JP4529511B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP4529511B2
JP4529511B2 JP2004098984A JP2004098984A JP4529511B2 JP 4529511 B2 JP4529511 B2 JP 4529511B2 JP 2004098984 A JP2004098984 A JP 2004098984A JP 2004098984 A JP2004098984 A JP 2004098984A JP 4529511 B2 JP4529511 B2 JP 4529511B2
Authority
JP
Japan
Prior art keywords
active material
material layer
negative electrode
positive electrode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004098984A
Other languages
Japanese (ja)
Other versions
JP2005285605A (en
Inventor
茂雄 生田
友祐 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004098984A priority Critical patent/JP4529511B2/en
Publication of JP2005285605A publication Critical patent/JP2005285605A/en
Application granted granted Critical
Publication of JP4529511B2 publication Critical patent/JP4529511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、内部短絡安全性および耐熱性などの安全性に優れたリチウムイオン電池に関する。   The present invention relates to a lithium ion battery excellent in safety such as internal short circuit safety and heat resistance.

リチウムイオン電池などの非水電解液二次電池においては、正極板と負極板とを電気的に絶縁する層を備え、この絶縁層は電解液を保持する役割をも有する。これら絶縁層の一例としては、リチウムイオン電池で用いられるポリエチレンやポリプロピレン等からなる微多孔性フィルムセパレータや、あるいはポリマー電池に用いられる高分子マトリックスにゲル状の電解液を含浸させたゲル状電解質シートなどが挙げられる。
従来、様々な理由から、上記の絶縁層に繊維状の材料を含む例が提案されている。例えば、特許文献1には、繊維状無機質フィラーを含む多孔質シートを芯材として用いたゲル状電解質シートが記述されている。
また、特許文献2には、繊維状ポリエチレンの溶液を極板上に塗布して絶縁層を形成する技術が記述されている。しかしながら、これらの大部分が樹脂材料からなるセパレータや絶縁層は、概して高温で形状変化しやすい。よって内部短絡時や、釘のような鋭利な形状の突起物が電池を貫いた時、瞬時に発生する短絡反応熱により絶縁層が形状変化し、正負極間の絶縁を保持しきれないという課題があった。
A non-aqueous electrolyte secondary battery such as a lithium ion battery includes a layer that electrically insulates a positive electrode plate and a negative electrode plate, and this insulating layer also has a role of holding an electrolyte solution. Examples of these insulating layers include microporous film separators made of polyethylene, polypropylene, etc. used in lithium ion batteries, or gel electrolyte sheets in which a polymer matrix used in polymer batteries is impregnated with a gel electrolyte. Etc.
Conventionally, examples in which the above insulating layer includes a fibrous material have been proposed for various reasons. For example, Patent Document 1 describes a gel electrolyte sheet using a porous sheet containing a fibrous inorganic filler as a core material.
Patent Document 2 describes a technique for forming an insulating layer by applying a fibrous polyethylene solution onto an electrode plate. However, separators and insulating layers, most of which are made of a resin material, generally tend to change shape at high temperatures. Therefore, when an internal short circuit or a sharply shaped protrusion such as a nail penetrates the battery, the insulation layer changes shape due to instantaneous short-circuit reaction heat, and the insulation between the positive and negative electrodes cannot be maintained. was there.

特許文献3には、上記の耐熱性課題を解決する技術として、200℃以下に融点を有しない繊維状有機化合物と熱可塑性ポリマーとが混合されたセパレータが提案されている。
特開平11−219727号公報 特開2002−083590号公報 特開平11−040131号公報
Patent Document 3 proposes a separator in which a fibrous organic compound having no melting point at 200 ° C. or less and a thermoplastic polymer are mixed as a technique for solving the heat resistance problem.
Japanese Patent Laid-Open No. 11-219727 JP 2002-083590 A Japanese Patent Laid-Open No. 11-040131

前記した絶縁層はいずれも多孔性で、その空孔をイオンが移動することにより電池として機能している。絶縁層に含まれる繊維状材料はそれら空孔を確保する役割も果たしている。   All of the insulating layers described above are porous and function as a battery by ions moving through the pores. The fibrous material contained in the insulating layer also plays a role of securing these holes.

しかしながら、繊維状無機質フィラーを含む多孔質シートを芯材として用いたゲル状電解質シートを用いる技術においては、電解質がポリマーゲル状であるためそのイオン伝導性は非常に低く、大電流の放電が困難であった。また、多孔質シートの主成分が樹脂であるため、たとえいくらかの繊維状無機質フィラーを含んでいても、内部短絡時の発熱に耐えうるような耐熱性を得ることはできなかった。   However, in the technique using a gel electrolyte sheet using a porous sheet containing a fibrous inorganic filler as a core material, since the electrolyte is a polymer gel, its ionic conductivity is very low and it is difficult to discharge a large current. Met. In addition, since the main component of the porous sheet is a resin, even if some fibrous inorganic filler is included, it has not been possible to obtain heat resistance that can withstand heat generation during an internal short circuit.

繊維状ポリエチレンの溶液を極板上に塗布して絶縁層を形成する技術においても、絶縁層はポリエチレン繊維で構成されるため、内部短絡の際には形状変形・溶融して、正負極間の絶縁を保持できなかった。   Even in the technique of forming an insulating layer by applying a solution of fibrous polyethylene on the electrode plate, the insulating layer is composed of polyethylene fibers, so that when the internal short circuit occurs, the shape deforms and melts, and between the positive and negative electrodes Insulation could not be maintained.

200℃以下に融点を有しない繊維状有機化合物と熱可塑性ポリマーとが混合されたセパレータを使用する技術においては、アラミドのような耐熱性樹脂を含んでいるため、耐熱性はかなり向上している。しかしながら、リチウムイオン電池の内部短絡においては、短絡点のアルミニウム製正極芯材が溶融することもあり、その際の最高温度は瞬間的に700℃以上にも達すると考えられる。例えアラミドのような安定融点を有しない樹脂であっても、このような高温においては形状変形をきたすため、正負極間の絶縁を保持するこ
とはできなかった。
In a technique using a separator in which a fibrous organic compound having no melting point at 200 ° C. or less and a thermoplastic polymer are mixed, since a heat-resistant resin such as aramid is included, the heat resistance is considerably improved. . However, in an internal short circuit of a lithium ion battery, the aluminum positive electrode core material at the short circuit point may melt, and the maximum temperature at that time is considered to instantaneously reach 700 ° C. or higher. Even a resin that does not have a stable melting point, such as aramid, could not retain insulation between the positive and negative electrodes because it deformed at such a high temperature.

