JP2014225327A - Nonaqueous electrolyte solar batter - Google Patents

Nonaqueous electrolyte solar batter Download PDF

Info

Publication number
JP2014225327A
JP2014225327A JP2011200481A JP2011200481A JP2014225327A JP 2014225327 A JP2014225327 A JP 2014225327A JP 2011200481 A JP2011200481 A JP 2011200481A JP 2011200481 A JP2011200481 A JP 2011200481A JP 2014225327 A JP2014225327 A JP 2014225327A
Authority
JP
Japan
Prior art keywords
layer
positive electrode
negative electrode
thickness
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011200481A
Other languages
Japanese (ja)
Inventor
一樹 遠藤
Kazuki Endo
一樹 遠藤
杉田 康成
Yasunari Sugita
康成 杉田
藤川 万郷
Kazusato Fujikawa
万郷 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011200481A priority Critical patent/JP2014225327A/en
Priority to PCT/JP2012/005892 priority patent/WO2013038702A1/en
Publication of JP2014225327A publication Critical patent/JP2014225327A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery exhibiting excellent safety, in which undue battery temperature rise can be suppressed even if internal short circuit occurs due to a large foreign matter, e.g., a nail, without compromising with high energy density.SOLUTION: A positive electrode includes a positive electrode collector, and a positive electrode mixture layer formed on the surface thereof. A negative electrode includes a negative electrode collector, and a negative electrode mixture layer formed on the surface thereof. The first layer contains a carbon material, and the second layer contains an inorganic oxide which can occlude and release lithium ions. The ratio of the thickness of the first layer Tand the thickness of the second layer Tis 4-50. In the outer periphery of the electrode group, the positive electrode collector exposed part and the negative electrode collector exposed part face each other over at least one round.

Description

本発明は、非水電解質二次電池に関し、詳しくは、好適な極板構造を持つ非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having a preferred electrode plate structure.

近年、携帯電話やノートパソコンなどの電子機器および車載用電源などに用いる二次電池に対する高エネルギー密度化が要求されており、この観点から高エネルギー密度化が可能な非水電解質二次電池が広く普及している。非水電解質二次電池は、正極、負極、これらの間に介在するセパレータおよび非水電解質を具備する。正極、負極およびセパレータは、捲回されて電極群を構成しているものが多い。   In recent years, there has been a demand for higher energy density for secondary batteries used in electronic devices such as mobile phones and laptop computers and in-vehicle power supplies. From this viewpoint, non-aqueous electrolyte secondary batteries that can increase energy density are widely used. It is popular. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and a non-aqueous electrolyte. Many of the positive electrode, the negative electrode, and the separator are wound to form an electrode group.

一般的に電池の内部で比較的抵抗値が低い短絡が発生した場合、短絡点に大電流が集中して流れるため、電池の発熱が加速して過熱に至ることがある。エネルギー密度の高いリチウムイオン電池ではこのような現象を回避するために、製造上の観点のほかに、電池構成上の観点からも様々な安全対策がなされている。   In general, when a short circuit having a relatively low resistance value occurs inside the battery, a large current flows in a concentrated manner at the short circuit point, so that the heat generation of the battery may accelerate and lead to overheating. In order to avoid such a phenomenon in a lithium ion battery having a high energy density, various safety measures are taken from the viewpoint of the battery configuration in addition to the viewpoint of manufacturing.

一般的には、電池が内部短絡を起こしたときの発熱により、細孔が閉塞してイオン電流の遮断を行うシャットダウン機能が付与されたセパレータが用いられている。シャットダウン機能により短絡電流が流れなくなり発熱が停止するというものであるが、短絡部の発熱が大きい場合、シャットダウンが機能する前にセパレータを溶融させてセパレータに大きな穴を開けるメルトダウンを引き起こす。メルトダウンにより正極と負極とが短絡すると、更なる過熱を引き起こし、場合によっては電池が発火又は発煙し非常に危険である。   In general, a separator having a shutdown function for blocking pores and blocking ionic current due to heat generated when a battery causes an internal short circuit is used. The short-circuit current stops flowing due to the shutdown function, and the heat generation stops. However, when the heat generation in the short-circuited portion is large, the separator is melted before the shutdown functions, thereby causing a melt-down that opens a large hole in the separator. When the positive electrode and the negative electrode are short-circuited due to meltdown, further overheating is caused. In some cases, the battery ignites or smokes, which is very dangerous.

そこで、アルミナなどの無機酸化物フィラーと水溶性高分子からなる多孔膜を、活物質層上に形成する技術が提案されている(特許文献1参照)。特許文献1の技術を用いれば、過熱環境下でも正負極間の絶縁を保つ能力が高いと考えられる。   Therefore, a technique for forming a porous film made of an inorganic oxide filler such as alumina and a water-soluble polymer on an active material layer has been proposed (see Patent Document 1). If the technique of patent document 1 is used, it is thought that the capability to maintain the insulation between positive and negative electrodes is high also in an overheating environment.

さらに、リチウムを吸蔵・放出可能なリチウムチタン複合酸化物からなる表面層を主負極層上に形成する技術が提案されている(特許文献2参照)。   Furthermore, a technique for forming a surface layer made of a lithium titanium composite oxide capable of inserting and extracting lithium on the main negative electrode layer has been proposed (see Patent Document 2).

特開平9−147916号公報JP-A-9-147916 特開2010−97720号公報JP 2010-97720 A

しかしながら、特許文献1の技術では活物質層上に絶縁層が存在するため、大電流充放電特性が低下し、特に負極活物質上に絶縁層を形成した場合、リチウムイオンの受け入れ性が悪くなり電池特性が低下する。一方、特許文献2の技術では短絡点のごく近傍のリチウムチタン複合酸化物が放電により絶縁化することで安全性を向上させているが、このような構成の負極を用いたとしても、釘などの大きな異物による内部短絡の際には、絶縁化が充分に進行する前にセパレータの収縮による短絡点の拡大が進行し過熱にいたる場合があり、これを防ぐためには熱安定性に優れる表面層の厚みを主負極層に対し充分に厚くする必要があり、エネルギー密度が低下する。また、表面層を厚くしすぎると負極の柔軟性が低下することに加え、主負極層中の結着剤が表面方向へマイグレーションしやすくなるため、主負極層と集電体界面の結着性が不充分になり、活物質層の脱落が発生する。   However, in the technique of Patent Document 1, since an insulating layer is present on the active material layer, large current charge / discharge characteristics are deteriorated. In particular, when an insulating layer is formed on the negative electrode active material, lithium ion acceptability deteriorates. Battery characteristics deteriorate. On the other hand, in the technique of Patent Document 2, the lithium-titanium composite oxide in the vicinity of the short-circuit point is insulated by discharge to improve safety. Even when the negative electrode having such a configuration is used, a nail or the like is used. In the case of an internal short circuit due to a large foreign substance, the expansion of the short circuit point due to the shrinkage of the separator may proceed before the insulation proceeds sufficiently, leading to overheating. To prevent this, a surface layer with excellent thermal stability Needs to be sufficiently thicker than the main negative electrode layer, and the energy density is lowered. In addition, if the surface layer is too thick, the flexibility of the negative electrode is reduced, and the binder in the main negative electrode layer is likely to migrate in the surface direction, so the binding between the main negative electrode layer and the current collector interface Becomes insufficient, and the active material layer falls off.

