JP2007165224A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery Download PDF

Info

Publication number
JP2007165224A
JP2007165224A JP2005363007A JP2005363007A JP2007165224A JP 2007165224 A JP2007165224 A JP 2007165224A JP 2005363007 A JP2005363007 A JP 2005363007A JP 2005363007 A JP2005363007 A JP 2005363007A JP 2007165224 A JP2007165224 A JP 2007165224A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode plate
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005363007A
Other languages
Japanese (ja)
Other versions
JP4929701B2 (en
Inventor
Atsuo Yoneda
淳夫 米田
Akira Nagasaki
顕 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005363007A priority Critical patent/JP4929701B2/en
Publication of JP2007165224A publication Critical patent/JP2007165224A/en
Application granted granted Critical
Publication of JP4929701B2 publication Critical patent/JP4929701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in a nonaqueous electrolyte secondary battery that a large current flows and an open circuit voltage is decreased and a heating may be caused, in case an internal short circuit occurs between an uncoated part of a cathode collector and an anode plate coated by an anode active substance. <P>SOLUTION: The nonaqueous electrolyte secondary battery is composed of a group of electrodes wound with a separating membrane in-between by a cathode plate of which the cathode collector is coated by a cathode active substance and an anode plate of which an anode collector 1 is coated by an anode active substance 2. The cathode plate has an uncoated part other than an end part in a length-wise direction, and a cathode lead 7 is connected with the uncoated part of the cathode plate, and the cathode lead is covered by a tape and furthermore a heat-resisting protective membrane is formed on the anode plate surface facing the uncoated part of the cathode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は非水電解液二次電池に関し、特に正極板と負極板の構造に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to the structure of a positive electrode plate and a negative electrode plate.

近年、AV機器あるいはパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する非水電解液二次電池への要求が高まっている。非水電解液二次電池の代表であるリチウムイオン二次電池は、特に高電圧、高エネルギー密度を有する電池として期待が大きく、高容量化、高出力化、高信頼性の開発競争が激化してきている。非水電解液二次電池では、通常、正極集電体の両面に正極活物質を塗布した正極板と、負極集電体の両面に負極活物質を塗布した負極板の間に、隔離膜としてセパレータを介して渦巻き状に捲回した電極群を備えている。正極集電体の未塗工部と負極板がセパレータを介して対向する部分において、セパレータを貫通して、正極集電体の未塗工部と負極板が短絡し発熱する可能性があった。   In recent years, electronic devices such as AV devices and personal computers have been rapidly becoming portable and cordless, and the demand for non-aqueous electrolyte secondary batteries having a small size, light weight, and high energy density as driving power sources has increased. ing. Lithium ion secondary batteries, which are representative of non-aqueous electrolyte secondary batteries, are particularly expected as batteries with high voltage and high energy density, and competition for development of high capacity, high output, and high reliability has intensified. ing. In a non-aqueous electrolyte secondary battery, a separator is usually used as a separator between a positive electrode plate coated with a positive electrode active material on both sides of the positive electrode current collector and a negative electrode plate coated with a negative electrode active material on both sides of the negative electrode current collector. And an electrode group wound in a spiral shape. There was a possibility that the uncoated portion of the positive electrode current collector and the negative electrode plate face each other with the separator interposed therebetween, and the uncoated portion of the positive electrode current collector and the negative electrode plate were short-circuited to generate heat. .

この発熱を防止するため、電極群の巻き始め端部および巻き終わり端部に位置する正極板と負極板において、少なくとも一方の集電体における他方の電極に対向する未塗工部の一部または全部に耐熱性保護膜を設けることが提案されている(例えば、特許文献1参照)。
特開2004−63343号公報
In order to prevent this heat generation, in the positive electrode plate and the negative electrode plate located at the winding start end and the winding end end of the electrode group, a part of the uncoated part facing the other electrode in at least one current collector or It has been proposed to provide a heat-resistant protective film on all (see, for example, Patent Document 1).
JP 2004-63343 A

非水電解液二次電池の安全性を確認する試験として異物による内部短絡試験を採用した。この試験は、電極群を作製する際、内部短絡を故意的に起こすために、例えば、負極板上に鉄などの金属異物を予め埋め込んで作製する。その後、充放電を数回繰り返すことで内部短絡を発生させるという試験である。試験結果については、予め電池に熱電対を取り付け、電池の温度が100℃以上に達したら「発熱した」と判断する方法である。この内部短絡が、正極集電体の未塗工部と負極活物質が塗布された負極板の間で起こった場合、大きな電流が流れ、大幅な開回路電圧の低下や、異常に発熱する可能性があるという問題があった。   As a test for confirming the safety of the non-aqueous electrolyte secondary battery, an internal short circuit test using a foreign material was adopted. This test is performed by, for example, embedding a metal foreign object such as iron in advance on the negative electrode plate in order to intentionally cause an internal short circuit when the electrode group is manufactured. Then, it is a test of generating an internal short circuit by repeating charging and discharging several times. The test result is a method in which a thermocouple is attached to the battery in advance and it is determined that the battery has generated heat when the battery temperature reaches 100 ° C. or higher. If this internal short circuit occurs between the uncoated portion of the positive electrode current collector and the negative electrode plate coated with the negative electrode active material, a large current flows, which may cause a significant decrease in open circuit voltage or abnormal heat generation. There was a problem that there was.

特許文献1には次のような問題があった。一方の集電体における他方の電極に対向する未塗工部の一部または全部に耐熱性保護膜を設ける場合、耐熱性保護膜を集電体表面に形成する必要があり、耐熱性保護膜と集電体の密着性が低くなり、電極群作製時に耐熱性保護膜が剥がれ落ちるという問題があった。未塗工部は、活物質が塗布された電極部分に比べて窪んでおり、未塗工部のみに(活物質の塗工部に耐熱性保護膜がかからないように)耐熱性保護膜を塗布することが、製造工程上困難であるという問題があった。   Patent Document 1 has the following problems. When a heat-resistant protective film is provided on a part or all of the uncoated part facing the other electrode of one current collector, it is necessary to form the heat-resistant protective film on the surface of the current collector. There was a problem that the adhesion between the current collector and the current collector was lowered, and the heat-resistant protective film was peeled off during the production of the electrode group. The uncoated part is recessed compared to the electrode part to which the active material is applied, and the heat-resistant protective film is applied only to the uncoated part (so that the heat-resistant protective film is not applied to the coated part of the active material) However, there is a problem that it is difficult in the manufacturing process.

