リチウム中のNiのモル数との和に対して、
前記の少なくとも1種の金属が0.1〜20モル%であ
るように該金属を含む複合ニッケル酸リチウムを用いる
と、高容量での使用におけるサイクル性が向上するので
好ましい。
The lithium composite oxide may contain various additional elements, and in particular, Ti, V, Cr, Mn, Fe, C
o, the sum of the number of moles of at least one metal selected from the group consisting of Cu, Ag, Mg, Al, Ga, In, and Sn and the number of moles of Ni in lithium nickelate,
It is preferable to use a composite lithium nickelate containing the metal such that the content of the at least one metal is 0.1 to 20 mol%, since the cyclability in high capacity use is improved.

【0015】該結着剤としての熱可塑性樹脂としては、
ポリビニリデンフロライド、ビニリデンフロライドの共
重合体、ポリテトラフルオロエチレン、テトラフルオロ
エチレン−ヘキサフロロプロピレンの共重合体、テトラ
フルオロエチレン−パーフルオロアルキルビニルエーテ
ルの共重合体、エチレン−テトラフルオロエチレンの共
重合体、ビニリデンフロライド−ヘキサフルオロプロピ
レン−テトラフルオロエチレンの共重合体、熱可塑性ポ
リイミド、ポリエチレン、ポリプロピレンなどが挙げら
れる。
As the thermoplastic resin as the binder,
Polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, ethylene-tetrafluoroethylene copolymer Examples include a polymer, a copolymer of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene, thermoplastic polyimide, polyethylene, and polypropylene.

【0016】該導電剤としての炭素質材料としては、天
然黒鉛、人造黒鉛、コークス類、カーボンブラックなど
が挙げられる。導電材として、それぞれ単独で用いても
よいし、例えば人造黒鉛とカーボンブラックとを混合し
て用いるといった複合導電材系を選択してもよい。
Examples of the carbonaceous material as the conductive agent include natural graphite, artificial graphite, cokes, and carbon black. As the conductive material, each may be used alone, or for example, a composite conductive material system in which artificial graphite and carbon black are used in combination may be selected.

【0017】本発明における耐熱多孔質層は、耐熱樹脂
より製造されたものである。耐熱多孔質層の空隙の大き
さ、または該空隙が球形に近似できるときはその球の直
径(以下、孔径ということがある)は、3μm以下が好
ましく、1μm以下がさらに好ましい。該空隙の平均の
大きさまたは孔径が3μmを超える場合には、正極や負
極の主成分である炭素粉やその小片が脱落したときに、
短絡しやすいなどの問題が生じる可能性がある。該耐熱
多孔質層の空孔率は、30〜80体積%が好ましく、さ
らに好ましくは40〜70体積%である。該空孔率が3
0体積%未満では電解液の保持量が少なく、80体積%
を超えると耐熱多孔質層の強度が不十分となる。該耐熱
多孔質層の厚みは、3〜30μmが好ましく、さらに好
ましくは5〜20μmである。該厚みが3μm未満で
は、耐熱多孔質層として安全性についての効果が不充分
であり、30μmを超えるとシャットダウン層も加えた
非水電解質電池用セパレーターの厚みとしては大きすぎ
て高電気容量化が達成しにくい。
The heat-resistant porous layer in the present invention is manufactured from a heat-resistant resin. The size of the voids in the heat-resistant porous layer or, when the voids can be approximated to a sphere, the diameter of the sphere (hereinafter sometimes referred to as the pore diameter) is preferably 3 μm or less, more preferably 1 μm or less. When the average size or pore size of the voids exceeds 3 μm, when carbon powder or a small piece of the main component of the positive electrode or the negative electrode falls off,
Problems such as easy short-circuiting may occur. The porosity of the heat-resistant porous layer is preferably 30 to 80% by volume, more preferably 40 to 70% by volume. The porosity is 3
If the volume is less than 0% by volume, the holding amount of the electrolyte is small, and
If it exceeds, the strength of the heat resistant porous layer becomes insufficient. The thickness of the heat-resistant porous layer is preferably 3 to 30 μm, more preferably 5 to 20 μm. When the thickness is less than 3 μm, the effect on safety as a heat-resistant porous layer is insufficient, and when the thickness exceeds 30 μm, the thickness of the separator for a non-aqueous electrolyte battery including a shutdown layer is too large to increase the electric capacity. Difficult to achieve.

【0018】耐熱多孔質層を形成する耐熱樹脂として
は、JIS K 7207準拠の18.6kg/cm2
荷重時の測定における荷重たわみ温度が100℃以上の
樹脂から選ばれた少なくとも1種の耐熱樹脂が使用され
る。さらに過酷な使用による高温下でもより安全である
ために、本発明における耐熱樹脂は、該荷重たわみ温度
が200℃以上の樹脂から選ばれた少なくとも1種の耐
熱樹脂であることが好ましい。該荷重たわみ温度が10
0℃以上の樹脂としては、ポリイミド、ポリアミドイミ
ド、アラミド、ポリカーボネート、ポリアセタール、ポ
リサルホン、ポリフェニルサルファイド、ポリエーテル
エーテルケトン、芳香族ポリエステル、ポリエーテルサ
ルホン、ポリエーテルイミドなどが挙げられる。該荷重
たわみ温度が200℃以上の樹脂としては、ポリイミ
ド、ポリアミドイミド、アラミド、ポリエーテルサルホ
ン、ポリエーテルイミドなどが挙げられる。さらに、該
耐熱樹脂として、ポリイミド、ポリアミドイミドおよび
アラミドからなる群から選ぶことが特に好ましい。
The heat-resistant resin for forming the heat-resistant porous layer is 18.6 kg / cm 2 according to JIS K 7207.
At least one heat-resistant resin selected from resins having a deflection temperature under load of 100 ° C. or higher in the measurement under load is used. In order to be safer even at a high temperature due to severe use, the heat-resistant resin in the present invention is preferably at least one heat-resistant resin selected from resins having a deflection temperature under load of 200 ° C. or higher. The deflection temperature under load is 10
Examples of the resin at 0 ° C. or higher include polyimide, polyamideimide, aramid, polycarbonate, polyacetal, polysulfone, polyphenylsulfide, polyetheretherketone, aromatic polyester, polyethersulfone, and polyetherimide. Examples of the resin having a deflection temperature under load of 200 ° C. or higher include polyimide, polyamideimide, aramid, polyethersulfone, and polyetherimide. Further, it is particularly preferable that the heat-resistant resin is selected from the group consisting of polyimide, polyamideimide and aramid.

【0019】また、本発明における耐熱樹脂としては、
限界酸素指数が20以上であることが好ましい。限界酸
素指数はガラス管中に入れられた試験片が燃え続けるこ
とのできる最低限の酸素濃度である。本発明の特徴とし
ては、耐熱多孔質層によりポリオレフィン等からなるシ
ャットダウン層を正極シートより隔離することである。
従って、耐熱多孔質層としては耐熱性以外に、高温時に
正極材料より発生する酸素を配慮すると難燃であること
が好ましい。このような樹脂の具体例として、前述の耐
熱樹脂が挙げられる。
Further, the heat-resistant resin in the present invention includes:
The limiting oxygen index is preferably 20 or more. The limiting oxygen index is the minimum oxygen concentration at which a specimen placed in a glass tube can keep burning. A feature of the present invention is that the shutdown layer made of polyolefin or the like is isolated from the positive electrode sheet by the heat-resistant porous layer.
Therefore, the heat-resistant porous layer is preferably flame-retardant in consideration of oxygen generated from the positive electrode material at high temperature, in addition to heat resistance. Specific examples of such a resin include the above-described heat-resistant resin.