前記従来の課題を解決するために、本発明の非水電解質二次電池は、正極と、負極とが、セパレータを介して捲回してなる電極群を有し、前記正極は、正極集電体と、正極集電体の表面に形成された正極合剤層を含み、前記負極は、負極集電体と、負極集電体の表面に形成された第1層と、前記第1層上に積層された第2層を備え、前記第1層には炭素材料を含み、前記第2層にはリチウムイオンを吸蔵・放出可能で無機固体酸化物を含み、前記第1層の厚みをTとし、前記第2層の厚みをTとすると、TとTとの比(T/T)が、4以上50以下であり、かつ、電極群の外周部において正極集電体露出部と負極集電体露出部が少なくとも1周以上にわたり対向しているというものである。 In order to solve the conventional problems, the nonaqueous electrolyte secondary battery of the present invention has an electrode group in which a positive electrode and a negative electrode are wound through a separator, and the positive electrode is a positive electrode current collector. And a negative electrode current collector, a first layer formed on the surface of the negative electrode current collector, and the first layer on the first layer. The first layer includes a carbon material, the second layer includes an inorganic solid oxide capable of occluding and releasing lithium ions, and the thickness of the first layer is T 1. and then, when the thickness of the second layer and T 2, the ratio of T 1 and T 2 (T 1 / T 2 ) is 4 or more and 50 or less, and the positive electrode current collector at the outer periphery of the electrode group That is, the exposed portion and the negative electrode current collector exposed portion face each other over at least one turn.

本発明者らが鋭意研究を行った結果、短絡時に集電体間で大電流放電すると、負極活物質層内で液抵抗の寄与による電位勾配が生じるため放電反応は表層側から進みやすく、数秒間にわたり集電体側の活物質からは実質的に放電されないことが明らかとなった。したがって電極群外周部に集電体短絡部を設けた場合、表層側のみリチウムイオンの放出が起きるため、表層側にチタン酸リチウムに代表される、リチウムイオン放出により高抵抗化し、完全放出時には絶縁性を示す無機固体酸化物を含む層を第2層として配置することで活物質層を速やかに高抵抗化することができる。   As a result of intensive studies by the inventors, when a large current is discharged between current collectors during a short circuit, a potential gradient is generated due to the contribution of liquid resistance in the negative electrode active material layer, so that the discharge reaction easily proceeds from the surface layer side. It was revealed that the current was not substantially discharged from the active material on the current collector side for a second. Therefore, when a current collector short-circuit is provided on the outer periphery of the electrode group, lithium ions are released only on the surface layer side. Therefore, resistance is increased by lithium ion release, represented by lithium titanate on the surface layer side, and insulation is achieved when fully discharged. By disposing a layer containing an inorganic solid oxide exhibiting properties as the second layer, the active material layer can be quickly increased in resistance.

また、第1層の厚みTと第2層の厚みTとの比T/Tが、4以上50以下であることが必要である。T/Tが4未満では高エネルギー密度の電池が得られず、また、第1層と集電体界面の結着性が不充分になりやすく、T/Tが50より大きいと短絡時の絶縁性が得られない。第2層の厚みTは1.5μm以上10μm以下であることが好ましい。Tが1.5μmより小さいと短絡時の絶縁性を損なう恐れがあり、Tが10μmより大きいとエネルギー密度の点で好ましくない。 Further, the ratio T 1 / T 2 between the thickness T 1 of the first layer and the thickness T 2 of the second layer needs to be 4 or more and 50 or less. When T 1 / T 2 is less than 4, a battery having a high energy density cannot be obtained, and the binding property between the first layer and the current collector interface tends to be insufficient, and when T 1 / T 2 is greater than 50, Insulation at short circuit cannot be obtained. It is preferable that the thickness T 2 of the second layer is 1.5μm or more 10μm or less. If T 1 is smaller than 1.5 μm, the insulating property at the time of short circuit may be impaired, and if T 1 is larger than 10 μm, it is not preferable in terms of energy density.

この結果、釘のような大きな異物による内部短絡に対して充分な安全性を確保しつつ、かつエネルギー密度の高い電池を得ることが可能となる。   As a result, it is possible to obtain a battery having a high energy density while ensuring sufficient safety against an internal short circuit caused by a large foreign object such as a nail.

本発明によると、高いエネルギー密度を損なうことなく、釘などの大きな異物による内部短絡が起きた際にも、電池温度の過度な上昇を抑制しうる、安全性に優れた非水電解質二次電池を得ることができる。   According to the present invention, a nonaqueous electrolyte secondary battery excellent in safety that can suppress an excessive increase in battery temperature even when an internal short circuit occurs due to a large foreign matter such as a nail without impairing a high energy density. Can be obtained.

本発明の一実施形態に係るリチウムイオン電池用正極および負極の断面図Sectional drawing of the positive electrode and negative electrode for lithium ion batteries which concern on one Embodiment of this invention 本発明の一実施形態に係る非水電解質二次電池の構成を概略的に示す縦断面図1 is a longitudinal sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

図1に、本発明の一実施形態に係る非水電解質二次電池用負極6の縦断面概念図を示す。負極6は、負極集電体11の表面に形成された第1層12および第1層12に積層された第2層13を備え、第1層12には炭素材料を含み、第2層13には無機固体酸化物粒子を含み、第1層12の厚みをTとし、第2層13の厚みをTとすると、TとTとの比T/Tが、4以上50以下である。また、負極6には捲回時に電極群の外周部になる側に第1層12も第2層13も形成していない負極集電体露出部16が電極群の1周以上に相当する長さで存在している。 In FIG. 1, the longitudinal cross-sectional conceptual diagram of the negative electrode 6 for nonaqueous electrolyte secondary batteries which concerns on one Embodiment of this invention is shown. The negative electrode 6 includes a first layer 12 formed on the surface of the negative electrode current collector 11 and a second layer 13 laminated on the first layer 12. The first layer 12 includes a carbon material, and the second layer 13 include inorganic solid oxide particles on the thickness of the first layer 12 and T 1, when the thickness of the second layer 13 and T 2, the ratio T 1 / T 2 between T 1 and T 2, 4 or more 50 or less. Further, in the negative electrode 6, the negative electrode current collector exposed portion 16 in which neither the first layer 12 nor the second layer 13 is formed on the side that becomes the outer peripheral portion of the electrode group when wound is a length corresponding to one or more rounds of the electrode group. It exists.

負極リード6aは両面とも集電体が露出している箇所であれば特に場所や本数は限定されないが、図1の負極6では外周部に1本接続されている。   The location and number of the negative electrode lead 6a are not particularly limited as long as the current collector is exposed on both surfaces, but one electrode lead 6a is connected to the outer peripheral portion of the negative electrode 6 in FIG.

第1層12に活物質として含む炭素材料としては、例えば各種天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛または非晶質炭素などの炭素材料が用いられる。また、第1層12には珪素(Si)もしくは錫(Sn)などの単体、珪素化合物(例えば、珪素合金、珪素を含む固溶体)または錫化合物(例えば、錫合金、錫を含む固溶体)を含んでいてもよい。第1層12には結着剤を含むことが好ましい。第1層12には導電材を含んでもよい。   Examples of the carbon material included in the first layer 12 as an active material include carbon materials such as various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon. The first layer 12 contains a simple substance such as silicon (Si) or tin (Sn), a silicon compound (for example, a silicon alloy, a solid solution containing silicon) or a tin compound (for example, a tin alloy or a solid solution containing tin). You may go out. The first layer 12 preferably contains a binder. The first layer 12 may include a conductive material.