さらに、未塗工部にリードを接続した場合も同様な理由で、耐熱性保護膜を緻密に形成することは製造工程上難しい。電極群の巻き始め端部の未塗工部の集電体に正極リードを設けた円筒形の非水電解液二次電池の場合、曲率半径が最も小さくなる最内周側に正極リードを溶接により接続しているため、正極リードのエッジ部が外周側の正極板にダメージを与え、正極板が切れるという新たな問題があった。   Further, when a lead is connected to an uncoated portion, it is difficult in the manufacturing process to form a heat-resistant protective film densely for the same reason. In the case of a cylindrical non-aqueous electrolyte secondary battery in which a positive electrode lead is provided on the current collector of the uncoated part at the winding start end of the electrode group, the positive electrode lead is welded to the innermost peripheral side where the radius of curvature is the smallest. Therefore, there is a new problem that the edge portion of the positive electrode lead damages the positive electrode plate on the outer peripheral side and the positive electrode plate is cut.

本発明はこのような従来の課題を解決するものであり、正極集電体の未塗工部に耐熱性保護膜を形成するのではなく、未塗工部と対向する負極合剤部に設けることにより、凹凸のきわめて少ない負極合剤層と、密着性の高い緻密な耐熱性保護膜を形成でき、内部短絡
時の発熱を抑制できる非水電解液二次電池を提供することができる。
The present invention solves such a conventional problem, and does not form a heat-resistant protective film on the uncoated portion of the positive electrode current collector, but is provided on the negative electrode mixture portion facing the uncoated portion. Accordingly, it is possible to provide a non-aqueous electrolyte secondary battery that can form a negative electrode mixture layer with very few irregularities and a dense heat-resistant protective film with high adhesion, and can suppress heat generation during an internal short circuit.

上記課題を解決するために、本発明の非水電解液二次電池は、
正極集電体に正極活物質を塗布した正極板と、負極集電体に負極活物質を塗布した負極板とを、隔離膜を介して捲回された電極群を有しており、前記正極板の長さ方向の端部以外に未塗工部が設けてあり、前記未塗工部に正極リードを接続し、前記正極リードをテープで被覆し、かつ前記未塗工部と対向する負極板表面に耐熱性保護膜が形成されている。
In order to solve the above problems, the non-aqueous electrolyte secondary battery of the present invention is
A positive electrode plate in which a positive electrode active material is applied to a positive electrode current collector; and a negative electrode plate in which a negative electrode active material is applied to a negative electrode current collector. An uncoated part is provided in addition to the end in the length direction of the plate, a positive electrode lead is connected to the uncoated part, the positive electrode lead is covered with a tape, and the negative electrode is opposed to the uncoated part A heat-resistant protective film is formed on the plate surface.

また、別の本発明の非水電解液二次電池は、前記正極板の長さ方向の端部以外に未塗工部が設けてあり、前記未塗工部に正極リードを接続し、かつ前記未塗工部と対向する負極板表面に耐熱性保護膜が形成されている。   In another non-aqueous electrolyte secondary battery of the present invention, an uncoated part is provided in addition to an end in the length direction of the positive electrode plate, a positive electrode lead is connected to the uncoated part, and A heat resistant protective film is formed on the surface of the negative electrode plate facing the uncoated portion.

こうすることにより、最も発熱の危険性の高い、正極集電体の未塗工部と負極活物質が塗布された負極板の間で起こった内部短絡時の発熱を抑制することができる。   By doing so, it is possible to suppress heat generation at the time of an internal short circuit occurring between the uncoated portion of the positive electrode current collector and the negative electrode plate coated with the negative electrode active material, which has the highest risk of heat generation.

本発明によると、正極集電体の未塗工部と負極活物質が塗布された負極板の間で起こる内部短絡が発生した場合、発熱が高温になることはなくなる。正極集電体の未塗工部と負極活物質が塗布された負極板の間のみを耐熱性保護膜で保護することによって、負極板全体を耐熱性保護膜で被覆した場合に比べ、非水電解液二次電池の体積当りのエネルギー密度を大きくすることができるという利点もある。また、正極集電体の未塗工部を正極板端部以外の部分に配置することにより、例えば、正極リードの溶着部を正極板の中央部にすることにより、電極群作製時に正極リード溶着箇所の捲回径が小さくならず、リードエッジ部による極板ダメージを大きく緩和することができる。   According to the present invention, when an internal short circuit occurs between the uncoated portion of the positive electrode current collector and the negative electrode plate coated with the negative electrode active material, the heat generation does not become high. Compared to the case where the entire negative electrode plate is covered with a heat-resistant protective film by protecting only between the uncoated portion of the positive electrode current collector and the negative electrode plate coated with the negative electrode active material, a non-aqueous electrolyte solution There is also an advantage that the energy density per volume of the secondary battery can be increased. In addition, by arranging the uncoated portion of the positive electrode current collector in a portion other than the end portion of the positive electrode plate, for example, by setting the welded portion of the positive electrode lead to the central portion of the positive electrode plate, The wound diameter of the portion is not reduced, and the electrode plate damage due to the lead edge portion can be greatly reduced.

本発明の実施の形態における非水電解液二次電池は、正極集電体に正極活物質を塗布した正極板と、負極集電体に負極活物質を塗布した負極板とを、隔離膜を介して捲回された電極群を有する非水電解液二次電池において、前記正極板の長さ方向の端部以外に未塗工部が設けてあり、前記正極板未塗工部に正極リードを接続し、前記正極リードをテープで被覆し、かつ前記正極板未塗工部と対向する負極板表面に耐熱性保護膜が形成されている。   A non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes a positive electrode plate in which a positive electrode active material is applied to a positive electrode current collector, and a negative electrode plate in which a negative electrode current collector is applied with a negative electrode active material, In the non-aqueous electrolyte secondary battery having the electrode group wound through, an uncoated portion is provided in addition to the end portion in the length direction of the positive electrode plate, and a positive electrode lead is provided on the positive electrode plate uncoated portion. , The positive electrode lead is covered with a tape, and a heat-resistant protective film is formed on the surface of the negative electrode plate facing the uncoated positive electrode plate portion.

こうすることにより、耐熱性保護膜を密着性よく、緻密に形成することができ、最も発熱の危険性の高い、正極集電体の未塗工部と負極活物質が塗布された負極板の間で起こった内部短絡時の発熱を抑制することができる。   By doing so, the heat-resistant protective film can be formed densely with good adhesion, and the highest risk of heat generation between the uncoated portion of the positive electrode current collector and the negative electrode plate coated with the negative electrode active material Heat generation at the time of internal short circuit that occurred can be suppressed.