本発明は上記課題を解決するもので、高容量・高特性で、かつ内部短絡や釘刺し安全性に優れたリチウムイオン電池を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium ion battery that has a high capacity and high characteristics and is excellent in internal short circuit and nail penetration safety.

本発明のリチウムイオン電池の製造方法は、
(a)繊維状セラミックスフィラーを粉砕手段を用いて所望の繊維長にまで切断する工程と、
(b)少なくとも前記粉砕された繊維状セラミックスフィラーと樹脂バインダーと溶剤と混合し、分散させてスラリー化する工程と、
(c)前記スラリーを前記正極または前記負極の活物質層上に塗布し、乾燥させて、多孔性絶縁層を形成する工程と、
を含むものである。
The method for producing a lithium ion battery of the present invention includes:
(A) cutting the fibrous ceramic filler to a desired fiber length using a pulverizing means;
(B) mixing at least the pulverized fibrous ceramic filler, a resin binder, and a solvent, and dispersing and slurrying;
(C) applying the slurry onto the active material layer of the positive electrode or the negative electrode and drying to form a porous insulating layer;
Is included.

また、本発明のもう一つの製造方法は、
(a)少なくとも繊維状セラミックスフィラーと樹脂バインダーと溶剤とを混合し、分散手段を用いて前記繊維状セラミックスフィラーを所望の平均繊維長に粉砕しつつ、同時に前記繊維状セラミックスフィラーと前記樹脂バインダーと前記溶剤とを分散させてスラリー化する工程と、
(b)前記スラリーを前記正極または前記負極の活物質層上に塗布し、乾燥させて、多孔性絶縁層を形成する工程と
を含むものである。
Another manufacturing method of the present invention is as follows.
(A) Mixing at least a fibrous ceramic filler, a resin binder, and a solvent, and pulverizing the fibrous ceramic filler to a desired average fiber length using a dispersing means, and at the same time, the fibrous ceramic filler and the resin binder A step of dispersing the solvent to form a slurry;
(B) applying the slurry on the active material layer of the positive electrode or the negative electrode and drying to form a porous insulating layer.

前記構成により、本発明のリチウムイオン電池を合理的かつ制御性の良い方法で製造することが可能になる。   With the above configuration, the lithium ion battery of the present invention can be manufactured by a method that is rational and has good controllability.

本発明によれば、内部短絡や釘刺し試験において安全性が高く、かつ高容量で充放電特性に優れたリチウムイオン二次電池を提供することが可能となる。
According to the present invention, it is possible to provide a lithium ion secondary battery that is highly safe in internal short-circuiting and nail penetration tests, has a high capacity, and is excellent in charge / discharge characteristics.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態におけるリチウムイオン電池の極板構成を模式的に示した断面図である。図1において、正極1と負極2のあいだにセパレータ3が介在し、正極活物質層1a、負極活物質層2aのいずれかの表面上にセラミックスフィラーと樹脂バインダーとを含む多孔性絶縁層4が形成されている。   FIG. 1 is a cross-sectional view schematically showing the electrode plate configuration of a lithium ion battery according to an embodiment of the present invention. In FIG. 1, a separator 3 is interposed between a positive electrode 1 and a negative electrode 2, and a porous insulating layer 4 containing a ceramic filler and a resin binder is formed on the surface of either the positive electrode active material layer 1a or the negative electrode active material layer 2a. Is formed.

まず、多孔性絶縁層4について説明する。   First, the porous insulating layer 4 will be described.

図2は本発明の一実施の形態における多孔性絶縁層4を拡大した模式図である。多孔性絶縁層は少量の樹脂バインダー(図示せず)と、繊維状セラミックスフィラー5を含んでおり、繊維状セラミックスフィラー5間には空孔6が数多く存在する。   FIG. 2 is an enlarged schematic view of the porous insulating layer 4 in one embodiment of the present invention. The porous insulating layer contains a small amount of a resin binder (not shown) and a fibrous ceramic filler 5, and there are many pores 6 between the fibrous ceramic filler 5.

繊維状セラミックスフィラー5を構成するセラミックス材料としては、例えばアルミナ、シリカ、チタニア、ジルコニア、酸化亜鉛、マグネシア、ムライト等の酸化物系セラミックス、例えば窒化珪素、窒化チタン等の窒化物セラミックス、その他例えばシリコンカーバイド、炭酸カルシウム、タルク、カオリン等のセラミックスや、これらの複合化合物を用いることができる。これらの材料は単独もしくは、必要に応じて混合して用いても良い。   Examples of the ceramic material constituting the fibrous ceramic filler 5 include oxide ceramics such as alumina, silica, titania, zirconia, zinc oxide, magnesia, mullite, nitride ceramics such as silicon nitride and titanium nitride, and others such as silicon. Ceramics such as carbide, calcium carbonate, talc, kaolin, and complex compounds thereof can be used. These materials may be used alone or in combination as necessary.

これら繊維状セラミックスフィラー5の繊維径は2μm以下であることが、イオン伝導のための空孔を効率よく設けることができるので好ましい。繊維径が2μmより大きいと空孔が大きくなりすぎ、空孔内に金属リチウムが析出しやすくなったり、電池の内部ショートが増加するなどの不具合を引き起こしてしまう。   The fiber diameter of the fibrous ceramic filler 5 is preferably 2 μm or less because holes for ion conduction can be efficiently provided. If the fiber diameter is larger than 2 μm, the vacancies become too large, which causes problems such as easy deposition of metallic lithium in the vacancies and an increase in internal short circuit of the battery.

より好ましくは0.1μm〜1μmの範囲である。この範囲であると、電池性能が特に優れた多孔性絶縁層を得ることができ、塗料化と塗布工程においても扱いやすく生産性の高いものとなる。   More preferably, it is the range of 0.1 micrometer-1 micrometer. Within this range, it is possible to obtain a porous insulating layer with particularly excellent battery performance, and it is easy to handle in the coating and coating process and has high productivity.

繊維状セラミックスフィラーの繊維長と繊維径のアスペクト比は3以上であることが望ましい。繊維長としては10μm以下であれば適当である。アスペクト比が小さく3以下であると、フィラー間の空孔を増やす効果が充分でない。また、繊維長が10μm以上であると、スラリーの粘度が極度に高くなって輸送等のハンドリングが困難であったり、配管で詰まったりする。また、後述するように電池容量を確保するために厚さ10μm以下の薄い絶縁性多孔層を設けようとすると、薄く塗布できなかったり、塗布装置で目詰まりしたりするなど、様々な製造上の不具合が発生してしまう。   The aspect ratio between the fiber length and the fiber diameter of the fibrous ceramic filler is desirably 3 or more. A fiber length of 10 μm or less is appropriate. When the aspect ratio is small and 3 or less, the effect of increasing the pores between the fillers is not sufficient. On the other hand, if the fiber length is 10 μm or more, the viscosity of the slurry becomes extremely high, handling such as transportation is difficult, or the pipe is clogged. In addition, as will be described later, when a thin insulating porous layer having a thickness of 10 μm or less is provided in order to ensure battery capacity, various coating processes such as being unable to be applied thinly or being clogged with a coating apparatus. A malfunction will occur.