第2層13に含む活物質には、リチウムイオンを吸蔵・放出可能で放出時に絶縁性を示す無機固体酸化物から当業者が適宜選択することができる。第2層13に含まれる無機固体酸化物の含有量は、例えば80重量%以上である。第2層13に含まれる無機固体酸化物は充放電の可逆性などからスピネル型結晶構造を有するチタン酸リチウムが特に好ましい。チタン酸リチウムは、リチウムイオンの受け入れ性が高く、電極の拡散抵抗を低減しやすい。更に、チタン酸リチウムは、炭素材料に比べて、熱安定性も高い。典型的なスピネル型結晶構造を有するチタン酸リチウムは、式:LiTi12で表される。ただし、一般式:LiTi5−y12+zで表されるチタン酸リチウムも同様に用いることができる。ここで、Mは、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、ホウ素、マグネシウム、カルシウム、ストロンチウム、バリウム、ジルコニウム、ニオブ、モリブデン、タングステン、ビスマス、ナトリウム、ガリウムおよび希土類元素よりなる群から選択された少なくとも1種であり、xは合成直後または完全放電状態におけるチタン酸リチウムの値であって、3≦x≦5であり、0.005≦y≦1.5であり、−1≦z≦1である。 The active material included in the second layer 13 can be appropriately selected by those skilled in the art from inorganic solid oxides that can occlude and release lithium ions and exhibit insulating properties when released. The content of the inorganic solid oxide contained in the second layer 13 is, for example, 80% by weight or more. The inorganic solid oxide contained in the second layer 13 is particularly preferably lithium titanate having a spinel crystal structure because of reversibility of charge and discharge. Lithium titanate has high acceptability of lithium ions, and it is easy to reduce the diffusion resistance of the electrode. Furthermore, lithium titanate has higher thermal stability than carbon materials. Lithium titanate having a typical spinel crystal structure is represented by the formula: Li 4 Ti 5 O 12 . However, the general formula: Li x Ti 5-y M y O 12 + lithium titanate represented by z may be used as well. Here, M is composed of vanadium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, boron, magnesium, calcium, strontium, barium, zirconium, niobium, molybdenum, tungsten, bismuth, sodium, gallium, and rare earth elements. At least one selected from the group, x is the value of lithium titanate immediately after synthesis or in a fully discharged state, 3 ≦ x ≦ 5, 0.005 ≦ y ≦ 1.5, − 1 ≦ z ≦ 1.

チタン酸リチウムの平均粒径(体積基準の粒度分布におけるメディアン径:D50)は、0.8〜30μmが好ましく、1〜20μmが更に好ましい。平均粒径が上記範囲に含まれる場合、リチウムイオンの受け入れ性が特に高くなりやすい。チタン酸リチウムの体積基準の粒度分布は、例えば市販のレーザー回折式の粒度分布測定装置により測定することができる。   The average particle size of lithium titanate (median diameter in the volume-based particle size distribution: D50) is preferably 0.8 to 30 μm, and more preferably 1 to 20 μm. When the average particle size is included in the above range, the lithium ion acceptability tends to be particularly high. The volume-based particle size distribution of lithium titanate can be measured by, for example, a commercially available laser diffraction particle size distribution measuring apparatus.

チタン酸リチウムのBET比表面積は、0.5〜10m/gが好ましく、2.5〜4.5m/gが更に好ましい。比表面積が上記範囲に含まれる場合、良好なリチウムイオンの受け入れ性が発揮され、低温環境下でも優れた出入力特性を得やすい。 BET specific surface area of the lithium titanate is preferably 0.5 to 10 m 2 / g, more preferably 2.5~4.5m 2 / g. When the specific surface area is within the above range, good lithium ion acceptability is exhibited, and excellent I / O characteristics can be easily obtained even in a low temperature environment.

第2層13は、無機固体酸化物100重量部あたり、20重量部以下、例えば1〜10重量部の炭素材料を含んでもよい。第2層13に含ませる炭素材料としては、例えば、黒鉛粒子、カーボンブラックおよび炭素繊維もしくはカーボンナノチューブを用いることができる。適量の炭素材料を第2層13に含ませることにより、第2層13に適度な導電性を付与することができる。   The second layer 13 may include a carbon material of 20 parts by weight or less, for example, 1 to 10 parts by weight per 100 parts by weight of the inorganic solid oxide. As the carbon material to be included in the second layer 13, for example, graphite particles, carbon black, and carbon fibers or carbon nanotubes can be used. By including an appropriate amount of the carbon material in the second layer 13, appropriate conductivity can be imparted to the second layer 13.

第1層12は、活物質100重量部あたり、0.5〜10重量部の結着剤を含むことができる。同様に、第2層13は、無機固体酸化物100重量部あたり、0.5〜10重量部の結着剤を含むことができる。第1層12および第2層13に用いる結着剤は、同じでもよく、異なってもよい。このような結着剤としては、例えば、アクリル樹脂、フッ素樹脂およびジエン系ゴムが挙げられる。アクリル樹脂としては、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸のナトリウム塩、ポリメタクリル酸のナトリウム塩およびアクリル酸−エチレン共重合体が挙げられる。フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)およびフッ化ビニリデン−ヘキサフルオロプロピレン共重合体が挙げられる。ジエン系ゴムとしては、スチレン−ブタジエン共重合体(SBR)が好ましい。   The first layer 12 may include 0.5 to 10 parts by weight of a binder per 100 parts by weight of the active material. Similarly, the second layer 13 can include 0.5 to 10 parts by weight of the binder per 100 parts by weight of the inorganic solid oxide. The binder used for the first layer 12 and the second layer 13 may be the same or different. Examples of such a binder include acrylic resin, fluororesin, and diene rubber. Examples of the acrylic resin include polyacrylic acid, polymethacrylic acid, sodium salt of polyacrylic acid, sodium salt of polymethacrylic acid, and acrylic acid-ethylene copolymer. Examples of the fluororesin include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene copolymer. As the diene rubber, a styrene-butadiene copolymer (SBR) is preferable.

第1層12は、活物質100重量部あたり、0.1〜5重量部の増粘剤を含むことがで
きる。同様に、第2層13は、無機固体酸化物100重量部あたり、0.1〜5重量部の増粘剤を含むことができる。第1層12および第2層13に用いる増粘剤は、同じでもよく、異なってもよい。このような増粘剤としては、例えば、ポリエチレンオキシドまたはセルロース誘導体のような水溶性高分子であるのが好ましい。セルロース誘導体には、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)および酢酸フタル酸セルロース(CAP)が含まれる。
The first layer 12 may include 0.1 to 5 parts by weight of a thickener per 100 parts by weight of the active material. Similarly, the 2nd layer 13 can contain 0.1-5 weight part thickener per 100 weight part of inorganic solid oxides. The thickeners used for the first layer 12 and the second layer 13 may be the same or different. Such a thickener is preferably a water-soluble polymer such as polyethylene oxide or a cellulose derivative. Cellulose derivatives include, for example, carboxymethylcellulose (CMC), methylcellulose (MC) and cellulose acetate phthalate (CAP).

第1層12と第2層13の積層方法は特に限定されないが、例えば、第1層12を塗工・乾燥により形成した後、第1層12表面に積層して塗工・乾燥してもよいし、吐出スリットを2つ以上具備したダイコーター等を用いて第1層12の塗料と第2層13の塗料とを同時に塗工した後乾燥させてもよい。   Although the lamination | stacking method of the 1st layer 12 and the 2nd layer 13 is not specifically limited, For example, after forming the 1st layer 12 by application | coating and drying, it may laminate | stack on the 1st layer 12 surface, and may be applied and dried. Alternatively, the coating material of the first layer 12 and the coating material of the second layer 13 may be applied simultaneously using a die coater having two or more discharge slits, and then dried.