本発明の別の実施の形態における非水電解液二次電池は、前記正極板の長さ方向の端部以外に未塗工部が設けてあり、前記正極板未塗工部に正極リードを接続し、かつ前記正極未塗工部と対向する負極板表面に耐熱性保護膜が形成されている。   The non-aqueous electrolyte secondary battery according to another embodiment of the present invention has an uncoated portion other than an end portion in the length direction of the positive electrode plate, and a positive electrode lead is provided on the positive electrode plate uncoated portion. A heat-resistant protective film is formed on the surface of the negative electrode plate that is connected and faces the positive electrode uncoated portion.

こうすることにより、耐熱性保護膜を密着性よく、緻密に形成することができ、最も発熱の危険性の高い、正極集電体の未塗工部と負極活物質が塗布された負極板の間で起こった内部短絡時の発熱を抑制することができる。さらに、正極リードで発生した“ばり”による内部短絡を防止するために貼付しているテープがなくても、発熱の危険性はなくなるため、体積当りのエネルギー密度をさらに大きくすることができる
本発明の好ましい実施の形態における非水電解液二次電池は、正極活物質が一般式LixNi(1-y-z)Coyz2(xは充放電で変化する変数であり、0<x<1.1, 0<y≦0.5, 0≦z<0.5, MはAl,Mn,Mg,Ca,Fe,Ti,Zn,S
r,Ba,Zr,Y,B,Taからなる群から選ばれる少なくとも1種類の元素)からなる。
By doing so, the heat-resistant protective film can be formed densely with good adhesion, and the highest risk of heat generation between the uncoated portion of the positive electrode current collector and the negative electrode plate coated with the negative electrode active material Heat generation at the time of internal short circuit that occurred can be suppressed. Further, even if there is no tape attached to prevent an internal short circuit due to “flash” generated in the positive electrode lead, there is no danger of heat generation, so that the energy density per volume can be further increased. In the preferred embodiment of the non-aqueous electrolyte secondary battery, the positive electrode active material has the general formula Li x Ni (1-yz) Co y M z O 2 (x is a variable that changes with charge and discharge, and 0 <x <1.1, 0 <y ≦ 0.5, 0 ≦ z <0.5, M is Al, Mn, Mg, Ca, Fe, Ti, Zn, S
and at least one element selected from the group consisting of r, Ba, Zr, Y, B, and Ta.

こうすることにより、耐熱性保護膜を密着性よく、緻密に形成することができ、最も発熱の危険性の高い、正極集電体の未塗工部と負極活物質が塗布された負極板の間で起こった内部短絡時の発熱を抑制することができる。   By doing so, the heat-resistant protective film can be formed densely with good adhesion, and the highest risk of heat generation between the uncoated portion of the positive electrode current collector and the negative electrode plate coated with the negative electrode active material Heat generation at the time of internal short circuit that occurred can be suppressed.

以下、正極について詳述する。   Hereinafter, the positive electrode will be described in detail.

正極活物質は、コバルト酸リチウム(LiCoO2)やニッケル酸リチウム(以下、LiNiO2と略す)などのリチウム含有遷移金属酸化物を用いることができる。また、原料が比較的安価なマンガンを用いたマンガン酸リチウム(LiMn24)のようなスピネル型複合酸化物を用いることもできる。 As the positive electrode active material, a lithium-containing transition metal oxide such as lithium cobaltate (LiCoO 2 ) or lithium nickelate (hereinafter abbreviated as LiNiO 2 ) can be used. Further, a spinel-type composite oxide such as lithium manganate (LiMn 2 O 4 ) using relatively inexpensive manganese as a raw material can also be used.

正極の増粘剤としては、カルボシキメチルセルロース(以下、CMCと略す)、メチルセルロース(MC)、ヒドロキシメチルセルロース(HMC)、エチルセルロース、ポリビニルアルコール(PVA)、酸化スターチ、リン酸化スターチ、およびガゼイン等を用いるとよい。   As the thickener for the positive electrode, carboxymethyl cellulose (hereinafter abbreviated as CMC), methyl cellulose (MC), hydroxymethyl cellulose (HMC), ethyl cellulose, polyvinyl alcohol (PVA), oxidized starch, phosphorylated starch, and casein are used. Good.

導電剤は電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、チャンネルブラック、ファーネスブラック、およびサーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック、炭素繊維が特に好ましい。導電剤の添加量は特に限定されないが、負極活物質に対して1〜30重量%が好ましく、さらには1〜10重量%が好ましい。   The conductive agent may be anything as long as it is an electron conductive material. For example, graphite such as natural graphite (such as flake graphite), artificial graphite, expanded graphite, carbon black such as acetylene black, channel black, furnace black, and thermal black, conductivity such as carbon fiber, metal fiber, etc. Fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives can be contained alone or as a mixture thereof. Among these conductive agents, artificial graphite, acetylene black, and carbon fiber are particularly preferable. Although the addition amount of a electrically conductive agent is not specifically limited, 1-30 weight% is preferable with respect to a negative electrode active material, Furthermore, 1-10 weight% is preferable.

正極の集電体の材質は、アルミニウム(Al)、チタン(Ti)、およびタンタル(Ta)等の金属またはその合金が使用できるが、軽量でエネルギー密度が有利であることから、特に、アルミニウム(Al)またはその合金を使用するのが望ましい。   As the material of the current collector of the positive electrode, a metal such as aluminum (Al), titanium (Ti), and tantalum (Ta) or an alloy thereof can be used. Al) or its alloys are preferably used.

以下、負極について詳述する。   Hereinafter, the negative electrode will be described in detail.

負極活物質は、黒鉛系、非晶質系等の炭素材料あるいはその混合体、合金や金属化合物などが挙げられ、これらを単独もしくは2種以上を混合して用いることができる。合金は、ケイ素、スズ、アルミニウム、亜鉛、マグネシウム、チタン、およびニッケルよりなる群から選択される少なくとも一種の元素からなるのが好ましい。また、金属化合物はケイ素、スズ、アルミニウム、亜鉛、マグネシウム、チタン、およびニッケルの酸化物や炭化物よりなる群から選択される少なくとも一種である。負極活物質の平均粒径は特に限定されないが、1〜30μmが好ましい。   Examples of the negative electrode active material include carbon materials such as graphite and amorphous materials, mixtures thereof, alloys, metal compounds, and the like, and these can be used alone or in admixture of two or more. The alloy preferably comprises at least one element selected from the group consisting of silicon, tin, aluminum, zinc, magnesium, titanium, and nickel. The metal compound is at least one selected from the group consisting of silicon, tin, aluminum, zinc, magnesium, titanium, and nickel oxides and carbides. Although the average particle diameter of a negative electrode active material is not specifically limited, 1-30 micrometers is preferable.