繊維状フィラーは所望の繊維長のものを準備してスラリー化工程に投入しても良いし、塗料化前に所望の繊維長になるまで切断したものを投入しても良い。切断には、ジェット粉砕機やボールミル、ビーズミルなどの粉砕手段を用いれば良い。また、比較的長い繊維
長のものを用意し、後のスラリー化工程において、フィラーとバインダー及び溶剤を分散させつつ、同時にフィラーを切断する方法がある。その際は、スラリー化工程において分散度を制御することにより、所望のフィラー繊維長を決めることが可能であり、生産性に優れた合理的な方法である。
A fibrous filler having a desired fiber length may be prepared and introduced into a slurrying process, or a filler cut to a desired fiber length before coating may be introduced. For the cutting, a pulverizing means such as a jet pulverizer, a ball mill, or a bead mill may be used. Further, there is a method of preparing a fiber having a relatively long fiber length and simultaneously cutting the filler while dispersing the filler, the binder and the solvent in the subsequent slurrying step. In that case, it is possible to determine the desired filler fiber length by controlling the degree of dispersion in the slurrying step, which is a rational method with excellent productivity.

本発明の重要な構成要件である繊維状セラミックスフィラーを含むことは、イオン伝導のための空孔を充分に確保することが目的である。従来のようにフィラーが球形もしくはそれに近い形であると、フィラーが密に詰まった膜となって、フィラー間の空孔を増やすことができない。本発明においては繊維状セラミックスフィラーを用いることにより、フィラーが詰まり難い、すなわちフィラー間の空孔が多い多孔性絶縁層を得ることができる。   The inclusion of the fibrous ceramic filler, which is an important component of the present invention, is intended to ensure sufficient holes for ionic conduction. If the filler has a spherical shape or a shape close to that as in the conventional case, the filler becomes a densely packed film, and pores between the fillers cannot be increased. In the present invention, by using a fibrous ceramic filler, it is possible to obtain a porous insulating layer in which the filler is hardly clogged, that is, there are many voids between the fillers.

なお、セラミックスフィラーとして上記のような繊維状セラミックスフィラーとともに、非繊維状のフィラーを混合して用いても良い。非繊維状のフィラーとしては、例えば球状や塊状等、その他あらゆる形状のものを用いることができる。その材料としては上述した繊維状セラミックスフィラーと同様のものを用いることができる。   In addition, a non-fibrous filler may be mixed and used together with the fibrous ceramic filler as described above as the ceramic filler. As the non-fibrous filler, for example, any other shape such as a spherical shape or a lump shape can be used. As the material, the same material as the fibrous ceramic filler described above can be used.

本発明のリチウムイオン電池においては、活物質層2a上に多孔性絶縁層4が存在することにより、内部短絡や釘刺し試験での安全性が向上している。多孔性絶縁層4がない場合、異物等によってセパレータ3に穴が開いて正負極間が短絡すると、短絡点に過大な電流が流れてジュール熱が発生することがある。その場合、発生した熱により短絡点周辺のセパレータが溶融もしくは収縮して穴が拡大し、さらに短絡面積が広がってジュール熱発生が継続され、この繰り返しにより電池の温度が上昇し続け、異常発熱や外観変形を起こす可能性がある。本発明のリチウムイオン電池においては、セパレータ3に穴が開いて正負極間が短絡した場合、セパレータ3が溶融もしくは収縮して穴が拡大してもセラミックスフィラーを含む多孔性絶縁層4が存在するため、正負極間の短絡面積は広がらない。よって、ジュール熱の発生は拡大せず、異常発熱には至らない。   In the lithium ion battery of the present invention, the presence of the porous insulating layer 4 on the active material layer 2a improves the safety in internal short circuit and nail penetration tests. In the case where the porous insulating layer 4 is not provided, when a hole is opened in the separator 3 due to a foreign substance or the like and the positive and negative electrodes are short-circuited, an excessive current may flow to the short-circuit point to generate Joule heat. In that case, the separator around the short-circuit point melts or contracts due to the generated heat, the hole expands, the short-circuit area further expands, and Joule heat generation continues.By repeating this, the temperature of the battery continues to rise, causing abnormal heat generation and It may cause external deformation. In the lithium ion battery of the present invention, when a hole is opened in the separator 3 and the positive and negative electrodes are short-circuited, the porous insulating layer 4 containing a ceramic filler is present even if the separator 3 melts or contracts to enlarge the hole. Therefore, the short-circuit area between the positive and negative electrodes does not increase. Therefore, the generation of Joule heat does not expand and does not lead to abnormal heat generation.

多孔性絶縁層4は、フィラーと樹脂バインダーとを溶媒とともに分散、スラリー化したものを活物質層2a上に塗布し、乾燥させて得られる。   The porous insulating layer 4 is obtained by applying a slurry of a filler and a resin binder dispersed together with a solvent and applying the slurry on the active material layer 2a and drying it.

ここで分散と同時にフィラーの切断を行なう場合、スラリーの粒度分布を計測して、出来あがる多孔膜中のフィラー繊維長を決める。   Here, when the filler is cut simultaneously with the dispersion, the particle size distribution of the slurry is measured to determine the filler fiber length in the resulting porous film.

活物質層2a上への塗布は、例えばグラビアコート、ダイコート等の連続塗布法や、インクジェットノズルを用いた描画法、スプレーコート法などを用いる。   For the application onto the active material layer 2a, for example, a continuous application method such as gravure coating or die coating, a drawing method using an inkjet nozzle, a spray coating method, or the like is used.

樹脂バインダーとしては、耐熱・耐電解液性を有するものが用いられるが、PVDF(ポリフッ化ビニリデン)のほか、耐熱性が高くゴム弾性を有する例えばポリアクリロニトリル単位を含むゴム性状高分子などが好ましい。このような材料を結着剤として含む多孔性絶縁層は、正負極にセパレータを介し捲回構成する場合にひび割れや剥がれが発生しないため、歩留を高く維持しつつ生産できるという利点を有する。   As the resin binder, a resin binder having heat resistance and electrolytic solution resistance is used. In addition to PVDF (polyvinylidene fluoride), for example, a rubbery polymer including a polyacrylonitrile unit having high heat resistance and rubber elasticity is preferable. A porous insulating layer containing such a material as a binder has an advantage that it can be produced while maintaining a high yield because cracking and peeling do not occur when the positive and negative electrodes are wound through a separator.