第1層12の厚みTと第2層13の厚みTとの比T/Tが、4以上50以下であることが必要である。T/Tが4未満では高エネルギー密度の電池が得られず、T/Tが50より大きいと短絡時の絶縁性が得られない。第2層13の厚みTは1μm以上10μm以下であることが好ましい。Tが1.5μmより小さいと短絡時の絶縁性を損なう恐れがあり、Tが10μmより大きいとエネルギー密度の点で好ましくない。 The ratio T 1 / T 2 of the the thickness T 1 of the first layer 12 and the thickness T 2 of the second layer 13 is required to be 4 or more and 50 or less. If T 1 / T 2 is less than 4, a high energy density battery cannot be obtained, and if T 1 / T 2 is greater than 50, insulation at short circuit cannot be obtained. It is preferable that the thickness T 2 of the second layer 13 is 1μm or more 10μm or less. If T 1 is smaller than 1.5 μm, the insulating property at the time of short circuit may be impaired, and if T 1 is larger than 10 μm, it is not preferable in terms of energy density.

負極集電体11は銅箔、銅合金箔またはニッケル箔が好ましい。集電体の厚さは、生産性とエネルギー密度の点から5〜30μmであることが好ましく、5〜15μmであることがより好ましい。   The negative electrode current collector 11 is preferably a copper foil, a copper alloy foil or a nickel foil. The thickness of the current collector is preferably 5 to 30 μm and more preferably 5 to 15 μm from the viewpoint of productivity and energy density.

図1に、本発明の一実施形態に係る非水電解質二次電池用正極5の縦断面概念図を示す。正極5は、正極集電体と、正極集電体に担持された正極合剤層14とを備えている。また、正極5には捲回時に電極群9の外周部になる側に正極合剤層14が形成していない正極集電体露出部15が電極群9の1周以上に相当する長さで存在している。   In FIG. 1, the longitudinal cross-sectional conceptual diagram of the positive electrode 5 for nonaqueous electrolyte secondary batteries which concerns on one Embodiment of this invention is shown. The positive electrode 5 includes a positive electrode current collector and a positive electrode mixture layer 14 supported on the positive electrode current collector. Further, the positive electrode current collector exposed portion 15 in which the positive electrode mixture layer 14 is not formed on the side that becomes the outer peripheral portion of the electrode group 9 during winding has a length corresponding to one or more rounds of the electrode group 9. Existing.

さらに、図1のように正極合剤層14の長手方向の中央部にも電極群9の1周以上の長さで正極集電体露出部15が存在していることが好ましい。ここで、中央部とは、正極5の内周側端部と外周側端部の距離をLとしたとき、内周側端部および外周側端部からの距離がそれぞれ2/3L以下である範囲である。正極5の長手方向の内周部や外周部に比べ、中央部は集電体抵抗の寄与が小さいために大電流が流れやすく、中央部にも集電体露出部が存在することで、釘のような導電性異物を介しての短絡の際にさらに効果的に負極の第2層13の絶縁化が進行する。前記正極合剤層14中央の集電体露出部は片面でも両面でもよいが、片面の場合、電極群9の捲回中心を向く面ではなく電池ケース1を向く面に設けることが好ましい。また、前記正極合剤層14中央の集電体露出部に対向する負極面は必ずしも負極集電体11が露出している必要はないが、露出していたほうが確実に大電流を流すためより好ましい。   Further, as shown in FIG. 1, it is preferable that the positive electrode current collector exposed portion 15 is also present in the central portion in the longitudinal direction of the positive electrode mixture layer 14 with a length of one or more rounds of the electrode group 9. Here, when the distance between the inner peripheral side end portion and the outer peripheral side end portion of the positive electrode 5 is L, the distance from the inner peripheral side end portion and the outer peripheral side end portion is 2/3 L or less, respectively. It is a range. Compared with the inner and outer peripheral portions of the positive electrode 5 in the longitudinal direction, the central portion has a small contribution to the resistance of the current collector, so that a large current flows easily, and the current collector exposed portion also exists in the central portion. Insulation of the second layer 13 of the negative electrode proceeds more effectively at the time of a short circuit through the conductive foreign matter. The current collector exposed portion at the center of the positive electrode mixture layer 14 may be one side or both sides, but in the case of one side, it is preferably provided on the surface facing the battery case 1 instead of the surface facing the winding center of the electrode group 9. The negative electrode surface facing the current collector exposed portion in the center of the positive electrode mixture layer 14 is not necessarily exposed to the negative electrode current collector 11, but the exposed one is more reliable because a large current flows. preferable.

正極リード5aは両面とも集電体が露出している箇所であれば特に場所や本数は限定されないが、図1の正極5では中央部に1本接続されている。   The location and number of the positive electrode lead 5a are not particularly limited as long as the current collector is exposed on both surfaces, but one positive electrode lead 5a is connected to the central portion of the positive electrode 5 in FIG.

正極合剤層14は、正極活物質の他に、結着剤および導電剤などを含んでいればよい。正極活物質としては、リチウム複合金属酸化物を用いることができる。リチウム複合金属酸化物は、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMn、LiMn2−y、LiMPO、LiMPOF(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBのうち少なくとも1種)である。ここで、0<x≦1.2、0<y≦0.9、2.0≦z≦2.
3である。なお、リチウムのモル比を示すx値は、活物質作製直後の値であり、充放電により増減する。また、正極活物質は、上記リチウム複合金属酸化物中の金属元素の一部が異種元素で置換されたものであってもよい。さらに、正極活物質は、上記リチウム複合金属酸化物が金属酸化物、リチウム酸化物または導電剤などで表面処理されたものであってもよいし、上記リチウム複合金属酸化物の表面が疎水化処理されたものであってもよい。
The positive electrode mixture layer 14 may contain a binder and a conductive agent in addition to the positive electrode active material. A lithium composite metal oxide can be used as the positive electrode active material. Examples of the lithium composite metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , and Li x Ni 1. -y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B). Here, 0 <x ≦ 1.2, 0 <y ≦ 0.9, 2.0 ≦ z ≦ 2.
3. In addition, x value which shows the molar ratio of lithium is a value immediately after active material preparation, and increases / decreases by charging / discharging. In addition, the positive electrode active material may be one in which a part of the metal element in the lithium composite metal oxide is replaced with a different element. Furthermore, the positive electrode active material may be one in which the lithium composite metal oxide is surface-treated with a metal oxide, lithium oxide, or a conductive agent, or the surface of the lithium composite metal oxide is hydrophobized. It may be what was done.

リチウムイオン伝導性を有する電解質層は、非水溶媒および非水溶媒に溶解するリチウム塩を含む。電解質層は、ポリオレフィン製の微多孔質フィルムをセパレータとして含んでもよく、この場合、微多孔質フィルムの細孔内に、リチウム塩が溶解した非水溶媒が含浸される。非水溶媒としては、例えば、エチレンカーボネ−ト(EC)、プロピレンカーボネ−ト(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)およびエチルメチルカーボネート(EMC)が挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。リチウム塩としては、例えば、LiBF、LiPF、LiAlCl、LiClおよびリチウムイミド塩が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The electrolyte layer having lithium ion conductivity includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent. The electrolyte layer may include a polyolefin microporous film as a separator. In this case, a nonaqueous solvent in which a lithium salt is dissolved is impregnated in the pores of the microporous film. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). It is not limited to. These may be used alone or in combination of two or more. Examples of the lithium salt include LiBF 4 , LiPF 6 , LiAlCl 4 , LiCl, and lithium imide salt. These may be used alone or in combination of two or more.