負極板の集電体は電気化学的に安定な電子伝導体であれば何でもよく、銅、ニッケル、ステンレス等の金属が使用できるが、これらの中で薄膜に加工しやすく、低コストであることから銅箔が好ましい。厚みは特に限定されないが、5〜25μmが好ましい。   The current collector of the negative electrode plate can be anything as long as it is an electrochemically stable electron conductor, and metals such as copper, nickel, and stainless steel can be used. Copper foil is preferred. Although thickness is not specifically limited, 5-25 micrometers is preferable.

正極板および負極板の製造に用いられる結着剤については、電極製造時に使用する溶媒や電解質に対して安定な材料であれば、特に限定されない。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、イソプロピレンゴム、ブタジエンゴム、およびエチレンプロピレンジエタン
ポリマー(EPDM)等を用いるとよい。
The binder used in the production of the positive electrode plate and the negative electrode plate is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), isopropylene rubber, butadiene rubber, ethylene propylene diethane polymer (EPDM), or the like may be used.

以下、非水電解質について詳述する。   Hereinafter, the nonaqueous electrolyte will be described in detail.

非水溶媒は炭酸エステルが好ましい。炭酸エステルは、環状、鎖状のいずれも使用することができる。環状炭酸エステルとしては、プロピレンカーボネート(以下、PCと略す)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)等が好適に挙げられる。これらの高誘電率溶媒は、1種類、または2種類以上を組み合わせて使用してもよい。鎖状炭酸エステルとしては、例えばジメチルカーボネート(以下、DMCと略す)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジ−n−プロピルカーボネート、メチル−n−プロピルカーボネート、エチル−i−プロピルカーボネート等が挙げられる。これらの低粘度溶媒は、1種類、または2種類以上を組み合わせて使用してもよい。環状炭酸エステルと鎖状炭酸エステルはそれぞれ任意に選択して組み合わせて使用することもできる。   The non-aqueous solvent is preferably a carbonate ester. The carbonate ester can be either cyclic or chain. Suitable cyclic carbonates include propylene carbonate (hereinafter abbreviated as PC), ethylene carbonate (EC), butylene carbonate (BC), and the like. These high dielectric constant solvents may be used alone or in combination of two or more. Examples of the chain carbonate ester include dimethyl carbonate (hereinafter abbreviated as DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), di-n-propyl carbonate, methyl-n-propyl carbonate, and ethyl-i-propyl. And carbonate. These low viscosity solvents may be used alone or in combination of two or more. A cyclic carbonate and a chain carbonate can be arbitrarily selected and used in combination.

電解質塩としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、および四フッ化ホウ酸リチウム(LiBF4)から選ばれる無機リチウム塩や、LiCF3SO3、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、およびLiC(CF3SO23などの含フッ素有機リチウム塩等が挙げられる。それら電解質塩の中でも、LiPF6、もしくはLiBF4が好ましい。これらの電解質塩は1種類、または2種類以上を組み合わせて用いることができる。これらの電解質塩は、上述した非水溶媒に、通常0.1〜3.0mol/L、好ましくは0.5〜2.0mol/Lの濃度になるように調製して使用するのが好ましい。 As the electrolyte salt, an inorganic lithium salt selected from lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium tetrafluoroborate (LiBF 4 ), LiCF 3 SO 3 , LiN Fluorine-containing organolithium such as (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), and LiC (CF 3 SO 2 ) 3 Examples include salts. Among these electrolyte salts, LiPF 6 or LiBF 4 is preferable. These electrolyte salts can be used alone or in combination of two or more. These electrolyte salts are preferably prepared and used in the non-aqueous solvent described above so that the concentration is usually 0.1 to 3.0 mol / L, preferably 0.5 to 2.0 mol / L.

非水電解質には、過充電に対する耐性を高める添加剤を含ませてもよい。添加剤には、フェニル基およびそれに隣接する環状化合物基からなるベンゼン誘導体を用いることが好ましい。このようなベンゼン誘導体として、ビフェニル、シクロヘキシルベンゼン、ジフェニルエーテル、フェニルラクトンなどが挙げられる。   The non-aqueous electrolyte may contain an additive that increases resistance to overcharge. As the additive, a benzene derivative composed of a phenyl group and a cyclic compound group adjacent thereto is preferably used. Examples of such benzene derivatives include biphenyl, cyclohexylbenzene, diphenyl ether, and phenyllactone.

非水電解質二次電池の形状については特に限定されず、シート電極およびセパレータをスパイラル状にしたシリンダータイプ、ペレット電極およびセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極およびセパレータを積層したコインタイプ等が使用可能である。   The shape of the non-aqueous electrolyte secondary battery is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are stacked Etc. can be used.

非水電解質二次電池を製造する方法については、特に限定されず、通常採用されている方法の中から適宜選択することができる。     The method for producing the nonaqueous electrolyte secondary battery is not particularly limited, and can be appropriately selected from commonly employed methods.

以下、本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

(実施例1)
まず、正極板の作製方法について説明する。炭酸リチウム(Li2CO3)と四酸化三コバルト(Co34)を混合して空気中において900℃で焼成したコバルト酸リチウム(以下、LiCoO2と略す)からなる正極活物質、アセチレンブラック(以下、ABと略す)からなる導電材、およびポリフッ化ビニリデン(以下、PVDFと略す)からなる結着剤を重量比が100:2:3となるように混合したものを、N−メチル−2−ピロリドン(以下、NMPと略す)を分散媒として用いて混練分散して正極ペーストを作製した。正極ペーストを、集電体として厚さ15μmのアルミニウム箔に塗着し、乾燥した。その後、正極活物質を含む合剤層の密度が3.5〜3.6g/cm3になるように圧延し、正極板の総厚みを0.17mmとした。未塗工部が6.5mmを含む全長が612mm、幅
57mmとなるように裁断した。この時、未塗工部は極板の長手方向端部より40〜46.5mmの位置になるように配置した。
Example 1
First, a method for producing a positive electrode plate will be described. Acetylene black, a positive electrode active material composed of lithium cobaltate (hereinafter abbreviated as LiCoO 2 ) obtained by mixing lithium carbonate (Li 2 CO 3 ) and tricobalt tetroxide (Co 3 O 4 ) and firing in air at 900 ° C. (N-methyl-) obtained by mixing a conductive material made of (hereinafter abbreviated as AB) and a binder made of polyvinylidene fluoride (hereinafter abbreviated as PVDF) so as to have a weight ratio of 100: 2: 3. A positive electrode paste was prepared by kneading and dispersing 2-pyrrolidone (hereinafter abbreviated as NMP) as a dispersion medium. The positive electrode paste was applied to an aluminum foil having a thickness of 15 μm as a current collector and dried. Then, it rolled so that the density of the mixture layer containing a positive electrode active material might be set to 3.5-3.6 g / cm < 3 >, and the total thickness of the positive electrode plate was 0.17 mm. The uncoated part was cut so that the total length including 6.5 mm was 612 mm and the width was 57 mm. At this time, the uncoated portion was disposed at a position of 40 to 46.5 mm from the longitudinal end portion of the electrode plate.