この多孔性絶縁層4の厚みは特に限定されないものの、前述した多孔性絶縁層4の効用を発揮しつつ設計容量を維持する観点から、組み合わせるセパレータ3の厚みとの総和が現セパレータ仕様(15〜30μm)と同程度、すなわち1〜30μm程度であることが好ましい。   Although the thickness of the porous insulating layer 4 is not particularly limited, from the viewpoint of maintaining the design capacity while demonstrating the effect of the porous insulating layer 4 described above, the sum of the thicknesses of the combined separators 3 is the current separator specification (15- 30 μm), that is, about 1 to 30 μm.

正極1については、活物質としてコバルト酸リチウムおよびその変性体(アルミニウムやマグネシウムを共晶させたものなど)・ニッケル酸リチウムおよびその変性体(一部ニ
ッケルをコバルト置換させたものなど)・マンガン酸リチウムおよびその変性体などの複合酸化物等の粒子を挙げることができる。結着剤としてはポリテトラフルオロエチレン(PTFE)・変性アクリロニトリルゴム粒子バインダーを増粘効果のあるカルボキシメチルセルロース(CMC)・ポリエチレンオキシド(PEO)・可溶性変性アクリロニトリルゴムと組み合わせたものや、PVDFおよびその変性体等が用いられる。また、導電剤としてアセチレンブラック・各種グラファイト等を添加する。これらの正極材料はN−メチルピロリドン等の溶剤とともにスラリー化された合剤として、集電体上に塗布され、乾燥、圧延工程を経て、活物質層1aを備えた正極1が出来あがる。
For the positive electrode 1, lithium cobaltate and its modified products (such as those obtained by eutectic aluminum and magnesium), lithium nickelate and its modified products (such as those obtained by partially replacing cobalt with nickel), and manganic acid Examples thereof include particles of composite oxides such as lithium and modified products thereof. As binder, polytetrafluoroethylene (PTFE) / modified acrylonitrile rubber particle binder combined with carboxymethyl cellulose (CMC) / polyethylene oxide (PEO) / soluble modified acrylonitrile rubber with thickening effect, PVDF and its modification The body is used. Moreover, acetylene black, various graphites, etc. are added as a electrically conductive agent. These positive electrode materials are applied onto a current collector as a slurry mixed with a solvent such as N-methylpyrrolidone, and a positive electrode 1 having an active material layer 1a is completed through drying and rolling processes.

負極2については、活物質として各種天然黒鉛および人造黒鉛・シリサイドなどのシリコン系複合材料・および各種合金組成材料の粒子を用いる。結着剤としてはPVDFおよびその変等の各種バインダーを用いることができる。これらの負極材料も正極と同様のプロセスを経て、負極2となる。   As for the negative electrode 2, particles of various natural graphites, silicon-based composite materials such as artificial graphite and silicide, and various alloy composition materials are used as active materials. Various binders such as PVDF and its modifications can be used as the binder. These negative electrode materials also become the negative electrode 2 through the same process as the positive electrode.

電解液については、塩としてLiPF6およびLiBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)を単独または組み合わせて用いることができる。また正負極上に良好な皮膜を形成させたり、過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)等を添加することも可能である。 For the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as a salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) can be used alone or in combination as a solvent. In addition, vinylene carbonate (VC), cyclohexylbenzene (CHB), or the like can be added in order to form a good film on the positive and negative electrodes or to ensure stability during overcharge.

セパレータ3については、リチウムイオン電池の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的であり、また態様として好ましい。このセパレータの厚みは特に限定されないものの、前述した多孔層の効用を発揮しつつ設計容量を維持する観点から、組み合わせる多孔膜厚との総和が現セパレータ仕様(15〜30μm)と同程度、すなわち5〜25μmであることがより好ましい。   The separator 3 is not particularly limited as long as it has a composition that can withstand the range of use of the lithium ion battery, but a microporous film of an olefin-based resin such as polyethylene or polypropylene is generally used singly or in combination. Also preferred as an embodiment. Although the thickness of the separator is not particularly limited, from the viewpoint of maintaining the design capacity while demonstrating the effect of the porous layer described above, the sum of the combined porous film thicknesses is about the same as the current separator specification (15 to 30 μm), that is, 5 More preferably, it is ˜25 μm.

なお、必要に応じて例えば不織布などの安価なセパレータを用いることも可能である。また、例えばアラミド樹脂やアルミナ微粒子等を含んだ耐熱性に優れたセパレータを使用すれば、さらに安全性が向上して好ましい。   Note that an inexpensive separator such as a nonwoven fabric can be used as necessary. For example, it is preferable to use a separator having excellent heat resistance including, for example, an aramid resin or alumina fine particles because the safety is further improved.

なお本実施の形態では、図1として負極活物質層2a上に絶縁性多孔層4が設けられた例を示したが、絶縁性多孔層は正負極いずれでも、あるいは両方に設けられていても良い。   In the present embodiment, the example in which the insulating porous layer 4 is provided on the negative electrode active material layer 2a is shown in FIG. 1, but the insulating porous layer may be provided on either the positive electrode or the negative electrode. good.

また、図2は実施の形態を概念的に表したものであり、フィラーや絶縁性多孔層などの本発明の構成要件の性状等を具体的に限定するものではない。   FIG. 2 conceptually shows the embodiment, and does not specifically limit the properties of the constituent elements of the present invention such as the filler and the insulating porous layer.