以下、本発明を実施例に基づいて詳細に説明するが、実施例は本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, an Example does not limit the scope of the present invention.

<実施例1>
(i)負極の作製
(第1層)
人造黒鉛(平均粒径10μm、BET比表面積3m/g)3kgと、日本ゼオン(株)製のBM−400B(固形分40重量%の変性スチレン−ブタジエンゴムの分散液)75gと、カルボキシメチルセルロース(CMC)30gとを、適量の水とともに、双腕式練合機にて攪拌し、黒鉛を含む第1負極合剤スラリーを調製した。
<Example 1>
(I) Production of negative electrode (first layer)
3 kg of artificial graphite (average particle size 10 μm, BET specific surface area 3 m 2 / g), 75 g of BM-400B (dispersion of modified styrene-butadiene rubber having a solid content of 40% by weight) manufactured by Nippon Zeon Co., Ltd., and carboxymethylcellulose 30 g of (CMC) was stirred together with an appropriate amount of water in a double arm kneader to prepare a first negative electrode mixture slurry containing graphite.

第1負極合剤スラリーを、厚さ10μmの銅箔からなる負極集電体11の両面に塗布し、乾燥し、総厚が140μmとなるように圧延して、第1層12を形成した。すなわち、第1層12の厚さ(T)は、銅箔の片面あたり65μm、第1層12の密度は1.5g/cmとした。 The first negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector 11 made of a copper foil having a thickness of 10 μm, dried, and rolled to a total thickness of 140 μm, whereby the first layer 12 was formed. That is, the thickness (T 1 ) of the first layer 12 was 65 μm per one side of the copper foil, and the density of the first layer 12 was 1.5 g / cm 3 .

(第2層)
スピネル型結晶構造を有するチタン酸リチウム(LiTi12、平均粒径1μm、BET比表面積3m/g)2kgと、人造黒鉛(平均粒径10μm)50gと、日本ゼオン(株)製のBM−400B(固形分40重量%の変性スチレン−ブタジエンゴムの分散液)100gと、カルボキシメチルセルロース(CMC)50gとを、適量の水とともに、双腕式練合機にて攪拌し、チタン酸リチウムを含む第2負極合剤スラリーを調製した。第2負極合剤スラリーを、銅箔の両面に設けられた第1層の表面にそれぞれ塗布し、乾燥し、総厚が160μmとなるように圧延して、第2層13を形成した。すなわち、第2層13の厚さ(T)は、銅箔の片面あたり10μm、第2層13の密度は2g/cmとした。
(Second layer)
2 kg of lithium titanate having a spinel crystal structure (Li 4 Ti 5 O 12 , average particle size 1 μm, BET specific surface area 3 m 2 / g), artificial graphite (average particle size 10 μm) 50 g, manufactured by Nippon Zeon Co., Ltd. BM-400B (modified styrene-butadiene rubber dispersion having a solid content of 40% by weight) and 50 g of carboxymethylcellulose (CMC) were stirred together with an appropriate amount of water in a double-arm kneader, and titanic acid. A second negative electrode mixture slurry containing lithium was prepared. The 2nd negative electrode mixture slurry was apply | coated to the surface of the 1st layer provided in both surfaces of copper foil, respectively, it dried and rolled so that total thickness might be 160 micrometers, and the 2nd layer 13 was formed. That is, the thickness (T 2 ) of the second layer 13 was 10 μm per one side of the copper foil, and the density of the second layer 13 was 2 g / cm 3 .

得られた極板を幅58mm、長さ805mmに裁断し、外周部に長さ70mmの両面集電体露出部を設け、外周部にリードを溶接し負極を得た。この負極は、T/T=6.5を満たす。 The obtained electrode plate was cut into a width of 58 mm and a length of 805 mm, a double-sided current collector exposed portion having a length of 70 mm was provided on the outer peripheral portion, and a lead was welded to the outer peripheral portion to obtain a negative electrode. This negative electrode satisfies T 1 / T 2 = 6.5.

(ii)正極5の作製
コバルト酸リチウム(LiCoO、平均粒径10μm)3kg、PVDFを12重量
%含むN−メチル−ピロリドン(以下、NMP(N−methylpyrrolidone))溶液(商品名:PVDF#1320、(株)クレハ製)1kg、アセチレンブラック90gおよび適量のNMPを双腕式練合機で攪拌し、正極合剤スラリーを調製した。正極合剤スラリーを、厚さ15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、総厚が120μmとなるように圧延して、正極活物質層を形成した。
(Ii) Production of Positive Electrode 5 3 kg of lithium cobaltate (LiCoO 2 , average particle size 10 μm), N-methyl-pyrrolidone (hereinafter referred to as NMP (N-methylpyrrolidone)) solution (trade name: PVDF # 1320) containing 12% by weight of PVDF 1 kg, manufactured by Kureha Co., Ltd.), 90 g of acetylene black and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and rolled to a total thickness of 120 μm to form a positive electrode active material layer.

得られた極板を幅56mm、長さ750mmに裁断し、外周部に長さ57mmの両面集電体露出部を設け、中央部にリードを溶接し正極5を得た。   The obtained electrode plate was cut into a width of 56 mm and a length of 750 mm, a double-sided current collector exposed portion having a length of 57 mm was provided on the outer peripheral portion, and a lead was welded to the center portion to obtain the positive electrode 5.

(非水電解質)
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に、1モル/リットルの濃度でLiPFを溶解させ、さらに全体の3重量%相当のビニレンカーボネートを添加して、非水電解質を得た。
(Nonaqueous electrolyte)
LiPF 6 was dissolved at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1. A non-aqueous electrolyte was obtained by adding 3% by weight of vinylene carbonate.

(電池の組立)
図2に示すような円筒型電池を作製した。
(Battery assembly)
A cylindrical battery as shown in FIG. 2 was produced.

上記の方法に従って作製された正極5と負極6との間にセパレータ7(厚み20μmのポリエチレン樹脂の単層)を挟んで、正極5と負極6とセパレータ7とを捲回した。これにより、電極群9が作製された。この電極群9の長手方向の両端に上部絶縁板8aおよび下部絶縁板8bを配置した後、有底円筒型の電池ケース1(直径18mm、高さ65mm、内径17.85mm)に収容した。アルミニウムからなる正極リード5aの他端を正極端子の下面に接続し、ニッケルからなる負極リード6aの他端を電池ケース1の内底面に接続した。その後、上述した非水電解質5.5gを電池ケース1内に注液した。ガスケット3を介して、正極端子を支持する封口板2を電池ケース1の開口にかしめた。これにより、電池ケース1は封口された。このようにして、設計容量が2150mAhである円筒型非水電解質二次電池を作製した。この電池を実施例1の電池とする。   The positive electrode 5, the negative electrode 6, and the separator 7 were wound with the separator 7 (single layer of polyethylene resin having a thickness of 20 μm) interposed between the positive electrode 5 and the negative electrode 6 manufactured according to the above method. Thereby, the electrode group 9 was produced. After the upper insulating plate 8a and the lower insulating plate 8b were disposed at both ends of the electrode group 9 in the longitudinal direction, the electrode group 9 was housed in a bottomed cylindrical battery case 1 (diameter 18 mm, height 65 mm, inner diameter 17.85 mm). The other end of the positive electrode lead 5 a made of aluminum was connected to the lower surface of the positive electrode terminal, and the other end of the negative electrode lead 6 a made of nickel was connected to the inner bottom surface of the battery case 1. Thereafter, 5.5 g of the non-aqueous electrolyte described above was injected into the battery case 1. A sealing plate 2 that supports the positive electrode terminal was caulked to the opening of the battery case 1 through the gasket 3. Thereby, the battery case 1 was sealed. In this way, a cylindrical non-aqueous electrolyte secondary battery having a design capacity of 2150 mAh was produced. This battery is referred to as the battery of Example 1.