次に、以下に説明する正極板1と2を作製した。   Next, positive electrode plates 1 and 2 described below were produced.

まず、前述の塗工部および未塗工部からなる極板の未塗工部に正極リード7を超音波溶着により接続し正極板αを作製した。   First, the positive electrode lead 7 was connected to the uncoated portion of the electrode plate composed of the above-mentioned coated portion and uncoated portion by ultrasonic welding to produce a positive electrode plate α.

次に、正極板αのリードを保護するために幅9mmのポリプロピレン(以下、PPと略す)テープを貼付けした正極板βを作製した。   Next, in order to protect the lead of the positive electrode plate α, a positive electrode plate β on which a 9 mm wide polypropylene (hereinafter abbreviated as PP) tape was attached was prepared.

このとき正極板αおよびβの正極リード7は、いずれも50〜200μmの”ばり”が正極板とは逆向きの方向に出るようにした。   At this time, the positive leads 7 of the positive plates [alpha] and [beta] were set so that "flash" of 50 to 200 [mu] m appeared in the direction opposite to the positive plate.

正極板αおよびβの概略断面図をそれぞれ図1および2に示す。   1 and 2 are schematic sectional views of the positive plates α and β, respectively.

次に、負極板の作製方法について説明する。人造黒鉛からなる負極活物質、PVDFからなる結着剤を重量比が100:6となるように混合したものを、NMPを分散媒として用いて混練分散して負極ペーストを作製した。負極ペーストを集電体として厚さ10μmの銅箔に塗着、乾燥した。その後、負極活物質を含む合剤層の密度が1.57g/cm3になるように圧延した。 Next, a method for manufacturing the negative electrode plate will be described. A negative electrode active material made of artificial graphite and a binder made of PVDF mixed at a weight ratio of 100: 6 were kneaded and dispersed using NMP as a dispersion medium to prepare a negative electrode paste. The negative electrode paste was applied to a copper foil having a thickness of 10 μm as a current collector and dried. Then, it rolled so that the density of the mixture layer containing a negative electrode active material might be set to 1.57 g / cm < 3 >.

負極板の総厚みを0.17mmとした。その後、幅59mm、全長645mmに裁断した後、最外周部に負極リードを溶接し、負極リードの周辺部のみにPPテープを貼付けした負極板αを作製した。   The total thickness of the negative electrode plate was 0.17 mm. Thereafter, after cutting to a width of 59 mm and a total length of 645 mm, a negative electrode lead was welded to the outermost peripheral portion, and a negative electrode plate α in which PP tape was attached only to the peripheral portion of the negative electrode lead was produced.

そして、負極板α上の電極群作製時に「正極リード7と対向する箇所」に、以下に説明する耐熱性保護膜を形成した。   And the heat-resistant protective film demonstrated below was formed in the "location facing the positive electrode lead 7" at the time of electrode group preparation on the negative electrode plate (alpha).

ここで言う、「正極リードと対向する箇所」とは、正極板αまたはβの未塗工部6.5mmを含む長手方向15mmの範囲に対向する箇所のことを指す。   As used herein, “location facing the positive electrode lead” refers to a location facing a range of 15 mm in the longitudinal direction including 6.5 mm of the uncoated portion of the positive electrode plate α or β.

耐熱性保護膜は次のようにして作製した。無機酸化物フィラーとしてメディアン径0.3μmのアルミナ960g、結着剤として変性アクリロニトリルゴム500g、および適量のNMPを双腕式練合機に入れ、攪拌し、耐熱性保護膜前駆体ペーストを作製した。耐熱性保護膜前駆体ペーストを正極リード7と対向する負極板1上に塗布した。その後、乾燥して、厚さが6μmの耐熱性保護膜を形成し、負極板βを作製した。   The heat resistant protective film was produced as follows. 960 g of alumina having a median diameter of 0.3 μm as an inorganic oxide filler, 500 g of modified acrylonitrile rubber as a binder, and an appropriate amount of NMP were put into a double-arm kneader and stirred to prepare a heat-resistant protective film precursor paste. . A heat-resistant protective film precursor paste was applied on the negative electrode plate 1 facing the positive electrode lead 7. Then, it dried and formed the 6-micrometer-thick heat-resistant protective film, and produced the negative electrode plate (beta).

次に、無機酸化物フィラーとして、アルミナの代わりにチタニアを用い、これ以外は負極板αと同様の方法で負極板γを作製した。   Next, as the inorganic oxide filler, titania was used instead of alumina, and a negative electrode plate γ was produced in the same manner as the negative electrode plate α except for this.

このようにして得られた正極板α、βと負極板α、β、およびγを組み合わせて非水電解液二次電池を作製し、その組み合わせを表1に示した。セパレータとして厚さ16μmの微多孔性ポリエチレン樹脂を用い、それを介して正極板と負極板を捲回し、電極群a〜fを作製した。また、電極群c、fにおいて、正極リード7を接続した付近の概略横断面図をそれぞれ図3、4に示した。   Non-aqueous electrolyte secondary batteries were prepared by combining the positive plates α, β thus obtained and the negative plates α, β, and γ, and the combinations are shown in Table 1. A microporous polyethylene resin having a thickness of 16 μm was used as a separator, and a positive electrode plate and a negative electrode plate were wound therethrough to produce electrode groups a to f. 3 and 4 are schematic cross-sectional views of the vicinity of the positive electrode lead 7 connected in the electrode groups c and f, respectively.