以下、実施例をあげて本発明をより具体的に説明する。
(実施例1)
(a)正極の作製
コバルト酸リチウム3kgを、呉羽化学(株)製PVDF#1320(固形分12重量%のN−メチルピロリドン(NMP)溶液)1kg、アセチレンブラック90gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極ペーストを作製した。このペーストを15μm厚のアルミニウム箔に塗布乾燥し、総厚が160μmとなるように圧延した後、円筒型18650ケースに挿入可能な幅にスリットして、正極板を得た。
(b)負極の作製
人造黒鉛3kgを、日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム粒子結着剤
BM−400B(固形分40重量%)75g、CMC30gおよび適量の水とともに双腕式練合機にて攪拌し、負極ペーストを作製した。このペーストを10μm厚の銅箔に塗布乾燥し、総厚が180μmとなるように圧延した後、円筒型18650ケースに挿入可能な幅にスリットし、負極板を得た。
(c)多孔性絶縁層の形成
繊維径0.05μm〜4μm、繊維長10〜100μmのアルミナ短繊維1900gを用意し、ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量%)1250g及び適量の溶剤NMPを混合し、ビーズ分散機にてアルミナ短繊維を粉砕切断しながらスラリー化した。スラリー中の繊維長を粒度分布計で測定しながら、所望の繊維長になるまで分散処理を行ない、繊維長を制御した。このスラリーをグラビア印刷によって負極活物質層上に塗布し、乾燥して、厚さ8μmの多孔性絶縁層を形成した。
(e)電池の組立
これらの正負極を、厚み13μmのポリエチレン微多孔フィルムをセパレータに用いて捲回構成し、所定の寸法で切断して円筒型ケース内に挿入した。EC・DMC・EMC混合溶媒にLiPF6を1M溶解させた電解液5.5gをケース内に注入して封口し、設計容量が2000mAhの円筒型18650リチウムイオン電池を作製した。
(実施例2)
実施例1とは分散後の繊維状セラミックスフィラーの繊維径を次のように変更した。繊維状セラミックスフィラーとして繊維径0.2μm、平均繊維長100μmのアルミナ短繊維を用意し、分散時間を変えることで繊維長を0.2μm〜15μmまで制御した。他工程は実施例1と同様の方法で電池を作製し、実施例2とした。
(比較例1)
多孔性絶縁層に繊維状セラミックスフィラーを含むことなく、電池を作製したものを比較例1とする。すなわち、フィラーとして平均粒子径0.3μmのアルミナ微粒子1900g、ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量%)1250g及び適量の溶剤NMPと共にビーズ分散機にてスラリー化し、樹脂バインダーと微粒子フィラーとを含んだ多孔性絶縁層形成用のスラリーを調製した。このスラリーをグラビア印刷によって負極活物質層上に塗布し、乾燥して多孔性絶縁層を形成した。得られた多孔質絶縁層の厚みは8μmであった。他の工程はすべて実施例1と同様にした。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
(A) Preparation of positive electrode 3 kg of lithium cobaltate together with 1 kg of PVDF # 1320 (N-methylpyrrolidone (NMP) solution with a solid content of 12% by weight), 90 g of acetylene black and an appropriate amount of NMP manufactured by Kureha Chemical Co., Ltd. The mixture was stirred with a kneader to prepare a positive electrode paste. This paste was applied and dried on a 15 μm thick aluminum foil, rolled to a total thickness of 160 μm, and then slit to a width that could be inserted into a cylindrical type 18650 case to obtain a positive electrode plate.
(B) Preparation of negative electrode 3 kg of artificial graphite was mixed with Nippon Zeon Co., Ltd. styrene-butadiene copolymer rubber particle binder BM-400B (solid content 40% by weight) 75 g, CMC 30 g and an appropriate amount of water. The mixture was stirred in a combined machine to prepare a negative electrode paste. This paste was applied and dried on a 10 μm thick copper foil, rolled to a total thickness of 180 μm, and then slit into a width that could be inserted into a cylindrical 18650 case to obtain a negative electrode plate.
(C) Formation of porous insulating layer 1900 g of alumina short fibers having a fiber diameter of 0.05 μm to 4 μm and a fiber length of 10 to 100 μm are prepared, and 1250 g of a polyacrylonitrile-modified rubber binder BM-720H (solid content 8% by weight) An appropriate amount of solvent NMP was mixed and slurried while grinding and cutting the alumina short fibers with a bead disperser. While measuring the fiber length in the slurry with a particle size distribution meter, dispersion treatment was performed until the desired fiber length was achieved, and the fiber length was controlled. This slurry was applied onto the negative electrode active material layer by gravure printing and dried to form a porous insulating layer having a thickness of 8 μm.
(E) Battery assembly These positive and negative electrodes were wound using a polyethylene microporous film having a thickness of 13 μm as a separator, cut into predetermined dimensions, and inserted into a cylindrical case. An electrolyte solution in which 1M LiPF 6 was dissolved in EC / DMC / EMC mixed solvent was injected into the case and sealed to prepare a cylindrical 18650 lithium ion battery having a design capacity of 2000 mAh.
(Example 2)
In Example 1, the fiber diameter of the fibrous ceramic filler after dispersion was changed as follows. An alumina short fiber having a fiber diameter of 0.2 μm and an average fiber length of 100 μm was prepared as a fibrous ceramic filler, and the fiber length was controlled from 0.2 μm to 15 μm by changing the dispersion time. In other steps, a battery was produced in the same manner as in Example 1, and Example 2 was obtained.
(Comparative Example 1)
A battery produced without including a fibrous ceramic filler in the porous insulating layer is referred to as Comparative Example 1. That is, 1900 g of alumina fine particles having an average particle size of 0.3 μm as a filler, 1250 g of a polyacrylonitrile-modified rubber binder BM-720H (solid content 8 wt%) and an appropriate amount of solvent NMP were slurried with a bead disperser, A slurry for forming a porous insulating layer containing a fine particle filler was prepared. This slurry was applied onto the negative electrode active material layer by gravure printing and dried to form a porous insulating layer. The thickness of the obtained porous insulating layer was 8 μm. All other steps were the same as in Example 1.

実施例および比較例の評価を次のように行なった。それらの結果を構成条件と共に(表1)に示す   Examples and comparative examples were evaluated as follows. The results are shown in (Table 1) together with the configuration conditions.

Figure 0004529511
Figure 0004529511

1.空孔率の評価
上記スラリーを銅箔上にアプリケータによって塗布し、30μm厚の多孔性絶縁層を形成した。セラミックスフィラーとバインダーのそれぞれの密度と添加比率とから固体部分の体積を求め、多孔性絶縁層全体の体積で除することによって求めた。
2.電池充放電特性
完成電池の仕上げ充放電を2回おこない、45℃環境で7日間保存した後、以下の充放電試験を、(1)および(2)の充電を20℃環境下でおこない、(3)の2C放電を20℃および0℃環境下で実施した。
1. Evaluation of Porosity The slurry was applied onto a copper foil with an applicator to form a 30 μm thick porous insulating layer. The volume of the solid part was determined from the density and addition ratio of the ceramic filler and binder, and the volume was determined by dividing by the volume of the entire porous insulating layer.
2. Battery charge / discharge characteristics Finished charge / discharge of the finished battery is performed twice and stored for 7 days in a 45 ° C. environment. Then, the following charge / discharge tests are performed in the (1) and (2) conditions in a 20 ° C. environment. The 2C discharge of 3) was carried out at 20 ° C. and 0 ° C. environment.