<実施例2>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ70μmおよび2μmとしたこと以外、実施例1と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 2>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, except that was 70μm and 2μm, respectively, similarly creates a negative electrode as in Example 1, further manufactured cylindrical nonaqueous electrolyte secondary battery did.

<実施例3>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ69μmおよび5μmとしたこと以外、実施例1と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 3>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, except that was 69μm and 5μm respectively, similarly creates a negative electrode as in Example 1, further manufactured cylindrical nonaqueous electrolyte secondary battery did.

<実施例4>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ67μmおよび8μmとしたこと以外、実施例1と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 4>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, except that was 67μm and 8μm respectively, similarly creates a negative electrode as in Example 1, further manufactured cylindrical nonaqueous electrolyte secondary battery did.

<実施例5>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ63μmおよび15μmとし、負極6の長さ795mm、正極5の長さ740mmとしたこと以外、実施例1と同様にして、円筒型非水電解質二次電池を作製した。
<Example 5>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 63μm and 15 [mu] m, the length of the negative electrode 6 795Mm, except that the length of 740mm of the positive electrode 5, in the same manner as in Example 1 A cylindrical nonaqueous electrolyte secondary battery was produced.

<実施例6>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ70μmおよび1.5μmとしたこと以外、実施例1と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 6>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, except that was 70μm and 1.5μm, respectively, similarly creates a negative electrode as in Example 1, further cylindrical nonaqueous electrolyte secondary battery Was made.

<実施例7>
正極合剤層14中央の捲回時に電池ケース1を向く側の面に長さ41mmの集電体露出部を設け、この露出部に対向する負極面にも集電体露出部を設けたこと以外、実施例6と同様にして、更に円筒型非水電解質二次電池を作製した。
<Example 7>
A collector exposed portion having a length of 41 mm was provided on the surface facing the battery case 1 when the positive electrode mixture layer 14 was rolled, and a collector exposed portion was also provided on the negative electrode surface facing the exposed portion. Except for the above, a cylindrical nonaqueous electrolyte secondary battery was further produced in the same manner as in Example 6.

<実施例8>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ40μmおよび10μmとし、負極6の長さ1010mm、正極5の厚みを90μmとし正極5の長さ950mmとしたこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Example 8>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 40μm and 10 [mu] m, the length of the negative electrode 6 1010 mm, except that the thickness of the positive electrode 5 and a length of 950mm of the positive electrode 5 and 90 [mu] m, A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

<実施例9>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ48μmおよび5μmとし、負極6の長さ1025mm、正極5の長さ965mmとしたこと以外、実施例8と同様にして円筒型非水電解質二次電池を作製した。
<Example 9>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 48μm and 5 [mu] m, the length of the negative electrode 6 1025Mm, except that the length of 965mm of the positive electrode 5, in the same manner as in Example 8 A cylindrical non-aqueous electrolyte secondary battery was produced.

<実施例10>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ50μmおよび1μmとし、負極6の長さ1040mm、正極5の長さ980mmとしたこと以外、実施例8と同様にして円筒型非水電解質二次電池を作製した。
<Example 10>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 50μm and 1 [mu] m, the length of the negative electrode 6 1040 mm, except that the length of 980mm of the positive electrode 5, in the same manner as in Example 8 A cylindrical non-aqueous electrolyte secondary battery was produced.

<実施例11>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ83μmおよび20μmとし、負極6の長さ650mm、正極5の厚みを155μmとし正極5の長さ590mmとしたこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Example 11>
The thickness T 2 of the thickness T 1 and the second layer 13 of the first layer 12, respectively and 83μm and 20 [mu] m, the length of the negative electrode 6 650 mm, a thickness of the positive electrode 5 and 155μm except that the length 590mm of the positive electrode 5, A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

<実施例12>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ90μmおよび10μmとし、負極6の長さ660mm、正極5の長さ600mmとしたこと以外、実施例11と同様にして円筒型非水電解質二次電池を作製した。
<Example 12>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 90μm and 10 [mu] m, the length of the negative electrode 6 660 mm, except that the length of 600mm of the positive electrode 5, in the same manner as in Example 11 A cylindrical non-aqueous electrolyte secondary battery was produced.

<実施例13>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ95μmおよび2μmとし、負極6の長さ670mm、正極5の長さ610mmとしたこと以外、実施例11と同様にして円筒型非水電解質二次電池を作製した。
<Example 13>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 95μm and 2 [mu] m, the length of the negative electrode 6 670 mm, except that the length of 610mm of the positive electrode 5, in the same manner as in Example 11 A cylindrical non-aqueous electrolyte secondary battery was produced.

<比較例1>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ70μmおよび1μmとしたこと以外、実施例1と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Comparative Example 1>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, except that was 70μm and 1μm, respectively, similarly creates a negative electrode as in Example 1, further manufactured cylindrical nonaqueous electrolyte secondary battery did.

<比較例2>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ60mおよび20μmとし、負極6の長さ785mm、正極5の長さ730mmとしたこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Comparative example 2>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, and 60m and 20μm, respectively, the length of the negative electrode 6 785 mm, except that the length of 730mm of the positive electrode 5, in the same manner as in Example 1 A cylindrical non-aqueous electrolyte secondary battery was produced.

<比較例3>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ54mおよび30μmとし、負極の長さ770mm、正極5の長さ715mmとしたこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 3>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 54m and 30 [mu] m, the negative electrode length 770 mm, except that the length of 715mm of the positive electrode 5, in the same manner as in Example 1 Cylindrical Type non-aqueous electrolyte secondary battery was produced.

<比較例4>
第2層13を形成しなかったこと以外、実施例2と同様にして円筒型非水電解質二次電池を作製した。
<Comparative example 4>
A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the second layer 13 was not formed.

<比較例5>
正極5の長さ693mmとし正極外周部に集電体露出部を設けなかったこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 5>
A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the length of the positive electrode 5 was 693 mm and the current collector exposed portion was not provided on the outer periphery of the positive electrode.

<比較例6>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ43μmおよび15μmとし、負極6の長さ995mm、正極5の長さ935mmとしたこと以外、実施例8と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 6>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 43μm and 15 [mu] m, the length of the negative electrode 6 995Mm, except that the length of 935mm of the positive electrode 5, in the same manner as in Example 8 A cylindrical non-aqueous electrolyte secondary battery was produced.

<比較例7>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ50μmおよび0.5μmとし、負極6の長さ1040mm、正極5の長さ980mmとしたこと以外、実施例8と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 7>
The thickness T 2 of the thickness T 1 and the second layer 13 of the first layer 12, respectively and 50μm and 0.5 [mu] m, the length of the negative electrode 6 1040 mm, except that the length of 980mm of the positive electrode 5, similarly to Example 8 Thus, a cylindrical non-aqueous electrolyte secondary battery was produced.

<比較例8>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ80μmおよび25μmとし、負極6の長さ645mm、正極5の長さ585mmとしたこと以外、実施例11と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 8>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 80μm and 25 [mu] m, the length of the negative electrode 6 645 mm, except that the length of 585mm of the positive electrode 5, in the same manner as in Example 11 A cylindrical non-aqueous electrolyte secondary battery was produced.

<比較例9>
第1層12の厚みTおよび第2層13の厚みTを、それぞれ95μmおよび1.5μmとし、負極6の長さ670mm、正極5の長さ610mmとしたこと以外、実施例11と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 9>
The thickness T 2 of the first layer 12 of thickness T 1 and the second layer 13, respectively and 95μm and 1.5 [mu] m, the length of the negative electrode 6 670 mm, except that the length of 610mm of the positive electrode 5, similarly to Example 11 Thus, a cylindrical non-aqueous electrolyte secondary battery was produced.

(電池の評価方法)
実施例1〜13および比較例1〜9の各電池に対して次に示す釘刺し試験および充放電試験を行って、各電池の安全性および各電池のエネルギー密度を評価した。また、電池の製造工程における負極活物質層の脱落の有無を目視で確認した。
(Battery evaluation method)
The batteries of Examples 1 to 13 and Comparative Examples 1 to 9 were subjected to the following nail penetration test and charge / discharge test to evaluate the safety of each battery and the energy density of each battery. In addition, the presence or absence of the negative electrode active material layer in the battery manufacturing process was visually confirmed.

[釘刺し試験]
実施例1〜13および比較例1〜9の各電池に対して、以下の条件で充電した。そして、70℃環境下で、充電状態の電池の側面から直径2.7mmの鉄釘を10mm/秒の速度で貫通させた。同じ試験を各5セルずつ行い、異常過熱に至るかどうか確認した。結果を表1における「異常過熱した電池数」に示す。
[Nail penetration test]
The batteries of Examples 1 to 13 and Comparative Examples 1 to 9 were charged under the following conditions. Then, in a 70 ° C. environment, an iron nail having a diameter of 2.7 mm was penetrated from the side surface of the charged battery at a speed of 10 mm / second. The same test was performed 5 cells each, and it was confirmed whether or not abnormal overheating occurred. The results are shown in “Number of abnormally overheated batteries” in Table 1.

−充電条件−
定電流充電:電流値0.5C,充電終止電圧4.3V
定電圧充電:電圧値4.3V,充電終止電流100mA
[充放電試験]
実施例1〜13および比較例1〜9の各電池に対して、25℃環境下で以下の条件で充放電を行った。放電電池容量および平均放電電圧からセル当りエネルギーを求め、さらにエネルギー密度を算出した。結果を表1に示す。
-Charging conditions-
Constant current charging: Current value 0.5C, end-of-charge voltage 4.3V
Constant voltage charge: Voltage value 4.3V, charge end current 100mA
[Charge / discharge test]
The batteries of Examples 1 to 13 and Comparative Examples 1 to 9 were charged and discharged under the following conditions in a 25 ° C. environment. The energy per cell was determined from the discharge battery capacity and the average discharge voltage, and the energy density was calculated. The results are shown in Table 1.

−充放電条件−
定電流充電:電流値0.5C,充電終止電圧4.2V
定電圧充電:電圧値4.2V,充電終止電流100mA
定電流放電:電流値0.5C,放電終止電圧1.0V
−Charging / discharging conditions−
Constant current charging: Current value 0.5C, end-of-charge voltage 4.2V
Constant voltage charging: Voltage value 4.2V, charging end current 100mA
Constant current discharge: current value 0.5C, final discharge voltage 1.0V

以下、得られた結果について詳述する。   Hereinafter, the obtained results will be described in detail.

実施例1〜5、9、12および13は、釘刺し時の異常過熱や負極活物質層の脱落もなく、エネルギー密度も高い電池が得られた。実施例6および実施例10は釘刺し時の異常
過熱が5セル中1セル発生した。実施例6と実施例10は第2層13の厚みTがそれぞれ平均1.5μm、1μmとやや薄く、場所によっては下層である第1層が表面に露出している箇所が見受けられたため、この箇所での絶縁性が不充分となり、安全性がやや低下したものと考えられる。一方、実施例6に中央部片面の集電体露出部を加えた実施例7では、釘刺し時に異常過熱が1セルも発生しなかった。これは、長手方向の電子抵抗が小さい中央部の集電体露出部の短絡によって、より効果的に負極の第2層13の絶縁化が進行し、部分的な第1層12露出箇所による絶縁性低下をカバーできたためであると考えられる。実施例8はエネルギー密度がやや低かった。これは主負極層である第1層12の厚みTに対して第2層13の厚みTがやや厚いため、平均放電電圧が低下したことによると考えられる。実施例11は負極活物質層の脱落が一部でみられた。これは第2層13の厚みTが平均20μmとやや厚いため、柔軟性がやや低くなったことに加え、主負極層中の結着剤が表面方向へマイグレーションして集電体界面の結着性が不充分になったためであると考えられる。
In Examples 1 to 5, 9, 12, and 13, batteries with high energy density were obtained without abnormal overheating during nail penetration and removal of the negative electrode active material layer. In Examples 6 and 10, abnormal overheating during nail penetration occurred in 1 cell out of 5 cells. In Example 6 and Example 10, the thickness T 2 of the second layer 13 was somewhat thin, average 1.5 μm and 1 μm, respectively, and the location where the first layer, which is the lower layer, was exposed on the surface depending on the location was found. It is considered that the insulation at this point is insufficient and the safety is slightly lowered. On the other hand, in Example 7 in which the current collector exposed portion on one side of the central portion was added to Example 6, no abnormal overheating occurred at the time of nail penetration. This is because insulation of the second layer 13 of the negative electrode proceeds more effectively by short-circuiting the exposed portion of the current collector at the center where the electronic resistance in the longitudinal direction is small, and the insulation by the part where the first layer 12 is exposed partially. This is thought to be due to the ability to cover the decline in sex. In Example 8, the energy density was slightly low. This is presumably because the average discharge voltage was lowered because the thickness T 2 of the second layer 13 was slightly thicker than the thickness T 1 of the first layer 12 that was the main negative electrode layer. In Example 11, the negative electrode active material layer was partially removed. This is because the thickness T 2 of the second layer 13 somewhat thicker average 20 [mu] m, in addition to the flexibility becomes slightly lower, and the migration binder in Shumakekyokuso is toward the surface of the current collector interface formation This is thought to be due to insufficient wearability.

比較例1、4、5、7、9は、異常過熱が多く発生した。比較例1、7、9は第2層13の厚みTが第1層12の厚みTに対して非常に薄く、第1層12の表面露出面積が多く絶縁性が不充分となったため安全性が低下したものと考えられる。比較例4は第2層13が存在しないため絶縁性が得られず安全性が低かった。比較例5は外周部の集電体露出部が存在しないため、第2層13の絶縁化が充分に進行する前に過熱に至ってしまったと考えられる。比較例2、3、6および8は釘刺し時の安全性は高かったものの、第1層12に対し第2層13が厚すぎたためにエネルギー密度の低下や、負極活物質層の脱落がみられた。 In Comparative Examples 1, 4, 5, 7, and 9, many abnormal overheatings occurred. Comparative Example 1,7,9 are very thin thickness T 2 of the second layer 13 relative to the thickness T 1 of the first layer 12, since the surface exposed area many insulating first layer 12 becomes insufficient It is thought that the safety was lowered. In Comparative Example 4, since the second layer 13 was not present, insulation was not obtained and safety was low. In Comparative Example 5, since there is no current collector exposed portion on the outer peripheral portion, it is considered that overheating occurred before the second layer 13 was sufficiently insulated. In Comparative Examples 2, 3, 6 and 8, the safety at the time of nail penetration was high, but the second layer 13 was too thick compared to the first layer 12, so that the energy density decreased and the negative electrode active material layer dropped off. It was.