以上のようにして作製した電極群a〜fを、ニッケル(Ni)メッキを施した鉄製の円筒形の電池ケース1に収納し、電極群上下両面にポリプロピレン(PP)製絶縁板を配した。そして正負極板の各々から集電を行うために、正負極リードを正負極板の集電体から
それぞれ導出して、負極リードを電池ケース1に抵抗溶接で接続した。
The electrode groups a to f produced as described above were housed in an iron cylindrical battery case 1 plated with nickel (Ni), and polypropylene (PP) insulating plates were arranged on both upper and lower surfaces of the electrode group. In order to collect current from each of the positive and negative electrode plates, the positive and negative electrode leads were led out from the current collectors of the positive and negative electrode plates, respectively, and the negative electrode lead was connected to the battery case 1 by resistance welding.

次に、電極群が収納された電池ケース1内に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比で1:1で混合し、1モル/Lの六フッ化リン酸リチウム(LiPF6)を溶解した非水電解液を注入した。そして、予めガスケットを組み込んだ封口板に、電極群から導出させた正極リード7を溶接した。その後、封口板を電池ケース1に装着し、カシメにより封口して、非水電解液二次電池A〜Fを作製した。それぞれの電池に用いた電極群を表1に示した。 Next, ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1 in the battery case 1 in which the electrode group is housed, and 1 mol / L lithium hexafluorophosphate (LiPF) is mixed. 6 ) A non-aqueous electrolyte dissolved in was injected. Then, the positive electrode lead 7 led out from the electrode group was welded to a sealing plate in which a gasket was previously incorporated. Thereafter, the sealing plate was attached to the battery case 1 and sealed with caulking to prepare nonaqueous electrolyte secondary batteries A to F. Table 1 shows the electrode group used for each battery.

電池A〜Fをそれぞれ100セルずつ用意し、25℃で充放電を100サイクル繰り返した。充電条件は電圧4.2Vの定電流・定電圧方式で行い、最大電流は1500mA、終止電流は100mAとした。放電条件は定電流方式で行い、電流は400mA、終止電圧は3.0Vとした。今回作製した電池には、正極リードに意図的に“ばり”を設けているため、充放電中に正極リードの“ばり”による内部短絡で発熱する可能性がある。表2に、100サイクル繰り返す最中に発生した発熱率を示す。 100 cells of each of the batteries A to F were prepared, and charging and discharging were repeated 100 cycles at 25 ° C. The charging conditions were a constant current / constant voltage system with a voltage of 4.2 V, the maximum current was 1500 mA, and the end current was 100 mA. The discharge conditions were a constant current method, the current was 400 mA, and the final voltage was 3.0V. Since the battery produced this time intentionally has a “flash” on the positive electrode lead, there is a possibility of heat generation due to an internal short circuit due to the “flash” of the positive electrode lead during charge / discharge. Table 2 shows the heat generation rate generated during 100 cycles.

表2の結果から、電池B、C、E、およびFは、電池A、Dと比較すると、発熱率は電池A、Dの方が多く、その違いは明らかであった。このことから、電池B、C、EおよびFのように負極板表面に多孔性絶縁物を塗布した電池は発熱していない。発熱が起こった電池A、Dを分解して短絡箇所を確認すると、正極リードと対向する位置のセパレータが黒色化しており、正極リードの“ばり”が原因で発熱していたことがわかった。 From the results in Table 2, the batteries B, C, E, and F had a higher heat generation rate than the batteries A and D, and the difference was clear. For this reason, batteries such as batteries B, C, E, and F, in which a porous insulator is applied to the surface of the negative electrode plate, do not generate heat. When disassembling the batteries A and D where heat generation occurred and confirming the short-circuited part, it was found that the separator at the position facing the positive electrode lead was blackened, and heat was generated due to “flash” of the positive electrode lead.

(実施例2)
次いで、正極活物質としてコバルト酸リチウム以外の正極活物質を使用した場合について説明する。
(Example 2)
Next, a case where a positive electrode active material other than lithium cobaltate is used as the positive electrode active material will be described.

Niに対してCoのモル比が20%になるように硫酸ニッケルと硫酸コバルトを水に溶解して硫酸ニッケル−コバルト混合溶液を作成した。この硫酸ニッケル−コバルト混合溶液に水酸化ナトリウムを投入して共沈させることにより、ニッケル−コバルト水酸化物を得た。得られたニッケル−コバルト水酸化物を水洗し、80℃で乾燥して粉末状にし、ニッケル−コバルト水酸化物(Ni0.8Co0.2(OH)2)を作製した。 Nickel sulfate and cobalt sulfate were dissolved in water so that the molar ratio of Co to Ni was 20% to prepare a nickel sulfate-cobalt mixed solution. Nickel-cobalt hydroxide was obtained by adding sodium hydroxide to the nickel sulfate-cobalt mixed solution to cause coprecipitation. The obtained nickel-cobalt hydroxide was washed with water and dried at 80 ° C. to form a powder, thereby producing a nickel-cobalt hydroxide (Ni 0.8 Co 0.2 (OH) 2 ).

このようにして作製したニッケル−コバルト水酸化物を、水酸化リチウム−水和物にLi/(Ni+Co)のモル比が1/1になるように混合した。酸素雰囲気下で700℃の温度で20時間焼成し、粉砕してLiNi0.8Co0.22を得た。 The nickel-cobalt hydroxide thus prepared was mixed with lithium hydroxide-hydrate so that the molar ratio of Li / (Ni + Co) was 1/1. It was calcined for 20 hours at a temperature of 700 ° C. in an oxygen atmosphere, and pulverized to obtain LiNi 0.8 Co 0.2 O 2 .

このようにして作製した正極活物質LiNi0.8Co0.22、導電材としてAB、および結着剤としてPVDFを、それぞれの重量比が100:2:3となるように混合した。NMPを分散媒として用いて混練分散して作製した正極ペーストを、実施例1と同様にして塗着、圧延、裁断を行った。そして実施例1で記載した正極板α、βと同様に正極リード7を超音波溶着により接続して正極板γ、δを作製した。 The positive electrode active material LiNi 0.8 Co 0.2 O 2 thus produced, AB as the conductive material, and PVDF as the binder were mixed so that the weight ratios thereof were 100: 2: 3. A positive electrode paste prepared by kneading and dispersing using NMP as a dispersion medium was applied, rolled and cut in the same manner as in Example 1. Then, in the same manner as the positive plates α and β described in Example 1, the positive leads 7 were connected by ultrasonic welding to produce positive plates γ and δ.