【0020】本発明におけるシャットダウン層は、熱可
塑性樹脂からなる多孔質層であり、空隙の大きさ、空隙
率、厚みは、耐熱多孔質層におけるそれらと同様のもの
である。具体的には、空隙の大きさ、または該空隙が球
形に近似できるときはその球の直径(以下、孔径という
ことがある)は、3μm以下が好ましく、1μm以下が
さらに好ましい。該空隙の平均の大きさまたは孔径が3
μmを超える場合には、正極や負極の主成分である炭素
粉やその小片が脱落したときに、短絡しやすいなどの問
題が生じる可能性がある。該耐熱多孔質層の空孔率は、
30〜80体積%が好ましく、さらに好ましくは40〜
70体積%である。該空孔率が30体積%未満では電解
液の保持量が少なく、80%を超えると耐熱多孔質層の
強度が不十分となり、またシャットダウン機能が低下す
る。該耐熱多孔質層の厚みは、3〜30μmが好まし
く、さらに好ましくは5〜20μmである。該厚みが3
μm未満では、シャットダウン機能が不充分であり、3
0μmを超えると耐熱多孔質層も加えた非水電解質電池
用セパレーターの厚みとしては大きすぎて高電気容量化
が達成しにくい。ただし、空隙の大きさについては、耐
熱多孔質層とシャットダウン層のどちらかが、前述の条
件を満たして入れば他方は3μmを越えていても良い。
The shutdown layer in the present invention is a porous layer made of a thermoplastic resin, and has the same void size, porosity and thickness as those of the heat-resistant porous layer. Specifically, the size of the void, or when the void can be approximated to a sphere, the diameter of the sphere (hereinafter, sometimes referred to as the pore diameter) is preferably 3 μm or less, more preferably 1 μm or less. The average size or pore size of the voids is 3
When the thickness exceeds μm, there is a possibility that a problem such as a short circuit is likely to occur when carbon powder or a small piece thereof, which is a main component of the positive electrode or the negative electrode, falls off. The porosity of the heat-resistant porous layer is
30-80 volume% is preferable, More preferably, 40-80 volume%.
70% by volume. If the porosity is less than 30% by volume, the retained amount of the electrolytic solution is small, and if it exceeds 80%, the strength of the heat-resistant porous layer becomes insufficient and the shutdown function decreases. The thickness of the heat-resistant porous layer is preferably 3 to 30 μm, more preferably 5 to 20 μm. The thickness is 3
If it is less than μm, the shutdown function is insufficient and
If it exceeds 0 μm, the thickness of the separator for a non-aqueous electrolyte battery including the heat-resistant porous layer is too large, and it is difficult to achieve a high electric capacity. However, as for the size of the void, if one of the heat-resistant porous layer and the shutdown layer satisfies the above condition, the other may be larger than 3 μm.

【0021】シャットダウン層を形成する熱可塑性樹脂
としては、80〜180℃で軟化し多孔質の空隙が閉塞
され、かつ電解液に溶解しない熱可塑性樹脂が好まし
い。具体的には、ポリオレフィン、熱可塑性ポリウレタ
ンなどが挙げられる。さらに、具体例には低密度ポリエ
チレン、高密度ポリエチレン、超高分子量ポリエチレン
などのポリエチレン、ポリプロピレンなどから選ばれた
少なくとも1種の熱可塑性樹脂が挙げられる。
The thermoplastic resin forming the shutdown layer is preferably a thermoplastic resin which softens at 80 to 180 ° C., closes the porous voids, and does not dissolve in the electrolytic solution. Specific examples include polyolefin and thermoplastic polyurethane. Further, specific examples include at least one thermoplastic resin selected from polyethylene, such as low-density polyethylene, high-density polyethylene, and ultrahigh-molecular-weight polyethylene, and polypropylene.

【0022】本発明において、耐熱多孔質層用の耐熱樹
脂、シャットダウン用の熱可塑性樹脂のいずれの場合
も、無機微粉末を含有することができる。
In the present invention, any of the heat-resistant resin for the heat-resistant porous layer and the thermoplastic resin for the shutdown can contain inorganic fine powder.

【0023】本発明のリチウム二次電池で用いる非水電
解質溶液としては、例えばリチウム塩を有機溶媒に溶解
させた非水電解質溶液を用いることができる。リチウム
塩としては、LiClO4、LiPF6、LiAsF6
LiSbF6、LiBF4、LiCF3SO3、LiN(S
2CF32、LiC(SO2CF33、Li210Cl
10、低級脂肪族カルボン酸リチウム塩、LiAlCl4
などのうち1種または2種以上の混合物が挙げられる。
リチウム塩として、これらの中でもフッ素を含むLiP
6、LiAsF6、LiSbF6、LiBF4、LiCF
3SO3、LiN(CF3SO22、およびLiC(CF3
SO23からなる群から選ばれた少なくとも1種を含む
ものを用いることが好ましい。
As the non-aqueous electrolyte solution used in the lithium secondary battery of the present invention, for example, a non-aqueous electrolyte solution obtained by dissolving a lithium salt in an organic solvent can be used. Lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 ,
LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (S
O 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl
10 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4
One or a mixture of two or more of these.
LiP containing fluorine among these as a lithium salt
F 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF
3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiC (CF 3
It is preferable to use a material containing at least one selected from the group consisting of SO 2 ) 3 .

【0024】本発明の非水電解液で用いる有機溶媒とし
ては、例えばプロピレンカーボネート、エチレンカーボ
ネート、ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネート、4−トリフルオロメチ
ル−1,3−ジオキソラン−2−オン、1,2−ジ(メ
トキシカルボニルオキシ)エタンなどのカーボネート
類;1,2−ジメトキシエタン、1,3−ジメトキシプ
ロパン、ペンタフルオロプロピルメチルエーテル、2,
2,3,3−テトラフルオロプロピルジフルオロメチル
エーテル、テトラヒドロフラン、2−メチルテトラヒド
ロフランなどのエーテル類;ギ酸メチル、酢酸メチル、
γ−ブチロラクトンなどのエステル類;アセトニトリ
ル、ブチロニトリルなどのニトリル類;N,N−ジメチ
ルホルムアミド、N,N−ジメチルアセトアミドなどの
アミド類;3−メチル−2−オキサゾリドンなどのカー
バメート類;スルホラン、ジメチルスルホキシド、1,
3−プロパンサルトンなどの含硫黄化合物、または上記
の有機溶媒にフッ素置換基を導入したものを用いること
ができるが、通常はこれらのうちの2種以上を混合して
用いる。
Examples of the organic solvent used in the nonaqueous electrolyte of the present invention include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, Carbonates such as 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether,
Ethers such as 2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; methyl formate, methyl acetate,
Esters such as γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfolane, dimethylsulfoxide , 1,
A sulfur-containing compound such as 3-propane sultone or a compound obtained by introducing a fluorine substituent into the above-mentioned organic solvent can be used. Usually, a mixture of two or more of these compounds is used.