以上の結果より、TとTとの比T/Tが、4以上50以下であり、かつ、電極群の外周部において正極集電体露出部と負極集電体露出部が少なくとも1周以上にわたり対向していることが必要であり、Tが、1.5μm以上10μm以下であることが好ましいことがわかった。 These results, T 1 and the ratio T 1 / T 2 and T 2 is 4 or more and 50 or less, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion at the outer periphery of the electrode group at least It has been necessary that they face each other over one round, and it was found that T 2 is preferably 1.5 μm or more and 10 μm or less.

本発明では、エネルギー密度の低下を防ぎつつ優れた安全性を有する非水電解質二次電池を提供できる。よって、本発明は、携帯電子機器等の小型電源だけでなくEV(Electric Vehicle)などの大型電源へも展開できる技術として有用である。   In the present invention, it is possible to provide a nonaqueous electrolyte secondary battery having excellent safety while preventing a decrease in energy density. Therefore, the present invention is useful as a technology that can be applied not only to a small power source such as a portable electronic device but also to a large power source such as an EV (Electric Vehicle).

1 電池ケース
2 封口板
3 ガスケット
5 正極
5a 正極リード
6 負極
6a 負極リード
7 セパレータ
8a 上部絶縁板
8b 下部絶縁板
9 電極群
11 負極集電体
12 第1層
13 第2層
14 正極合剤層
15 正極集電体露出部
16 負極集電体露出部
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 5 Positive electrode 5a Positive electrode lead 6 Negative electrode 6a Negative electrode lead 7 Separator 8a Upper insulating plate 8b Lower insulating plate 9 Electrode group 11 Negative electrode collector 12 1st layer 13 2nd layer 14 Positive electrode mixture layer 15 Positive electrode current collector exposed portion 16 Negative electrode current collector exposed portion

Claims (4)

正極と、負極とが、セパレータを介して捲回してなる電極群を有し、
前記正極は、正極集電体と、正極集電体の表面に形成された正極合剤層を含み、
前記負極は、負極集電体と、負極集電体の表面に形成された第1層と、前記第1層上に積層された第2層を備え、前記第1層には炭素材料を含み、前記第2層にはリチウムイオンを吸蔵・放出可能な無機固体酸化物を含み、前記第1層の厚みをTとし、前記第2層の厚みをTとすると、TとTとの比が、4以上50以下であり、かつ、
電極群の外周部において正極集電体露出部と負極集電体露出部が少なくとも1周以上にわたり対向していることを特徴とする、非水電解質二次電池。
The positive electrode and the negative electrode have an electrode group formed by winding through a separator,
The positive electrode includes a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector,
The negative electrode includes a negative electrode current collector, a first layer formed on a surface of the negative electrode current collector, and a second layer laminated on the first layer, wherein the first layer includes a carbon material. , said second layer comprises capable of absorbing and releasing inorganic solid oxide lithium ions, the thickness of the first layer and T 1, when the thickness of the second layer and T 2, T 1 and T 2 And the ratio is 4 or more and 50 or less, and
A nonaqueous electrolyte secondary battery characterized in that a positive electrode current collector exposed portion and a negative electrode current collector exposed portion face each other over at least one turn in the outer peripheral portion of the electrode group.
前記無機固体酸化物は、スピネル型結晶構造を有するチタン酸リチウムである、請求項1記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the inorganic solid oxide is lithium titanate having a spinel crystal structure. 前記第2層の厚みTが、1.5μm以上10μm以下であることを特徴とする請求項1または2に記載の非水電解質二次電池。 3. The nonaqueous electrolyte secondary battery according to claim 1, wherein a thickness T 2 of the second layer is 1.5 μm or more and 10 μm or less. 前記正極において、正極合剤層の長手方向の中央部に少なくとも片側1周以上にわたり正極集電体露出部が設けられている、請求項1から3のいずれか1項に記載の非水電解質二次電池。   4. The non-aqueous electrolyte 2 according to claim 1, wherein in the positive electrode, a positive electrode current collector exposed portion is provided in a central portion of the positive electrode mixture layer in a longitudinal direction over at least one side. Next battery.
JP2011200481A 2011-09-14 2011-09-14 Nonaqueous electrolyte solar batter Withdrawn JP2014225327A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011200481A JP2014225327A (en) 2011-09-14 2011-09-14 Nonaqueous electrolyte solar batter
PCT/JP2012/005892 WO2013038702A1 (en) 2011-09-14 2012-09-14 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200481A JP2014225327A (en) 2011-09-14 2011-09-14 Nonaqueous electrolyte solar batter

Publications (1)

Publication Number Publication Date
JP2014225327A true JP2014225327A (en) 2014-12-04

Family

ID=47882951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200481A Withdrawn JP2014225327A (en) 2011-09-14 2011-09-14 Nonaqueous electrolyte solar batter

Country Status (2)

Country Link
JP (1) JP2014225327A (en)
WO (1) WO2013038702A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019167613A1 (en) * 2018-02-28 2021-02-04 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN112563450A (en) * 2020-12-11 2021-03-26 珠海冠宇电池股份有限公司 Positive plate and battery
JP2021051968A (en) * 2019-09-26 2021-04-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226264B2 (en) * 2019-11-20 2023-02-21 トヨタ自動車株式会社 All-solid battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2535064A1 (en) * 2006-02-01 2007-08-01 Hydro Quebec Multi-layer material, production and use thereof as an electrode
CN101515640B (en) * 2008-02-22 2011-04-20 比亚迪股份有限公司 Cathode and lithium ion secondary battery containing same
JP4527190B1 (en) * 2009-01-14 2010-08-18 パナソニック株式会社 Non-aqueous battery positive electrode plate, non-aqueous battery electrode group and manufacturing method thereof, and rectangular non-aqueous secondary battery and manufacturing method thereof
JP2011165657A (en) * 2010-01-15 2011-08-25 Semiconductor Energy Lab Co Ltd Electricity storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019167613A1 (en) * 2018-02-28 2021-02-04 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
EP3761428A4 (en) * 2018-02-28 2021-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
JP7336725B2 (en) 2018-02-28 2023-09-01 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP2021051968A (en) * 2019-09-26 2021-04-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7125658B2 (en) 2019-09-26 2022-08-25 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN112563450A (en) * 2020-12-11 2021-03-26 珠海冠宇电池股份有限公司 Positive plate and battery

Also Published As

Publication number Publication date
WO2013038702A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP6612996B2 (en) Positive electrode for secondary battery and lithium secondary battery including the same
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
JP6016038B2 (en) Nonaqueous electrolyte secondary battery
KR20160110380A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
WO2010134258A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR102217574B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101697008B1 (en) Lithium secondary battery
JP2011210450A (en) Cell electrode plate and cell
JP2015046218A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014225326A (en) Nonaqueous electrolyte secondary battery
US10090510B2 (en) Non-aqueous electrolyte secondary battery
JP2013218913A (en) Nonaqueous electrolyte secondary battery
JP2011060481A (en) Nonaqueous electrolyte secondary battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
WO2012147647A1 (en) Lithium ion secondary cell
JP2015002169A (en) Secondary battery and electrode for secondary battery
JP2013134923A (en) Lithium ion secondary battery
JP2016139548A (en) Lithium ion battery
WO2013038702A1 (en) Nonaqueous electrolyte secondary cell
KR20140145914A (en) Cathode active material and secondary battery
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202