(1) 定電流充電:1400mA(終止電圧4.2V)
(2) 定電圧充電:4.2V(終止電流100mA)
(3) 定電流放電(2C放電):4000mA(終止電圧3V)
このときの充放電容量を表1に示した。
3.釘刺し安全性
電池充放電特性評価後の電池について、以下の充電を行った。
(1) Constant current charging: 1400 mA (end voltage 4.2 V)
(2) Constant voltage charging: 4.2V (end current 100mA)
(3) Constant current discharge (2C discharge): 4000 mA (end voltage 3 V)
The charge / discharge capacity at this time is shown in Table 1.
3. Nail penetration safety The battery after the battery charge / discharge characteristics evaluation was charged as follows.

(1) 定電流充電:1400mA(終止電圧4.25V)
(2) 定電圧充電:4.25V(終止電流100mA)
充電後の電池について、2.7mm径の鉄製丸釘を、20℃環境下で5mm/秒の速度で貫通させたときの発熱状態を観測した。この電池の貫通箇所近傍における90秒後の到達温度を表1に示した。
(1) Constant current charge: 1400 mA (end voltage 4.25 V)
(2) Constant voltage charging: 4.25 V (end current 100 mA)
Regarding the battery after charging, a heat generation state was observed when a 2.7 mm diameter iron round nail was penetrated at a speed of 5 mm / second in a 20 ° C. environment. Table 1 shows the temperature reached after 90 seconds in the vicinity of the penetration portion of the battery.

実施例1、2と比較例の空孔率を比較すると、繊維状フィラーを用いた本発明のほうが明らかに空孔率が高いことがわかる。電池特性では、実施例と比較例の2C放電容量を比較すると、20℃環境ではあまり差が見られないが、0℃環境ではいずれの実施例も比較例より容量が大きくなっていた。本発明の効果により空孔率が高くなりイオン伝導性が向上したため、低温かつ高レートという厳しい試験条件によって、本発明の優位性が顕著に現れたためと考えられる。   Comparing the porosity of Examples 1 and 2 and the comparative example, it can be seen that the present invention using the fibrous filler has a clearly higher porosity. When the 2C discharge capacities of the example and the comparative example were compared in the battery characteristics, there was not much difference in the 20 ° C. environment, but in each of the examples, the capacity was larger than the comparative example in the 0 ° C. environment. It is considered that the superiority of the present invention is remarkably exhibited under severe test conditions of low temperature and high rate because the porosity is increased and the ion conductivity is improved by the effect of the present invention.

釘刺し試験においては、実施例の電池はいずれも比較例同様、釘刺し後の発熱が抑制されており、異常発熱や外観変形といった不具合は見られなかった。   In the nail penetration test, as in the comparative example, all of the batteries of the examples suppressed heat generation after nail penetration, and no defects such as abnormal heat generation and appearance deformation were observed.

実施例の電池を試験後に分解して調べたところ、いずれの電池においても多孔質絶縁層がその活物質層上に試験前と同様に存在しており、さらにセパレータの溶融もわずかな範囲に留まっていた。このことから、釘刺し短絡による発熱においても多孔性絶縁層は収縮せず、短絡箇所の拡大を抑止できたため、大幅な過熱を防げたものと考えられる。   When the batteries of the examples were disassembled and examined after the test, the porous insulating layer was present on the active material layer in the same manner as before the test, and the melting of the separator remained in a slight range. It was. From this, it is considered that the porous insulating layer did not contract even in the heat generation due to the nail penetration short circuit and the expansion of the short circuit part could be suppressed, so that it was possible to prevent a significant overheating.

実施例1においては、繊維径2μm以下のものは問題なく塗布できたが、繊維径4μmのものではグラビアコートで塗布する際に塗布むらが発生することがあり、そのときには多孔性が塗布されていない部位も見うけられた。また、塗布されている箇所においても、多孔層表面の凹凸が大きくなってしまうこともあった。よって、繊維状フィラーの繊維径は2μm以下のものが、塗布工程上からは望ましい形態であった。   In Example 1, those having a fiber diameter of 2 μm or less could be applied without any problem. However, in the case of a fiber diameter of 4 μm, uneven coating may occur when applying by gravure coating, and at that time, porosity is applied. Some parts were not seen. Moreover, the unevenness | corrugation on the surface of a porous layer may become large also in the location applied. Therefore, the fiber diameter of the fibrous filler is preferably 2 μm or less from the viewpoint of the coating process.

実施例2においては、繊維長が10μm以下のものは問題なく塗布できたが、繊維長18μmのものでは塗布の際にスジむら発生頻度がやや高かった。よって、繊維状フィラーの繊維長は10μm以下のものが望ましいといえる。   In Example 2, a fiber having a fiber length of 10 μm or less could be applied without problems, but a fiber having a fiber length of 18 μm had a slightly high frequency of occurrence of uneven stripes during application. Therefore, it can be said that the fiber length of the fibrous filler is desirably 10 μm or less.

表1に示す空孔率測定及び電池特性の結果は上記のような塗布むらやスジむらのない部位を選んで評価したものである。
(実施例3)
実施例1とは繊維状セラミックスフィラーの粉砕・切断工程を次のように変更した。また、スラリー化工程において繊維状セラミックスフィラーがさらに粉砕・切断されないように、ビーズミルに代えてメディアレスの分散機を用いた。他工程は同様の方法で電池を作製し、実施例3とした。
The results of the porosity measurement and battery characteristics shown in Table 1 were evaluated by selecting a portion having no coating unevenness or stripe unevenness as described above.
(Example 3)
In Example 1, the pulverization / cutting process of the fibrous ceramic filler was changed as follows. Further, a medialess disperser was used instead of the bead mill so that the fibrous ceramic filler was not further crushed and cut in the slurrying step. In other processes, a battery was produced in the same manner as Example 3.