【0025】これらの中でもカーボネート類を含む混合
溶媒が好ましく、環状カーボネートと非環状カーボネー
ト、または環状カーボネートとエーテル類の混合溶媒が
さらに好ましい。環状カーボネートと非環状カーボネー
トの混合溶媒としては、動作温度範囲が広く、負荷特性
に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛等
の黒鉛材料を用いた場合でも難分解性であるという点
で、エチレンカーボネート、ジメチルカーボネートおよ
びエチルメチルカーボネートを含む混合溶媒が好まし
い。
Among these, a mixed solvent containing a carbonate is preferable, and a mixed solvent of a cyclic carbonate and an acyclic carbonate or a mixed solvent of a cyclic carbonate and an ether is more preferable. The mixed solvent of cyclic carbonate and acyclic carbonate has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as a negative electrode active material. And a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferred.

【0026】本発明における負極シートとしては、例え
ばリチウムイオンをドープ・脱ドーブ可能な材料、リチ
ウム金属またはリチウム合金などを用いることができ
る。リチウムイオンをドープ・脱ドープ可能な材料とし
ては、天然黒鉛、人造黒鉛、コークス類、カーボンブラ
ック、熱分解炭素類、炭素繊維、有機高分子化合物焼成
体などの炭素質材料、正極よりも低い電位でリチウムイ
オンのドープ・脱ドープを行う酸化物、硫化物等のカル
コゲン化合物が挙げられる。炭素質材料として、電位平
坦性が高く、また平均放電電位が低いため正極と組み合
わせた場合大きなエネルギー密度が得られるという点
で、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭
素質材料が好ましい。
As the negative electrode sheet in the present invention, for example, a material capable of doping / de-doping lithium ions, lithium metal or lithium alloy can be used. Materials that can be doped or undoped with lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds, and a lower potential than the positive electrode. And chalcogen compounds such as oxides and sulfides for doping / dedoping lithium ions. As a carbonaceous material, a carbonaceous material mainly composed of a graphite material such as natural graphite and artificial graphite, in that a high energy density can be obtained when combined with a positive electrode because the potential flatness is high and the average discharge potential is low. Is preferred.

【0027】また、液体の電解質と組み合わせて用いる
場合において、該液体の電解質がエチレンカーボネート
を含有しないときには、ポリエチレンカーボネートを含
有した負極を用いると、サイクル特性と大電流放電特性
が向上するので好ましい。炭素質材料の形状は、例えば
天然黒鉛のような薄片状、メソカーボンマイクロビーズ
のような球状、黒鉛化炭素繊維のような繊維状、または
微粉末の凝集体などのいずれでもよく、必要に応じて結
着剤としての熱可塑性樹脂を添加することができる。熱
可塑性樹脂としては、ポリビニリデンフロライド、ポリ
ビニリデンフロライドの共重合体、ビニリデンフロライ
ド−ヘキサフロロプロピレン−テロラフロロエチレンの
共重合体、熱可塑性ポリイミド、ポリエチレン、ポリプ
ロピレンなどが挙げられる。負極として用いられる酸化
物、硫化物等のカルコゲン化合物としては、例えばスズ
酸化物を主体とした非晶質化合物のような、周期率表の
13、14、15族を主体とした結晶質または非晶質の
酸化物などが挙げられる。これらについても、必要に応
じて導電材としての炭素質材料、結着剤としての熱可塑
性樹脂を添加することができる。
When the liquid electrolyte does not contain ethylene carbonate when used in combination with a liquid electrolyte, it is preferable to use a polyethylene carbonate-containing negative electrode because cycle characteristics and large current discharge characteristics are improved. The shape of the carbonaceous material may be any of, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder. In addition, a thermoplastic resin as a binder can be added. Examples of the thermoplastic resin include polyvinylidene fluoride, a copolymer of polyvinylidene fluoride, a copolymer of vinylidene fluoride-hexafluoropropylene-terafluoroethylene, thermoplastic polyimide, polyethylene, and polypropylene. Examples of chalcogen compounds such as oxides and sulfides used as the negative electrode include crystalline or non-crystalline compounds mainly composed of groups 13, 14, and 15 of the periodic table, such as amorphous compounds mainly composed of tin oxide. And crystalline oxides. Also for these, a carbonaceous material as a conductive material and a thermoplastic resin as a binder can be added as necessary.

【0028】本発明の非水電解液二次電池で用いる負極
集電体としては、Cu、Ni、ステンレスなどを用いる
ことができるが、特にリチウム二次電池においてはリチ
ウムと合金を作り難く、かつ薄膜に加工しやすいという
点でCuが好ましい。該負極集電体に負極活物質を含む
合剤を担持させる方法としては、加圧成型する方法、ま
たは溶媒などを用いてペースト化し集電体上に塗布乾燥
後プレスするなどして圧着する方法が挙げられる。
As the negative electrode current collector used in the non-aqueous electrolyte secondary battery of the present invention, Cu, Ni, stainless steel or the like can be used. Particularly in a lithium secondary battery, it is difficult to form an alloy with lithium, and Cu is preferred because it can be easily processed into a thin film. As a method of supporting the mixture containing the negative electrode active material on the negative electrode current collector, a method of pressure molding, or a method of pasting using a solvent or the like, applying a paste on the current collector, drying and pressing, or the like, is used. Is mentioned.

【0029】本発明におけるセパレータにおいて、耐熱
多孔質層とシャットダウン層の積層方法には、種々の方
法が可能である。2層の接合を行わず、単なる重ね合わ
せでも良いが、取扱い性の点からは積層固定する方が好
ましい。固定方法としては、接着剤による方法、熱融着
による方法などが挙げられるが本発明はこれらに限定さ
れるものではない。
In the separator of the present invention, various methods are available for laminating the heat-resistant porous layer and the shutdown layer. Although the two layers may not be joined and may be simply overlapped, it is preferable to stack and fix them from the viewpoint of handleability. Examples of the fixing method include a method using an adhesive and a method using heat fusion, but the present invention is not limited to these.

【0030】さらに、好ましい積層方法としては、耐熱
多孔質層またはシャットダウン層いずれかを形成する多
孔質フィルムを基体として、他方を溶液状態で塗工し溶
液層を形成し、これから脱溶媒処理をして積層フィルム
とする製法である。
Further, as a preferred lamination method, a porous film for forming either a heat-resistant porous layer or a shutdown layer is used as a substrate, and the other is coated in a solution state to form a solution layer, and then a desolvation treatment is performed. This is a manufacturing method in which a laminated film is formed.