この場合も、正極板γ、δの正極リード7には、50〜100μmの”ばり”が正極板とは逆向きの方向に出るようにした。   Also in this case, the “flash” of 50 to 100 μm is projected in the direction opposite to the positive electrode plate on the positive electrode leads 7 of the positive electrode plates γ and δ.

そして、実施例1と同様の負極板α、β、およびγと、正極板γ、δを組み合わせ、実施例1と同様の作製方法で電極群g〜lを作製した。電極群g〜lを用いて非水電解液二次電池G〜Lを作製した。電池G〜Lに用いた正極板、負極板、および電極群を表3に示した。   Then, the same negative electrode plates α, β, and γ as in Example 1 and positive electrode plates γ, δ were combined to prepare electrode groups g to l by the same manufacturing method as in Example 1. Nonaqueous electrolyte secondary batteries G to L were produced using the electrode groups g to l. Table 3 shows the positive electrode plate, the negative electrode plate, and the electrode group used in the batteries G to L.

電池G〜Lをそれぞれ100セルずつ用意し、25℃で充放電を100サイクル実施した。充放電条件は実施例1と同じである。今回作製した電池には、正極リードに意図的に“ばり”を設けているため、充放電中に発熱する可能性がある。表4に、100サイクル繰り返す最中に発生した発熱率を示す。 100 cells of each of the batteries G to L were prepared, and 100 cycles of charging and discharging were performed at 25 ° C. The charge / discharge conditions are the same as in Example 1. Since the battery produced this time has a “flash” on the positive electrode lead, it may generate heat during charging and discharging. Table 4 shows the heat generation rate that occurred during 100 cycles.

表4の結果から、電池H、I、K、およびLは、電池G、Jと比較すると、発熱率は電池G、Jの方が多く、その違いは明らかであった。このことから、電池H、I、KおよびLのように負極板表面に多孔性絶縁物を塗布した電池は発熱していない。発熱が起こった電池G、Jを分解して短絡箇所を確認すると、正極リードと対向する位置のセパレータが黒色化しており、正極リードの“バリ”が原因で発熱していたことがわかった。 From the results in Table 4, the batteries H, I, K, and L had higher heat generation rates than the batteries G and J, and the difference was clear. For this reason, batteries such as batteries H, I, K, and L in which a porous insulator is applied to the surface of the negative electrode plate do not generate heat. When disassembling the batteries G and J where heat generation occurred and confirming the short-circuited portion, it was found that the separator at the position facing the positive electrode lead was blackened and heat was generated due to “burrs” of the positive electrode lead.

以上のことから、正極リードの“ばり”が100μmのように大きくても、正極リードの“ばり”による内部短絡で発熱することなく、安全な非水電解液二次電池を提供することができる。   From the above, even if the “flash” of the positive electrode lead is as large as 100 μm, it is possible to provide a safe non-aqueous electrolyte secondary battery without generating heat due to an internal short circuit due to the “flash” of the positive electrode lead. .

また、非水電解液二次電池として、リチウム二次電池について説明したが、リチウム二次電池以外のマグネシウム二次電池などの非水電解液二次電池においても、同様の効果が得られるものである。   Moreover, although the lithium secondary battery has been described as the nonaqueous electrolyte secondary battery, the same effect can be obtained in a nonaqueous electrolyte secondary battery such as a magnesium secondary battery other than the lithium secondary battery. is there.

本発明の非水電解液二次電池は、電子機器等の主電源に有用である。例えば、携帯電話やノート型パソコン等の民生用モバイルツールの主電源、電動ドライバー等のパワーツールの主電源、およびEV自動車等の産業用主電源の用途に適している。   The nonaqueous electrolyte secondary battery of the present invention is useful as a main power source for electronic devices and the like. For example, it is suitable for use as a main power source for consumer mobile tools such as mobile phones and laptop computers, a main power source for power tools such as an electric screwdriver, and an industrial main power source such as an EV car.

本発明の実施例で使用した正極板αの概略断面図Schematic sectional view of positive electrode plate α used in the examples of the present invention 本発明の実施例で使用した正極板βの概略断面図Schematic sectional view of positive electrode plate β used in the examples of the present invention 本発明の実施例で使用した電極群cの正極リード位置付近の概略横断面図Schematic cross-sectional view near the positive electrode lead position of the electrode group c used in the example of the present invention 本発明の実施例で使用した電極群fの正極リード位置付近の概略横断面図Schematic cross-sectional view of the vicinity of the positive electrode lead position of the electrode group f used in the example of the present invention

符号の説明Explanation of symbols

1 負極集電体
2 負極活物質
3 セパレータ
4 正極集電体
5 正極活物質
6 PPテープ
7 正極リード
8 多孔性絶縁膜
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode active material 3 Separator 4 Positive electrode collector 5 Positive electrode active material 6 PP tape 7 Positive electrode lead 8 Porous insulating film

Claims (3)

正極集電体に正極活物質を塗布した正極板と、負極集電体に負極活物質を塗布した負極板とを、隔離膜を介して捲回された電極群を有する非水電解液二次電池において、
前記正極板の長さ方向の端部以外に未塗工部が設けてあり、前記未塗工部に正極リードを接続し、前記正極リードをテープで被覆し、かつ前記未塗工部と対向する負極板表面に耐熱性保護膜が形成されている非水電解液二次電池。
A non-aqueous electrolyte secondary having an electrode group in which a positive electrode plate coated with a positive electrode active material on a positive electrode current collector and a negative electrode plate coated with a negative electrode active material on a negative electrode current collector are wound through a separator In batteries,
An uncoated part is provided in addition to the end in the length direction of the positive electrode plate, a positive electrode lead is connected to the uncoated part, the positive electrode lead is covered with a tape, and is opposed to the uncoated part. A non-aqueous electrolyte secondary battery in which a heat-resistant protective film is formed on the surface of the negative electrode plate.
正極集電体に正極活物質を塗布した正極板と、負極集電体に負極活物質を塗布した負極板とを、隔離膜を介して捲回された電極群を有する非水電解液二次電池において、
前記正極板の長さ方向の端部以外に未塗工部が設けてあり、前記未塗工部に正極リードを接続し、かつ前記未塗工部と対向する負極板表面に耐熱性保護膜が形成されている非水電解液二次電池。
A non-aqueous electrolyte secondary having an electrode group in which a positive electrode plate coated with a positive electrode active material on a positive electrode current collector and a negative electrode plate coated with a negative electrode active material on a negative electrode current collector are wound through a separator In batteries,
A non-coated portion is provided in addition to the lengthwise end of the positive electrode plate, a positive electrode lead is connected to the non-coated portion, and a heat-resistant protective film is formed on the negative electrode plate surface facing the non-coated portion. A non-aqueous electrolyte secondary battery in which is formed.
前記正極活物質は、一般式LixNi(1-y-z)Coyz2(xは充放電で変化する変数であり、0<x<1.1, 0<y≦0.5, 0≦z<0.5, MはAl,Mn,Mg,Ca,Fe,Ti,Zn,Sr,Ba,Zr,Y,B,Taからなる群から選ばれる少なくとも1種類の元素)からなる請求項1または2に記載の非水電解液二次電池。
The positive electrode active material has a general formula Li x Ni (1-yz) Co y M z O 2 (x is a variable that changes with charge and discharge, and 0 <x <1.1, 0 <y ≦ 0.5, 0 ≦ z <0.5, wherein M is at least one element selected from the group consisting of Al, Mn, Mg, Ca, Fe, Ti, Zn, Sr, Ba, Zr, Y, B, and Ta) Item 3. The nonaqueous electrolyte secondary battery according to Item 1 or 2.
JP2005363007A 2005-12-16 2005-12-16 Non-aqueous electrolyte secondary battery Active JP4929701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005363007A JP4929701B2 (en) 2005-12-16 2005-12-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363007A JP4929701B2 (en) 2005-12-16 2005-12-16 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007165224A true JP2007165224A (en) 2007-06-28
JP4929701B2 JP4929701B2 (en) 2012-05-09

Family

ID=38247890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363007A Active JP4929701B2 (en) 2005-12-16 2005-12-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4929701B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140132134A (en) * 2013-05-07 2014-11-17 주식회사 엘지화학 Electrode assembly and method for preparing the same
EP3121865A1 (en) * 2013-04-19 2017-01-25 Zhuhai Zhi Li Battery Co., Ltd. Rechargeable lithium ion button cell battery
JP2018129459A (en) * 2017-02-10 2018-08-16 太陽誘電株式会社 Power storage element
US10115969B2 (en) 2012-10-30 2018-10-30 Murata Manufacturing Co., Ltd. Battery, electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
CN109891639A (en) * 2016-10-26 2019-06-14 三洋电机株式会社 Electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10553892B2 (en) 2015-03-02 2020-02-04 Samsung Sdi Co., Ltd. Rechargeable battery
CN111987282A (en) * 2020-09-08 2020-11-24 宁德新能源科技有限公司 Electrochemical device and electronic device
US20210384548A1 (en) * 2014-01-17 2021-12-09 Ningde Amperex Technology Limited Lithium-ion battery having desirable safety performance
CN113903921A (en) * 2021-11-18 2022-01-07 珠海冠宇电池股份有限公司 Positive plate and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241737A (en) * 1997-02-26 1998-09-11 Fuji Film Selltec Kk Nonaqueous secondary battery with group of rolled electrodes and manufacture thereof
JPH1126008A (en) * 1997-06-30 1999-01-29 Sanyo Electric Co Ltd Electrode structure of battery
JP2001135298A (en) * 1999-10-29 2001-05-18 Matsushita Electric Ind Co Ltd Sealed battery
JP2001266946A (en) * 2000-03-23 2001-09-28 Sony Corp Lithium ion battery and its manufacturing method
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2005310622A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241737A (en) * 1997-02-26 1998-09-11 Fuji Film Selltec Kk Nonaqueous secondary battery with group of rolled electrodes and manufacture thereof
JPH1126008A (en) * 1997-06-30 1999-01-29 Sanyo Electric Co Ltd Electrode structure of battery
JP2001135298A (en) * 1999-10-29 2001-05-18 Matsushita Electric Ind Co Ltd Sealed battery
JP2001266946A (en) * 2000-03-23 2001-09-28 Sony Corp Lithium ion battery and its manufacturing method
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2005310622A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115969B2 (en) 2012-10-30 2018-10-30 Murata Manufacturing Co., Ltd. Battery, electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
EP3121865A1 (en) * 2013-04-19 2017-01-25 Zhuhai Zhi Li Battery Co., Ltd. Rechargeable lithium ion button cell battery
KR20140132134A (en) * 2013-05-07 2014-11-17 주식회사 엘지화학 Electrode assembly and method for preparing the same
KR101586793B1 (en) 2013-05-07 2016-01-19 주식회사 엘지화학 Electrode assembly and method for preparing the same
US20210384548A1 (en) * 2014-01-17 2021-12-09 Ningde Amperex Technology Limited Lithium-ion battery having desirable safety performance
US20220278360A1 (en) * 2014-01-17 2022-09-01 Ningde Amperex Technology Limited Lithium-ion battery having desirable safety performance
US11923498B2 (en) * 2014-01-17 2024-03-05 Ningde Amperex Technology Limited Lithium-ion battery having desirable safety performance
US10553892B2 (en) 2015-03-02 2020-02-04 Samsung Sdi Co., Ltd. Rechargeable battery
CN109891639A (en) * 2016-10-26 2019-06-14 三洋电机株式会社 Electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2018129459A (en) * 2017-02-10 2018-08-16 太陽誘電株式会社 Power storage element
CN111987282A (en) * 2020-09-08 2020-11-24 宁德新能源科技有限公司 Electrochemical device and electronic device
CN113903921A (en) * 2021-11-18 2022-01-07 珠海冠宇电池股份有限公司 Positive plate and battery

Also Published As

Publication number Publication date
JP4929701B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US9466832B2 (en) Lithium secondary battery including a nickel containing lithium complex oxide
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
KR20190041715A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR102217574B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2008234855A (en) Nonaqueous electrolyte secondary battery
JP5052161B2 (en) Nonaqueous electrolyte secondary battery
US20110250505A1 (en) Non-aqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2016139548A (en) Lithium ion battery
KR101556486B1 (en) Nonaqueous electrolyte secondary battery
US20230290930A1 (en) Negative electrode material, and negative electrode and secondary battery including the same
JP3996554B2 (en) Lithium secondary battery
KR101858334B1 (en) Non-aqueous electrolyte secondary battery
JP2005285720A (en) Non-aqueous electrolyte secondary battery
JPWO2014068931A1 (en) Nonaqueous electrolyte secondary battery
JP2014225327A (en) Nonaqueous electrolyte solar batter
JP2019169346A (en) Lithium ion secondary battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JPH0684515A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4929701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3