繊維径0.2μm及び0.7μm、繊維長100μmのアルミナ短繊維を用意し、ジェット式ミルで粉砕処理を行なって繊維長がそれぞれ2μm、4μmになるように切断した。これらの繊維状フィラーを1900g、ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量%)1250g及び適量の溶剤NMPを混合し、メディアレス分散機クレアミックス(エムテクニック(株)製品名)にて、12000rpm−5分の条件で分散処理を行ない、多孔層形成用スラリーを得た。本分散工程では、ビーズのようなメディアとフィラーとの衝突がないためため、分散工程での繊維状セラミックスフィラーの粉砕・切断はみられず、繊維長の変化は無かった。   Alumina short fibers having a fiber diameter of 0.2 μm and 0.7 μm and a fiber length of 100 μm were prepared, and pulverized by a jet mill to cut the fiber lengths to 2 μm and 4 μm, respectively. 1900 g of these fibrous fillers, 1250 g of polyacrylonitrile-modified rubber binder BM-720H (solid content 8% by weight) and an appropriate amount of solvent NMP are mixed, and a medialess disperser CLEARMIX (product name of M Technique Co., Ltd.) Then, a dispersion treatment was performed under the condition of 12000 rpm-5 minutes to obtain a slurry for forming a porous layer. In this dispersion step, since there was no collision between the media such as beads and the filler, the fibrous ceramic filler was not crushed or cut in the dispersion step, and the fiber length did not change.

このスラリーをグラビア印刷によって負極活物質層上に塗布し、乾燥して、厚さ8μmの多孔性絶縁層を形成した。
(実施例4)
実施例1とは繊維状セラミックスフィラーの種類を次のように変更し、他工程は同様の方法で電池を作製し、実施例4とした。
This slurry was applied onto the negative electrode active material layer by gravure printing and dried to form a porous insulating layer having a thickness of 8 μm.
Example 4
In Example 1, the type of the fibrous ceramic filler was changed as follows, and in the other steps, a battery was produced in the same manner, and Example 4 was obtained.

1.繊維径0.5μm、繊維長100μmのアルミナ・シリカ複合短繊維
2.繊維径0.2μm、繊維長100μmのジルコニア繊維
3.繊維径0.1μm、繊維長50μmの炭酸カルシウム繊維
4.繊維径0.2μm、繊維長50μmのシリコンカーバイド繊維
それぞれの繊維は分散工程で切断され、多孔層中では表2に示した繊維長になっていた。
1. 1. Alumina / silica composite short fiber having a fiber diameter of 0.5 μm and a fiber length of 100 μm. 2. Zirconia fiber having a fiber diameter of 0.2 μm and a fiber length of 100 μm. 3. Calcium carbonate fiber having a fiber diameter of 0.1 μm and a fiber length of 50 μm. Silicon carbide fibers having a fiber diameter of 0.2 μm and a fiber length of 50 μm Each fiber was cut in the dispersion step and had a fiber length shown in Table 2 in the porous layer.

実施例3、4についても、実施例1、2と同様の評価を行なった。その結果を表2に示
す。
For Examples 3 and 4, the same evaluation as in Examples 1 and 2 was performed. The results are shown in Table 2.

Figure 0004529511
Figure 0004529511

実施例3、4と比較例の空孔率を比較すると、繊維状フィラーを用いた本発明のほうが明らかに空孔率が高いことがわかる。電池特性でも、実施例1、2と同様に、0℃環境ではいずれも容量が大きくなっていた。本発明の効果により空孔率が高くなりイオン伝導性が向上したため、低温かつ高レートという厳しい試験条件によって、本発明の優位性が顕著に現れたためと考えられる。 Comparing the porosity of Examples 3 and 4 and the comparative example, it can be seen that the present invention using the fibrous filler clearly has a higher porosity. Also in the battery characteristics, as in Examples 1 and 2, the capacity was large in the 0 ° C. environment. It is considered that the superiority of the present invention is remarkably exhibited under severe test conditions of low temperature and high rate because the porosity is increased and the ion conductivity is improved by the effect of the present invention.

釘刺し試験においては、実施例の電池はいずれも比較例同様、釘刺し後の発熱が抑制されており、異常発熱や外観変形といった不具合は見られなかった。以上のことから、本発明の電池は高い空孔率の多孔層を備えており、充放電特性に優れ、かつ高い安全性を有していることが確認された。   In the nail penetration test, as in the comparative example, all of the batteries of the examples suppressed heat generation after nail penetration, and no defects such as abnormal heat generation and appearance deformation were observed. From the above, it was confirmed that the battery of the present invention includes a porous layer having a high porosity, is excellent in charge / discharge characteristics, and has high safety.

本発明のリチウムイオン電池は、安全性の優れたポータブル用電源等として有用である。   The lithium ion battery of the present invention is useful as a portable power source having excellent safety.

本発明のリチウムイオン電池の構成を模式的に示した断面図Sectional drawing which showed the structure of the lithium ion battery of this invention typically 本発明の一実施の形態における多孔性絶縁層を模式的に示した拡大図The enlarged view which showed typically the porous insulating layer in one embodiment of this invention

符号の説明Explanation of symbols

1 正極
1a 正極活物質層
2 負極
2a 負極活物質層
3 セパレータ
4 多孔性絶縁層
5 繊維状セラミックスフィラー
6 空孔

DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode active material layer 2 Negative electrode 2a Negative electrode active material layer 3 Separator 4 Porous insulating layer 5 Fibrous ceramic filler 6 Hole

Claims (2)

正極活物質層を備えた正極と、負極活物質層を備えた負極と、非水系電解液とを備え、前記正極活物質層または前記負極活物質層のうち少なくともいずれかの表面に繊維状セラミックスフィラーと樹脂バインダーとを含む多孔性絶縁層が形成されたリチウムイオン電池の製造方法であって、
前記繊維状セラミックスフィラーを粉砕手段を用いて所望の繊維長にまで切断する工程と、
少なくとも前記粉砕された繊維状セラミックスフィラーと樹脂バインダーと溶剤と混合し、分散させてスラリー化する工程と、
前記スラリーを前記正極または前記負極の活物質層上に塗布し、乾燥させて、多孔性絶縁層を形成する工程と、
を含むことを特徴とするリチウムイオン電池の製造方法。
A positive electrode provided with a positive electrode active material layer, a negative electrode provided with a negative electrode active material layer, and a non-aqueous electrolyte solution, and fibrous ceramics on the surface of at least one of the positive electrode active material layer and the negative electrode active material layer A method for producing a lithium ion battery in which a porous insulating layer containing a filler and a resin binder is formed,
Cutting the fibrous ceramic filler to a desired fiber length using a grinding means;
Mixing at least the pulverized fibrous ceramic filler, a resin binder, and a solvent, and dispersing and slurrying; and
Applying the slurry onto the active material layer of the positive electrode or the negative electrode and drying to form a porous insulating layer;
A method for producing a lithium ion battery, comprising:
正極活物質層を備えた正極と、負極活物質層を備えた負極と、非水系電解液とを備え、前記正極活物質層または前記負極活物質層のうち少なくともいずれかの表面にセラミックスフィラーと樹脂バインダーとを含む多孔性絶縁層が形成されたリチウムイオン電池の製造方法であって、
少なくとも繊維状セラミックスフィラーと樹脂バインダーと溶剤とを混合し、分散手段を用いて前記繊維状セラミックスフィラーを所望の平均繊維長に粉砕しつつ、同時に前記繊維状セラミックスフィラーと前記樹脂バインダーと前記溶剤とを分散させてスラリー化する工程と、
前記スラリーを前記正極または前記負極の活物質層上に塗布し、乾燥させて、多孔性絶縁層を形成する工程と、
を含むことを特徴とするリチウムイオン電池の製造方法。
A positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a non-aqueous electrolyte solution, and a ceramic filler on at least one surface of the positive electrode active material layer or the negative electrode active material layer A method for producing a lithium ion battery in which a porous insulating layer containing a resin binder is formed,
At least the fibrous ceramic filler, the resin binder, and the solvent are mixed, and the fibrous ceramic filler, the resin binder, and the solvent are simultaneously mixed while pulverizing the fibrous ceramic filler to a desired average fiber length by using a dispersion unit. A step of dispersing the slurry to form a slurry;
Applying the slurry onto the active material layer of the positive electrode or the negative electrode and drying to form a porous insulating layer;
A method for producing a lithium ion battery, comprising:
JP2004098984A 2004-03-30 2004-03-30 Lithium ion battery Expired - Fee Related JP4529511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098984A JP4529511B2 (en) 2004-03-30 2004-03-30 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098984A JP4529511B2 (en) 2004-03-30 2004-03-30 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2005285605A JP2005285605A (en) 2005-10-13
JP4529511B2 true JP4529511B2 (en) 2010-08-25