【0031】具体的にその例を以下に示すが、本発明は
これらに限定されるものではない。即ち、以下の(a)
〜(e)の工程からなる方法により製造することができ
る。 (a)耐熱樹脂と有機溶媒からなる溶液を調製する。無
機微粉末を使用する時は、耐熱樹脂100重量部に対し
無機微粉末を1〜200重量部分散した、スラリー溶液
を調製する。 (b)該溶液またはスラリー溶液をポリオレフィン系多
孔質フィルムに塗工して塗工膜を作成する。 (c)該塗工膜上に該耐熱樹脂を析出する。 (d)該塗工膜から有機溶媒を除去する。 (e)該塗工膜を乾燥する。
Specific examples are shown below, but the present invention is not limited to these. That is, the following (a)
To (e). (A) A solution comprising a heat-resistant resin and an organic solvent is prepared. When the inorganic fine powder is used, a slurry solution is prepared by dispersing 1 to 200 parts by weight of the inorganic fine powder with respect to 100 parts by weight of the heat-resistant resin. (B) applying the solution or slurry solution to a polyolefin-based porous film to form a coating film. (C) depositing the heat-resistant resin on the coating film. (D) removing the organic solvent from the coating film; (E) drying the coated film;

【0032】さらに、具体的にパラ配向芳香族ポリアミ
ド(以下、パラアラミドということがある)およびポリ
イミドを用いる場合について例示する。パラアラミドを
用いる場合には、例えば、アルカリ金属またはアルカリ
土類金属の塩化物を2〜10重量%溶解した極性有機溶
媒中で、パラ配向芳香族ジアミン1.00モルに対して
パラ配向芳香族ジカルボン酸ジハライド0.94〜0.
99モルを添加して、温度−20℃〜50℃で縮合重合
して製造されるパラアラミド濃度が1〜10%で、固有
粘度が1.0〜2.8dl/gであるパラアラミドと有
機溶媒とからなる溶液を作成する。この溶液を使用して
前述の製法でポリオレフィン系多孔質フィルムにパラア
ラミド多孔質層が積層された本発明におけるセパレータ
が製造できる。パラアラミドの場合には溶媒と該塩化物
を除去するのに、水、メタノールなどの凝固液と同じ溶
媒で洗浄することもできるが、溶媒の一部または全部を
蒸発させると同時にポリマーを析出させた後、水洗など
の方法で該塩化物を除去しても良い。
Further, the case of using para-oriented aromatic polyamide (hereinafter sometimes referred to as para-aramid) and polyimide will be specifically described. When para-aramid is used, for example, in a polar organic solvent in which 2 to 10% by weight of an alkali metal or alkaline earth metal chloride is dissolved, 1.00 mol of para-oriented aromatic diamine and para-oriented aromatic dicarboxylic acid are used. Acid dihalide 0.94-0.
A para-aramid having a concentration of 1 to 10% and an intrinsic viscosity of 1.0 to 2.8 dl / g, and an organic solvent, are added by adding 99 moles and performing condensation polymerization at a temperature of -20 ° C to 50 ° C. A solution consisting of Using this solution, the separator of the present invention in which a para-aramid porous layer is laminated on a polyolefin-based porous film by the above-mentioned production method can be produced. In the case of para-aramid, to remove the solvent and the chloride, it can be washed with the same solvent as a coagulating liquid such as water or methanol, but a part or all of the solvent was evaporated and a polymer was precipitated at the same time. Thereafter, the chloride may be removed by a method such as washing with water.

【0033】また、ポリイミドと有機溶媒からなる溶液
としては、3、3’、4、4’−ジフェニルスルホンテ
トラカルボン酸二無水物と、4、4’−ビス(p−アミ
ノフェキシ)ジフェニルスルホン等の芳香族ジアミンと
の重縮合反応で得られる、イミド化が完結したポリイミ
ドのN−メチル−2−ピロリドン溶液が例示される。該
溶液に、無機微粉末をポリイミド100重量部に対し好
ましくは1〜200重量部、さらに好ましくは5〜10
0重量部を十分に分散させてスラリー溶液を調製する。
無機微粉末の量が1重量部未満ならイオン透過性および
電池特性の向上が不十分で、200重量部を超えると、
該セパレーターは、脆くなり、取り扱いが難しくなるの
で好ましくない。次に、スラリー溶液をポリオレフィン
系多孔質フィルムに塗工して溶液層を形成する。塗工の
方法としては、例えばナイフ、ブレード、バー、グラビ
ア、ダイ等の塗工方法が挙げられる。得られた塗工膜を
好ましくは20℃以上の温度、一定湿度に制御した雰囲
気中において、ポリイミドを析出させ、その後凝固液中
に浸漬させ湿潤塗工膜を得る。次に、水洗して溶媒除去
した後乾燥して、ポリオレフィン系多孔質フィルムにポ
リイミド多孔質層が積層されたセパレータが製造でき
る。
Examples of the solution comprising a polyimide and an organic solvent include 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride and 4,4'-bis (p-aminophenoxy) diphenylsulfone. An example of the N-methyl-2-pyrrolidone solution of imidized polyimide obtained by a polycondensation reaction with an aromatic diamine is shown. In the solution, the inorganic fine powder is preferably 1 to 200 parts by weight, more preferably 5 to 10 parts by weight based on 100 parts by weight of the polyimide.
0 parts by weight are sufficiently dispersed to prepare a slurry solution.
If the amount of the inorganic fine powder is less than 1 part by weight, the ion permeability and battery characteristics are insufficiently improved.
The separator is not preferred because it becomes brittle and difficult to handle. Next, the slurry solution is applied to the polyolefin-based porous film to form a solution layer. Examples of the coating method include a coating method using a knife, a blade, a bar, a gravure, a die, or the like. The obtained coating film is preferably precipitated in an atmosphere controlled at a temperature of 20 ° C. or higher and a constant humidity, and then immersed in a coagulation liquid to obtain a wet coating film. Next, the resultant is washed with water, the solvent is removed, and then dried to produce a separator in which a polyimide porous layer is laminated on a polyolefin-based porous film.

【0034】なお、本発明のリチウム二次電池の形状
は、特に限定されるものではなく、ペーパー型、コイン
型、円筒型、角形などのいずれであってもよい。
The shape of the lithium secondary battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a square type, and the like.

【0035】[0035]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらによって何ら限定されるもの
ではない。 (1)固有粘度 本発明において固有粘度とは、次の測定方法によるもの
と定義する。96〜98%硫酸100mlにパラアラミ
ド重合体0.5gを溶解した溶液および96〜98%硫
酸について、それぞれ毛細管粘度計により30℃にて流
動時間を測定し、求められた流動時間の比から次式によ
り固有粘度を求めた。 固有粘度=ln(T/T0)/C 〔単位:dl/g〕 ここでTおよびT0は、それぞれパラアラミド硫酸溶液
および硫酸の流動時間であり、Cは、パラアラミド硫酸
溶液中のパラアラミド濃度(dl/g)を示す。
The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the invention thereto. (1) Intrinsic Viscosity In the present invention, the intrinsic viscosity is defined by the following measuring method. For a solution in which 0.5 g of the para-aramid polymer was dissolved in 100 ml of 96-98% sulfuric acid and for a 96-98% sulfuric acid, the flow time was measured at 30 ° C. using a capillary viscometer. Was used to determine the intrinsic viscosity. Intrinsic viscosity = ln (T / T 0 ) / C [unit: dl / g] where T and T 0 are the flow times of the para-aramid sulfate solution and sulfuric acid, respectively, and C is the concentration of para-aramid in the para-aramid sulfate solution ( dl / g).

【0036】(2)塗工膜等の厚み測定 得られた塗工膜等の厚みは、JIS規格 K7130−
1992 に従い測定した。
(2) Measurement of Thickness of Coated Film and the Like The thickness of the obtained coated film and the like is measured in accordance with JIS K7130-
1992.

【0037】(3)空隙率 塗工膜等を一辺の長さ10cmの正方形に切り取り、重
量(Wg)と厚み(Dcm)を測定した。サンプル中の
材質の重量を計算で割りだし、それぞれの材質の重量
(Wi)を真比重で割り、それぞれの材質の体積を仮定
して、次式より空隙率(体積%)を求めた。 空隙率(%)=100−{(W1/真比重1)+(W2
/真比重2)+・・+(Wn/真比重n)}/(100
×D)
(3) Porosity The coating film or the like was cut into a square having a side length of 10 cm, and the weight (Wg) and thickness (Dcm) were measured. The weight of the material in the sample was divided by calculation, the weight (Wi) of each material was divided by the true specific gravity, and the porosity (vol%) was determined from the following equation, assuming the volume of each material. Porosity (%) = 100 − {(W1 / true specific gravity 1) + (W2
/ True specific gravity 2) + ·· + (Wn / True specific gravity n) (/ (100
× D)

【数1】(Equation 1)

【0038】(4)塗工膜等の目付けは、塗工膜等を1
0cm角の正方形に切り出し、その重量を測定して下式
より求めた。 塗工膜等の目付け(g/m2)=サンプルの重量(g)
/0.01(m2) 各材料の目付けは、製膜に使用した量、比率より算出し
た。
(4) The basis weight of the coating film and the like is as follows.
A square of 0 cm square was cut out, and its weight was measured and determined by the following equation. Weight of coating film (g / m 2 ) = weight of sample (g)
/0.01 (m 2 ) The basis weight of each material was calculated from the amount and ratio used for film formation.

【0039】実施例1 (1)正極シート状電極の作製 ポリビニリデンフロライド(以下、PVDFということ
がある)3重量部をNMPで分散し、導電材としての人
造黒鉛粉末9重量部とアセチレンブラック1重量部と正
極活物質であるニッケル酸リチウム粉末87重量部を分
散混練し正極合剤ペーストとした。該ペーストを集電体
である厚さ20μmのAl箔の両面の所定部分に塗布
し、乾燥、ロールプレスを行い正極シート状電極を得
た。
Example 1 (1) Preparation of positive electrode sheet electrode 3 parts by weight of polyvinylidene fluoride (hereinafter sometimes referred to as PVDF) were dispersed in NMP, and 9 parts by weight of artificial graphite powder as a conductive material and acetylene black 1 part by weight and 87 parts by weight of lithium nickel oxide powder as a positive electrode active material were dispersed and kneaded to prepare a positive electrode mixture paste. The paste was applied to predetermined portions on both sides of a 20 μm thick Al foil as a current collector, dried, and roll-pressed to obtain a positive electrode sheet.

【0040】(2)耐熱多孔質フィルムの作製 2.1)パラアラミド溶液の合成 撹拌翼、温度計、窒素流入管及び粉体添加口を有する5
リットル(l)のセパラブルフラスコを使用してポリ
(パラフェニレンテレフタルアミド)(以下、PPTA
と略す)の合成を行った。フラスコを十分乾燥し,N−
メチル−2−ピロリドン(以下、NMPと略す)420
0gを仕込み、200℃で2時間乾燥した塩化カルシウ
ム272.65gを添加して100℃に昇温した。塩化
カルシウムが完全に溶解した後室温に戻して、パラフェ
ニレンジアミン(以下、PPDと略す)132.91g
と添加し完全に溶解させた。この溶液を20±2℃に保
ったまま、テレフタル酸ジクロライド(以下、TPCと
略す)243.32gを10分割して約5分おきに添加
した。その後溶液を20±2℃に保ったまま1時間熟成
し、気泡を抜くため減圧下30分撹拌した。得られた重
合液は光学的異方性を示した。一部をサンプリングして
水で再沈してポリマーとして取り出し、得られたPPT
Aの固有粘度を測定したところ1.97dl/gであっ
た。次に、この重合液100gを、攪拌翼、温度計、窒
素流入管および液体添加口を有する500mlのセパラ
ブルフラスコに秤取し、5.8重量%の塩化カルシウム
を溶解しているNMP溶液を徐々に添加した。最終的
に、PPTA濃度が2.8重量%のPPTA溶液を調製
し、これをA液とした。
(2) Preparation of heat-resistant porous film 2.1) Synthesis of para-aramid solution 5 having a stirring blade, a thermometer, a nitrogen inlet tube and a powder addition port
Using a liter (l) separable flask, poly (paraphenylene terephthalamide) (hereinafter referred to as PPTA)
Abbreviation). Dry the flask thoroughly,
Methyl-2-pyrrolidone (hereinafter abbreviated as NMP) 420
After adding 0 g, 272.65 g of calcium chloride dried at 200 ° C for 2 hours was added, and the temperature was raised to 100 ° C. After the calcium chloride was completely dissolved, the temperature was returned to room temperature, and 132.91 g of paraphenylenediamine (hereinafter abbreviated as PPD) was obtained.
And completely dissolved. While maintaining this solution at 20 ± 2 ° C., 243.32 g of terephthalic acid dichloride (hereinafter, abbreviated as TPC) was added in about 10 minutes in 10 divided portions. Thereafter, the solution was aged for 1 hour while maintaining the solution at 20 ± 2 ° C., and stirred for 30 minutes under reduced pressure to remove bubbles. The obtained polymerization liquid showed optical anisotropy. A part was sampled, reprecipitated with water, taken out as a polymer, and the obtained PPT
When the intrinsic viscosity of A was measured, it was 1.97 dl / g. Next, 100 g of the polymerization solution was weighed into a 500 ml separable flask having a stirring blade, a thermometer, a nitrogen inlet tube and a liquid addition port, and an NMP solution in which 5.8% by weight of calcium chloride was dissolved was added. It was added slowly. Finally, a PPTA solution having a PPTA concentration of 2.8% by weight was prepared and used as solution A.

【0041】2.2)耐熱多孔質フィルムの作製 テスター産業株式会社製バーコーター(膜厚mm)によ
り、ポリエステルフィルム上にA液の膜状物を作製し、
蓋付のアルミ製パットに入れ、60℃の加熱オーブンに
約20分間保持したところ、PPTAが析出し、白濁し
た膜状物が得られた。該膜状物をイオン交換水に浸漬し
た。5分後に膜状物をガラス板から剥離した。イオン交
換水を流しながら充分に水洗した後、水中より湿潤した
膜状物を取り出し、遊離水をふき取った。この膜状物を
アラミド製フェルトに挟み、さらにガラスクロスに挟ん
だ。膜状物を濾紙とガラスクロスではさんだ状態で、ア
ルミ板を乗せ、その上にナイロンフィルムを被せ、ナイ
ロンフィルムとアルミ板とをガムでシールして、減圧の
ための導管をつけた。全体を熱オーブンに入れ120℃
で減圧しながら膜状物を乾燥した。乾燥して得られたパ
ラアラミド多孔質フィルム(以下、フィルムAというこ
とがある)は、厚みが11.4μmで空隙率は45%で
あった。また、走査型電子顕微鏡で観察したところ、フ
ィルムAは約0.1μmのフィブリルからなる多数の空
隙を有し、空隙の最大径は約1μm以下であった。
2.2) Preparation of Heat-Resistant Porous Film Using a bar coater (thickness: mm) manufactured by Tester Sangyo Co., Ltd., a film of the liquid A was prepared on a polyester film.
When put in an aluminum pad with a lid and kept in a heating oven at 60 ° C. for about 20 minutes, PPTA was precipitated and a cloudy film was obtained. The film was immersed in ion-exchanged water. After 5 minutes, the film was peeled from the glass plate. After sufficient washing with flowing ion-exchanged water, a wet film was taken out of the water and free water was wiped off. This film was sandwiched between felts made of aramid and further sandwiched between glass cloths. An aluminum plate was placed with the film-like material sandwiched between filter paper and glass cloth, a nylon film was placed on the aluminum plate, the nylon film and the aluminum plate were sealed with gum, and a conduit for decompression was provided. Put the whole in a heat oven at 120 ° C
The film was dried under reduced pressure. The para-aramid porous film (hereinafter sometimes referred to as film A) obtained by drying had a thickness of 11.4 μm and a porosity of 45%. Further, when observed with a scanning electron microscope, the film A had a large number of voids composed of about 0.1 μm fibrils, and the maximum diameter of the voids was about 1 μm or less.

【0042】(3)負極シート状電極の作製 数平均分子量50000のポリエチレンカーボネート2
重量部と結着剤としてのPVDFを8重量部をNMPで
溶解させた後負極シート状電極の活物質である黒鉛化炭
素繊維90重量部を分散混練し、負極合剤ペーストとし
た。該ペーストを集電体である厚さ10μmのCu箔の
両面の所定部分に塗布し、乾燥、ロールプレスを行って
負極シート状電極を得た。
(3) Preparation of negative electrode sheet electrode Polyethylene carbonate 2 having a number average molecular weight of 50,000
After dissolving 8 parts by weight of PVDF as a binder and 8 parts by weight of NDF with NMP, 90 parts by weight of graphitized carbon fibers as an active material of the negative electrode sheet electrode were dispersed and kneaded to obtain a negative electrode mixture paste. The paste was applied to predetermined portions on both sides of a 10-μm-thick Cu foil as a current collector, dried, and roll-pressed to obtain a negative electrode sheet electrode.

【0043】(4)円筒電池の作製 上記のようにして作製した正極シート、負極シートをフ
ィルムAと多孔質ポリプロピレンフィルム(厚さ25μ
m)よりなるセパレータを介して、正極、フィルムA/
多孔質ポリプロピレンフィルム、負極の順に積層し、こ
の積層体を一端より巻き取って渦巻形状の電極素子とし
た。
(4) Production of Cylindrical Battery The positive electrode sheet and the negative electrode sheet produced as described above were used for film A and a porous polypropylene film (thickness 25 μm).
m), a positive electrode, a film A /
A porous polypropylene film and a negative electrode were laminated in this order, and the laminate was wound from one end to form a spiral electrode element.

【0044】前記の電極素子を電池缶に挿入し、非水電
解質溶液としてジメチルカーボネートと2,2,3,3
−テトラフルオロプロピルジフルオロメチルエーテルと
の50:50混合液にLiPF6を1モル/リットルと
なるように溶解したものを含浸し、安全弁を備えた正極
端子を兼ねる電池蓋をガスケットを介してかしめて18
650サイズの円筒型電池を得た。
The above-mentioned electrode element was inserted into a battery can, and dimethyl carbonate and 2,2,3,3 were used as a nonaqueous electrolyte solution.
-Impregnating a 50:50 mixed solution with tetrafluoropropyldifluoromethyl ether in which LiPF 6 is dissolved at a concentration of 1 mol / liter and impregnating a battery lid serving as a positive electrode terminal equipped with a safety valve through a gasket. 18
A 650 cylindrical battery was obtained.

【0045】このようにして得た円筒型電池2個につい
て、4.2Vの満充電状態で圧壊試験を実施した。圧壊
試験の方法としては、電池の側周中央部を直径30mm
の鉄製丸棒で電池の1/4径まで圧縮する方法を用い
た。その結果、試験に供した電池は過充電という苛酷な
状態にもかかわらず、著しい内圧上昇も認められず、破
裂せず発火もしなかった。
A crush test was performed on the two cylindrical batteries thus obtained in a fully charged state of 4.2 V. As a method of the crush test, the center part of the side circumference of the battery was 30 mm in diameter.
Of the battery was compressed to a quarter diameter of the battery with an iron round bar. As a result, despite the severe condition of overcharging, the battery subjected to the test did not show a significant increase in internal pressure, did not burst, and did not ignite.

【0046】比較例1 正極シート側にポリオレフィン系多孔質フィルムを配
し、耐熱多孔質層を負極シート側に配した以外は、実施
例1と同様にして18650サイズの円筒型電池を得
た。このようにして得た円筒型電池について、実施例1
と同様に圧壊試験を行なった。その結果、圧壊後著しい
内圧上昇が認められた。
Comparative Example 1 An 18650 size cylindrical battery was obtained in the same manner as in Example 1 except that a polyolefin-based porous film was provided on the positive electrode sheet side and a heat-resistant porous layer was provided on the negative electrode sheet side. About the cylindrical battery obtained in this way, Example 1
A crush test was performed in the same manner as in the above. As a result, a marked increase in internal pressure was observed after the crush.

【発明の効果】本発明の非水電解液二次電池は、高エネ
ルギー密度であり、かつ釘刺し・圧壊試験に代表される
ような局部短絡に対して安全性がさらに向上しており、
その工業的価値は極めて大きい。
The non-aqueous electrolyte secondary battery of the present invention has a high energy density and further improved safety against a local short circuit such as a nail puncture / crush test.
Its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 泰雄 茨城県つくば市北原6 住友化学工業株式 会社内 Fターム(参考) 5H014 AA06 CC01 HH00 HH08 5H021 AA06 CC00 CC04 EE08 HH06 5H029 AJ03 AJ12 AK03 AM03 AM04 AM05 AM07 BJ02 DJ04 EJ12 HJ14  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuo Shinohara 6 Kitahara, Tsukuba, Ibaraki Prefecture F-term (reference) 5H014 AA06 CC01 HH00 HH08 5H021 AA06 CC00 CC04 EE08 HH06 5H029 AJ03 AJ12 AK03 AM03 AM04 AM05 AM07 BJ02 DJ04 EJ12 HJ14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】正極シート、セパレータ、非水電解液およ
び負極シートを含む非水電解液二次電池において、該セ
パレーターが耐熱多孔質層とシャットダウン層からな
り、該耐熱多孔質層が該正極シート側に配置されてなる
ことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery including a positive electrode sheet, a separator, a non-aqueous electrolyte and a negative electrode sheet, wherein the separator comprises a heat-resistant porous layer and a shutdown layer, and the heat-resistant porous layer is formed of the positive electrode sheet. A non-aqueous electrolyte secondary battery, which is disposed on the side.
【請求項2】耐熱多孔質層が、荷重たわみ温度が100
℃以上であり、かつ限界酸素指数が20以上である耐熱
樹脂からなることを特徴とする請求項1記載の非水電解
液二次電池。
2. The heat-resistant porous layer has a deflection temperature under load of 100.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is made of a heat-resistant resin having a critical oxygen index of 20 ° C. or higher.
【請求項3】耐熱多孔質層が、荷重たわみ温度が200
℃以上でかつ限界酸素指数が20以上である耐熱樹脂か
らなることを特徴とする請求項1記載の非水電解液二次
電池。
3. The heat-resistant porous layer has a deflection temperature under load of 200.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is made of a heat-resistant resin having a critical oxygen index of 20 ° C. or higher.
【請求項4】シャットダウン層が、熱可塑性樹脂からな
る多孔質層であり、80℃〜180℃の温度で実質的に
無孔性の層となることを特徴とする請求項1記載の非水
電解液二次電池。
4. The non-aqueous solution according to claim 1, wherein the shutdown layer is a porous layer made of a thermoplastic resin, and becomes a substantially non-porous layer at a temperature of 80 ° C. to 180 ° C. Electrolyte secondary battery.
【請求項5】耐熱樹脂が、ポリイミド、ポリアミドイミ
ド、アラミド、ポリカーボネート、ポリアセタール、ポ
リサルホン、ポリフェニルサルファイド、ポリエーテル
エーテルケトン、芳香族ポリエステル、ポリエーテルサ
ルホンまたはポリエーテルイミドであることを特徴とす
る請求項2記載の非水電解液二次電池。
5. The method according to claim 1, wherein the heat-resistant resin is polyimide, polyamideimide, aramid, polycarbonate, polyacetal, polysulfone, polyphenylsulfide, polyetheretherketone, aromatic polyester, polyethersulfone or polyetherimide. The non-aqueous electrolyte secondary battery according to claim 2.
【請求項6】耐熱樹脂が、ポリイミド、ポリアミドイミ
ド、アラミド、ポリエーテルサルホンまたはポリエーテ
ルイミドであることを特徴とする請求項3記載の非水電
解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 3, wherein the heat-resistant resin is polyimide, polyamideimide, aramid, polyethersulfone or polyetherimide.
【請求項7】耐熱樹脂が、ポリイミド、ポリアミドイミ
ドまたはアラミドであることを特徴とする請求項3記載
の非水電解液二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 3, wherein the heat-resistant resin is polyimide, polyamide imide or aramid.
JP10266262A 1998-09-21 1998-09-21 Nonaqueous electrolyte secondary battery Pending JP2000100408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10266262A JP2000100408A (en) 1998-09-21 1998-09-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10266262A JP2000100408A (en) 1998-09-21 1998-09-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000100408A true JP2000100408A (en) 2000-04-07

Family

ID=17428543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10266262A Pending JP2000100408A (en) 1998-09-21 1998-09-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000100408A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151042A (en) * 2000-11-15 2002-05-24 Yuasa Corp Separator and its manufacturing method as well as battery using the same and its manufacturing method
JP2003151635A (en) * 2001-11-15 2003-05-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004349146A (en) * 2003-05-23 2004-12-09 Sumitomo Chem Co Ltd Manufacturing method of lithium secondary battery
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2005285740A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium ion secondary battery using it
JP2005281668A (en) * 2004-02-19 2005-10-13 Toyobo Co Ltd Porous membrane, method for producing the same and lithium ion secondary battery using the same
JP2005285739A (en) * 2004-02-23 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium-ion secondary battery using this
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
WO2006064775A1 (en) * 2004-12-13 2006-06-22 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2006269359A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP2006294597A (en) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid secondary battery
WO2006134684A1 (en) * 2005-06-15 2006-12-21 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
WO2007083405A1 (en) * 2006-01-17 2007-07-26 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
US20070190407A1 (en) * 2006-02-14 2007-08-16 Masato Fujikawa Lithium secondary battery
JP2007227361A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its charging system
WO2007125827A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US7332242B2 (en) 2000-09-01 2008-02-19 Itochu Corporation Lithium-based battery having extensible, ion-impermeable polymer covering on the battery container
EP1889867A1 (en) * 2005-05-20 2008-02-20 Sumitomo Chemical Company, Limited Porous film and multilayer porous film
JPWO2005117169A1 (en) * 2004-05-27 2008-04-03 松下電器産業株式会社 Winding type non-aqueous secondary battery and electrode plate used therefor
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
WO2008143005A1 (en) * 2007-05-10 2008-11-27 Hitachi Maxell, Ltd. Electrochemical element and method for production thereof
WO2008149895A1 (en) 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JP2008307893A (en) * 2007-05-14 2008-12-25 Sumitomo Chemical Co Ltd Laminated porous film
JP2009032655A (en) * 2007-07-03 2009-02-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide
WO2009060828A1 (en) * 2007-11-09 2009-05-14 Sumitomo Chemical Company, Limited Complex metal oxide and sodium secondary battery
JPWO2007083405A1 (en) * 2006-01-17 2009-06-11 パナソニック株式会社 Lithium secondary battery
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2010067376A (en) * 2008-09-09 2010-03-25 Nitto Denko Corp Separator for battery and manufacturing method thereof, and lithium-ion secondary battery and manufacturing method thereof
JP2010165664A (en) * 2009-09-25 2010-07-29 Panasonic Corp Nonaqueous electrolyte secondary battery
US20100255380A1 (en) * 2007-09-27 2010-10-07 Sanyo Electric Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2011233534A (en) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp Separator for rechargeable battery with nonaqueous electrolyte and rechargeable battery with nonaqueous electrolyte
US8105396B2 (en) 2009-01-14 2012-01-31 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for fabricating the same
US8163424B2 (en) 2004-02-18 2012-04-24 Panasonic Corporation Secondary battery
US8216721B2 (en) 2006-01-23 2012-07-10 Panasonic Corporation Sealed battery
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
US8455132B2 (en) 2006-01-27 2013-06-04 Panasonic Corporation Lithium ion secondary battery and charge system therefor
US8512898B2 (en) 2007-09-27 2013-08-20 Sanyo Electronics Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR101329729B1 (en) * 2012-05-08 2013-11-14 더블유스코프코리아 주식회사 Porous coating membrane with shut-down characteristic and its manufacturing method
JPWO2014021292A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332242B2 (en) 2000-09-01 2008-02-19 Itochu Corporation Lithium-based battery having extensible, ion-impermeable polymer covering on the battery container
JP2002151042A (en) * 2000-11-15 2002-05-24 Yuasa Corp Separator and its manufacturing method as well as battery using the same and its manufacturing method
JP2003151635A (en) * 2001-11-15 2003-05-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004349146A (en) * 2003-05-23 2004-12-09 Sumitomo Chem Co Ltd Manufacturing method of lithium secondary battery
JP4569074B2 (en) * 2003-05-23 2010-10-27 住友化学株式会社 Method for manufacturing lithium secondary battery
US8163424B2 (en) 2004-02-18 2012-04-24 Panasonic Corporation Secondary battery
US8163425B2 (en) 2004-02-18 2012-04-24 Panasonic Corporation Secondary battery
JP2005281668A (en) * 2004-02-19 2005-10-13 Toyobo Co Ltd Porous membrane, method for producing the same and lithium ion secondary battery using the same
JP2005285739A (en) * 2004-02-23 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium-ion secondary battery using this
JP2005285740A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium ion secondary battery using it
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JPWO2005117169A1 (en) * 2004-05-27 2008-04-03 松下電器産業株式会社 Winding type non-aqueous secondary battery and electrode plate used therefor
JP4695074B2 (en) * 2004-05-27 2011-06-08 パナソニック株式会社 Winding type non-aqueous secondary battery and electrode plate used therefor
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
EP1768209A4 (en) * 2004-12-13 2007-09-26 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
WO2006064775A1 (en) * 2004-12-13 2006-06-22 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP1768209A1 (en) * 2004-12-13 2007-03-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
KR100816599B1 (en) * 2004-12-13 2008-03-24 마쯔시다덴기산교 가부시키가이샤 Lithium ion secondary battery
JPWO2006064775A1 (en) * 2004-12-13 2008-06-12 松下電器産業株式会社 Lithium ion secondary battery
JP2006294597A (en) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid secondary battery
JP2006269359A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP4584307B2 (en) * 2005-03-31 2010-11-17 パナソニック株式会社 Lithium secondary battery
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
EP1889867A4 (en) * 2005-05-20 2009-12-09 Sumitomo Chemical Co Porous film and multilayer porous film
EP1889867A1 (en) * 2005-05-20 2008-02-20 Sumitomo Chemical Company, Limited Porous film and multilayer porous film
WO2006134684A1 (en) * 2005-06-15 2006-12-21 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP5209964B2 (en) * 2005-06-15 2013-06-12 パナソニック株式会社 Lithium secondary battery
KR100985346B1 (en) * 2005-06-15 2010-10-04 파나소닉 주식회사 Lithium secondary battery
US8017262B2 (en) 2005-06-15 2011-09-13 Panasonic Corporation Lithium secondary battery with porous heat-resistant layer
KR100870603B1 (en) * 2006-01-17 2008-11-25 파나소닉 주식회사 Lithium secondary battery
WO2007083405A1 (en) * 2006-01-17 2007-07-26 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JPWO2007083405A1 (en) * 2006-01-17 2009-06-11 パナソニック株式会社 Lithium secondary battery
US8216721B2 (en) 2006-01-23 2012-07-10 Panasonic Corporation Sealed battery
US8455132B2 (en) 2006-01-27 2013-06-04 Panasonic Corporation Lithium ion secondary battery and charge system therefor
JP2007227361A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its charging system
US8530072B2 (en) * 2006-02-14 2013-09-10 Panasonic Corporation Lithium secondary battery having porous heat resistant layer between electrodes
US20070190407A1 (en) * 2006-02-14 2007-08-16 Masato Fujikawa Lithium secondary battery
WO2007125827A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US8404377B2 (en) 2006-04-28 2013-03-26 Panasonic Corporation Separator for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2007299612A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012195296A (en) * 2007-05-10 2012-10-11 Hitachi Maxell Energy Ltd Method for manufacturing electrochemical element
US10862091B2 (en) 2007-05-10 2020-12-08 Maxell Holdings, Ltd. Electrochemical device comprising separator with laminated porous layers
US9865853B2 (en) 2007-05-10 2018-01-09 Maxell Holdings, Ltd. Method for producing electrochemical device
CN101617433A (en) * 2007-05-10 2009-12-30 日立麦克赛尔株式会社 Electrochemical element and manufacture method thereof
JP5879018B2 (en) * 2007-05-10 2016-03-08 日立マクセル株式会社 Electrochemical element and method for producing the same
JPWO2008143005A1 (en) * 2007-05-10 2010-08-05 日立マクセル株式会社 Electrochemical element and method for producing the same
WO2008143005A1 (en) * 2007-05-10 2008-11-27 Hitachi Maxell, Ltd. Electrochemical element and method for production thereof
US20210050574A1 (en) * 2007-05-10 2021-02-18 Maxell Holdings, Ltd. Electrochemical device comprising separator with laminated porous layers
US20090325058A1 (en) * 2007-05-10 2009-12-31 Hideaki Katayama Electrochemical device and method for production thereof
JP2008307893A (en) * 2007-05-14 2008-12-25 Sumitomo Chemical Co Ltd Laminated porous film
WO2008149895A1 (en) 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
US7892672B2 (en) 2007-06-06 2011-02-22 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JP2009032655A (en) * 2007-07-03 2009-02-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide
US8440353B2 (en) 2007-07-03 2013-05-14 Sumitomo Chemical Company, Limited Lithium mixed metal oxide
US9627669B2 (en) 2007-07-06 2017-04-18 Sony Corporation Separator including glass layer covering polyolefin resin layer having a three-dimensional mesh framework, and battery using the same
US10424772B2 (en) 2007-07-06 2019-09-24 Murata Manufacturing Co., Ltd. Separator, battery and electronic device
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
US20100255380A1 (en) * 2007-09-27 2010-10-07 Sanyo Electric Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US8512898B2 (en) 2007-09-27 2013-08-20 Sanyo Electronics Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2009060828A1 (en) * 2007-11-09 2009-05-14 Sumitomo Chemical Company, Limited Complex metal oxide and sodium secondary battery
JP2009135092A (en) * 2007-11-09 2009-06-18 Sumitomo Chemical Co Ltd Compound metal oxide and sodium secondary battery
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2010067376A (en) * 2008-09-09 2010-03-25 Nitto Denko Corp Separator for battery and manufacturing method thereof, and lithium-ion secondary battery and manufacturing method thereof
US8105396B2 (en) 2009-01-14 2012-01-31 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for fabricating the same
JP2010165664A (en) * 2009-09-25 2010-07-29 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2011233534A (en) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp Separator for rechargeable battery with nonaqueous electrolyte and rechargeable battery with nonaqueous electrolyte
KR101329729B1 (en) * 2012-05-08 2013-11-14 더블유스코프코리아 주식회사 Porous coating membrane with shut-down characteristic and its manufacturing method
US9692028B2 (en) 2012-07-30 2017-06-27 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2014021292A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP2000100408A (en) Nonaqueous electrolyte secondary battery
CA2356033C (en) Separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101094603B1 (en) Separator for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4487457B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
JP2001266949A (en) Lithium ion secondary battery
JP4560852B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
KR101460827B1 (en) Porous film
KR102271546B1 (en) Laminated porous film and non-aqueous electrolyte secondary cell
US9166250B2 (en) Separator for battery, method for manufacturing the same, and lithium secondary battery
EP1768209B1 (en) Lithium ion secondary battery
US6180282B1 (en) Cathode for lithium secondary battery
WO2008105555A1 (en) Separator
EP2413416A1 (en) Sodium ion battery
US20090208831A1 (en) Device having electrode group
KR20110043583A (en) Nonaqueous electrolyte secondary battery
JP2009158484A (en) Nonaqueous electrolyte secondary battery
JP2012003948A (en) Transition metal composite hydroxide and lithium composite metal oxide
KR20110133611A (en) Lithium composite metal oxide and positive electrode active material
JP2005011614A (en) Separator for nonaqueous system secondary battery and nonaqueous system secondary battery
KR101678712B1 (en) Electrode mix, electrode, and non-aqueous electrolyte secondary battery
JP2000223107A (en) Separator for nonaqueous electrolyte secondary battery
JP2004253380A (en) Lithium ion secondary battery and separator thereof
JP3931413B2 (en) Method for producing positive electrode for lithium secondary battery
JP4525649B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
KR101634144B1 (en) Porous support, method for manufacturing the same, separator and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110