Family

ID=35183752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098984A Expired - Fee Related JP4529511B2 (en) 2004-03-30 2004-03-30 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP4529511B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659854B1 (en) 2005-04-28 2006-12-19 삼성에스디아이 주식회사 Lithium secondary battery
JP5219621B2 (en) * 2007-08-22 2013-06-26 三洋電機株式会社 Non-aqueous electrolyte battery
JP4661843B2 (en) 2007-08-28 2011-03-30 ソニー株式会社 Nonaqueous electrolyte secondary battery
KR100971345B1 (en) 2007-10-08 2010-07-20 삼성에스디아이 주식회사 Electrode assembly and rechargeable battery comprising the same
JP2010267475A (en) * 2009-05-14 2010-11-25 Panasonic Corp Lithium ion secondary battery
JP6125182B2 (en) * 2012-09-14 2017-05-10 株式会社東芝 Nonaqueous electrolyte secondary battery
JP5924253B2 (en) * 2012-12-10 2016-05-25 株式会社豊田自動織機 Electrode of power storage device having electrolytic solution, and method of manufacturing electrode of power storage device having electrolytic solution
US10121607B2 (en) * 2013-08-22 2018-11-06 Corning Incorporated Ceramic separator for ultracapacitors
JP6229430B2 (en) * 2013-10-24 2017-11-15 株式会社豊田自動織機 Stacked battery
CN104466188B (en) * 2014-12-25 2016-09-14 江苏清陶能源科技有限公司 Its lithium ion battery of MULTILAYER COMPOSITE anode pole piece and this pole piece preparation method and application
KR20170117649A (en) * 2016-04-14 2017-10-24 주식회사 엘지화학 Passivation layer for lithium electrode, electrode and lithium secondary battery comprising the same
WO2019008827A1 (en) * 2017-07-03 2019-01-10 日立オートモティブシステムズ株式会社 Method for manufacturing secondary battery
JP7184509B2 (en) * 2017-10-25 2022-12-06 トヨタ自動車株式会社 Separator and non-aqueous electrolyte secondary battery
JP7206762B2 (en) * 2017-12-19 2023-01-18 株式会社リコー Electrode and its manufacturing method, electrode element, non-aqueous electrolyte storage element
CN112067664B (en) * 2020-09-07 2022-11-11 湖北亿纬动力有限公司 Method for evaluating material dispersibility in lithium ion battery pole piece
WO2023119645A1 (en) * 2021-12-24 2023-06-29 三菱電機株式会社 Polycarbonate resin composition, molded product, and production method for polycarbonate resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH11219727A (en) * 1998-01-30 1999-08-10 Hitachi Maxell Ltd Polymer battery
JP2000149906A (en) * 1998-11-04 2000-05-30 Mitsubishi Chemicals Corp Lithium secondary battery
JP2002083590A (en) * 2000-06-30 2002-03-22 Matsushita Electric Ind Co Ltd Battery electrode, its manufacturing method and nonaqueous electrolyte secondary battery using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH11219727A (en) * 1998-01-30 1999-08-10 Hitachi Maxell Ltd Polymer battery
JP2000149906A (en) * 1998-11-04 2000-05-30 Mitsubishi Chemicals Corp Lithium secondary battery
JP2002083590A (en) * 2000-06-30 2002-03-22 Matsushita Electric Ind Co Ltd Battery electrode, its manufacturing method and nonaqueous electrolyte secondary battery using them

Also Published As

Publication number Publication date
JP2005285605A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP3953026B2 (en) Electrode plate for lithium ion secondary battery, lithium ion secondary battery and method for producing the same
JP4933270B2 (en) Separator and non-aqueous electrolyte secondary battery using the same
JP4763253B2 (en) Lithium ion secondary battery
JP4667375B2 (en) Lithium ion secondary battery
KR100790280B1 (en) Nonaqueous electrolyte secondary battery
JP4739958B2 (en) Lithium ion secondary battery
JP4695074B2 (en) Winding type non-aqueous secondary battery and electrode plate used therefor
JP4832430B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP5126802B2 (en) Method for producing positive electrode plate for non-aqueous secondary battery
JP4529511B2 (en) Lithium ion battery
JP6491040B2 (en) Lithium ion secondary battery
JP4529436B2 (en) Electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP4466674B2 (en) Electrode and electrochemical device
JP2006351386A (en) Battery and its manufacturing method
KR20070009447A (en) Positive electrode for lithium secondary cell and lithium secondary cell using the same
JP6499427B2 (en) Lithium ion secondary battery
JP2008041581A (en) Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
JP2009064566A (en) Separator for battery and nonaqueous electrolyte battery
JP2005259639A (en) Lithium secondary battery and its manufacturing method
JP4992203B2 (en) Lithium ion secondary battery
JP2010102868A (en) Lithium secondary battery
JP2020064824A (en) All-solid battery
JP2008234879A (en) Lithium ion secondary battery
JP2005190912A (en) Lithium secondary battery and its manufacturing method
JP2005339938A (en) Manufacturing method of electrode for lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees