JP2014199714A - Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014199714A
JP2014199714A JP2011173518A JP2011173518A JP2014199714A JP 2014199714 A JP2014199714 A JP 2014199714A JP 2011173518 A JP2011173518 A JP 2011173518A JP 2011173518 A JP2011173518 A JP 2011173518A JP 2014199714 A JP2014199714 A JP 2014199714A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
electrolyte secondary
secondary battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011173518A
Other languages
Japanese (ja)
Inventor
一樹 遠藤
Kazuki Endo
一樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011173518A priority Critical patent/JP2014199714A/en
Priority to PCT/JP2012/005022 priority patent/WO2013021630A1/en
Publication of JP2014199714A publication Critical patent/JP2014199714A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that, when an internal short circuit due to such as sticking of a foreign object like a nail occurs, great stress is applied on a negative electrode even when a layer assuming insulation properties is arranged on a surface of a main active material layer, so that adhesion between a collector and the main active material layer becomes insufficient, the collector is easily exposed due to the separation of the main active material layer together with the layer assuming insulation properties from a collector surface, and thus it is difficult to secure insulation properties.SOLUTION: A nonaqueous electrolyte secondary battery uses a negative electrode in which a layer assuming insulation properties is formed to have slight conductivity and disposed on a side of a collector surface, as a high resistance layer.

Description

本発明は、非水電解質二次電池用負極に関し、詳しくは、安全性が改良された非水電解質二次電池用負極に関する。 The present invention relates to a negative electrode for a nonaqueous electrolyte secondary battery, and more particularly to a negative electrode for a nonaqueous electrolyte secondary battery with improved safety.

近年、携帯電話やノートパソコンなどの電子機器および車載用電源などに用いる二次電池に対する高エネルギー密度化が要求されており、この観点から高エネルギー密度化が可能な非水電解質二次電池が広く普及している。非水電解質二次電池は、正極、負極、これらの間に介在するセパレータおよび非水電解質を具備する。正極、負極およびセパレータは、捲回されて電極群を構成しているものが多い。   In recent years, there has been a demand for higher energy density for secondary batteries used in electronic devices such as mobile phones and laptop computers and in-vehicle power supplies. From this viewpoint, non-aqueous electrolyte secondary batteries that can increase energy density are widely used. It is popular. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and a non-aqueous electrolyte. Many of the positive electrode, the negative electrode, and the separator are wound to form an electrode group.

一般的に電池の内部で比較的抵抗値が低い短絡が発生した場合、短絡点に大電流が集中して流れるため、電池の発熱が加速して過熱に至ることがある。エネルギー密度の高いリチウムイオン電池ではこのような現象を回避するために、製造上の観点のほかに、電池構成上の観点からも様々な安全対策がなされている。   In general, when a short circuit having a relatively low resistance value occurs inside the battery, a large current flows in a concentrated manner at the short circuit point, so that the heat generation of the battery may accelerate and lead to overheating. In order to avoid such a phenomenon in a lithium ion battery having a high energy density, various safety measures are taken from the viewpoint of the battery configuration in addition to the viewpoint of manufacturing.

一般的には、電池が内部短絡を起こしたときの発熱により、細孔が閉塞してイオン電流の遮断を行うシャットダウン機能が付与されたセパレータが用いられている。シャットダウン機能により短絡電流が流れなくなり発熱が停止するというものであるが、短絡部の発熱が大きい場合、シャットダウンが機能する前にセパレータを溶融させてセパレータに大きな穴を開けるメルトダウンを引き起こす。メルトダウンにより正極と負極とが短絡すると、更なる過熱を引き起こし、場合によっては電池が発火又は発煙し非常に危険である。   In general, a separator having a shutdown function for blocking pores and blocking ionic current due to heat generated when a battery causes an internal short circuit is used. The short-circuit current stops flowing due to the shutdown function, and the heat generation stops. However, when the heat generation in the short-circuited portion is large, the separator is melted before the shutdown functions, thereby causing a melt-down that opens a large hole in the separator. When the positive electrode and the negative electrode are short-circuited due to meltdown, further overheating is caused. In some cases, the battery ignites or smokes, which is very dangerous.

そこで、アルミナなどの無機酸化物フィラーと水溶性高分子からなる多孔膜を、活物質層上に形成する技術が提案されている(特許文献1参照)。特許文献1の技術を用いれば、過熱環境下でも正負極間の絶縁を保つ能力が高いと考えられる。   Therefore, a technique for forming a porous film made of an inorganic oxide filler such as alumina and a water-soluble polymer on an active material layer has been proposed (see Patent Document 1). If the technique of patent document 1 is used, it is thought that the capability to maintain the insulation between positive and negative electrodes is high also in an overheating environment.

さらに、リチウムを吸蔵・放出可能なリチウムチタン複合酸化物からなる表面層を主負極層上に形成する技術が提案されている(特許文献2参照)。   Furthermore, a technique for forming a surface layer made of a lithium titanium composite oxide capable of inserting and extracting lithium on the main negative electrode layer has been proposed (see Patent Document 2).

特開平9−147916号公報JP-A-9-147916 特開2010−97720号公報JP 2010-97720 A

しかしながら、従来の技術では表面側に短絡時の絶縁性を担う層を配置し集電体側に主活物質層を配置しているが、このような構成の負極を用いたとしても、釘などの大きな異物による極板の破壊を伴う内部短絡の際には、絶縁性を担う層が下層の主活物質層ともども集電体から剥離してしまう結果、絶縁効果が充分に発揮できない場合があった。   However, in the conventional technology, a layer responsible for insulation at the time of a short circuit is arranged on the surface side, and a main active material layer is arranged on the current collector side. In the event of an internal short circuit that involves destruction of the electrode plate due to a large foreign object, the insulating layer may be peeled off from the current collector together with the underlying main active material layer, resulting in insufficient insulation effects. .

言い換えると、釘のような異物が刺さるような内部短絡の場合、主活物質層表面に絶縁性を担う層が配置されていたとしても、負極に大きな応力がかかるため、集電体と主活物質層との密着性が不充分となり、集電体表面から主活物質層と絶縁性を担う層が一緒に剥離して集電体が露出しやすく、このために絶縁性が確保し難いことがわかった。しかし、集電体と主活物質層との間の密着性が充分に確保できるように主活物質層中の結着剤量を
増やすと、リチウムイオンの受け入れ性が悪くなり、電池特性が著しく低下する。
In other words, in the case of an internal short circuit where a foreign object such as a nail is pierced, even if a layer responsible for insulation is disposed on the surface of the main active material layer, a large stress is applied to the negative electrode. Adhesion with the material layer becomes insufficient, and the main active material layer and the insulating layer are peeled together from the surface of the current collector, so that the current collector is easily exposed. Therefore, it is difficult to ensure insulation. I understood. However, if the amount of the binder in the main active material layer is increased so that sufficient adhesion between the current collector and the main active material layer can be secured, the lithium ion acceptability deteriorates and the battery characteristics are remarkably increased. descend.

本発明の目的は、釘のような大きな異物が刺さって内部短絡が起こった場合でも電池温度の過度な上昇を抑制しうる、安全性に優れた負極およびその負極を備えた電池を提供することである。   An object of the present invention is to provide a negative electrode excellent in safety capable of suppressing an excessive increase in battery temperature even when a large foreign object such as a nail is stuck and an internal short circuit occurs, and a battery including the negative electrode. It is.

本発明者らが鋭意研究を行った結果、絶縁性を担う層に若干の導電性を持たし、高抵抗層として、集電体表面側に配置した場合、高抵抗層に適量の結着剤を含むことにより、負極に大きな応力がかかっても高抵抗層が集電体から剥離しにくく、結果として高抵抗性を保ち、安全性に優れることが明らかとなった。   As a result of intensive studies by the present inventors, the layer responsible for insulation has a slight conductivity, and when placed on the current collector surface side as a high resistance layer, an appropriate amount of binder in the high resistance layer As a result, it became clear that even when a large stress is applied to the negative electrode, the high resistance layer is difficult to peel from the current collector, and as a result, the high resistance is maintained and the safety is excellent.

本発明の一局面は、集電体と、前記集電体の表面に形成された第1層と、前記第1層上に積層された第2層を備え、前記第1層には無機固体酸化物粒子を含み、前記第2層には炭素材料を含み、前記第1層の厚みをTとし、前記第2層の厚みをTとすると、TがTより厚いことを特徴とする、非水電解質二次電池用負極に関する。 One aspect of the present invention includes a current collector, a first layer formed on a surface of the current collector, and a second layer stacked on the first layer, and the first layer includes an inorganic solid. It includes oxide particles, wherein the second layer comprises a carbon material, wherein the thickness of the first layer and T 1, the thickness of the second layer when the T 2, characterized in that T 2 is greater than T 1 And a negative electrode for a non-aqueous electrolyte secondary battery.

本発明の他の局面は、上記負極を含む非水電解質二次電池に関する。   Another aspect of the present invention relates to a nonaqueous electrolyte secondary battery including the negative electrode.

本発明の非水電解質二次電池用負極は、釘などの大きな異物による極板の破壊を伴う内部短絡が起きた際にも、無機固体酸化物粒子を含む第1層が集電体との結着性を維持しやすい。その結果、正負極間の高抵抗性が保ちやすく、電池温度の過度な上昇を抑制しうる。   The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention has a first layer containing inorganic solid oxide particles as a current collector even when an internal short circuit accompanied by destruction of the electrode plate by a large foreign object such as a nail occurs. Easy to maintain binding. As a result, high resistance between the positive and negative electrodes can be easily maintained, and an excessive increase in battery temperature can be suppressed.

本発明の一実施形態に係るリチウムイオン電池用負極の断面図Sectional drawing of the negative electrode for lithium ion batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係る非水電解質二次電池の構成を概略的に示す縦断面図1 is a longitudinal sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

図1に、本発明の一実施形態に係る非水電解質二次電池用負極の縦断面概念図を示す。負極6は、負極集電体11の表面に形成された第1層12および第1層12に積層された第2層13を備え、第1層12には無機固体酸化物粒子を含み、第2層13には炭素材料を含み、第1層12の厚みをTとし、第2層13の厚みをTとすると、TがTより厚い。 In FIG. 1, the longitudinal cross-sectional conceptual diagram of the negative electrode for nonaqueous electrolyte secondary batteries which concerns on one Embodiment of this invention is shown. The negative electrode 6 includes a first layer 12 formed on the surface of the negative electrode current collector 11 and a second layer 13 laminated on the first layer 12, and the first layer 12 includes inorganic solid oxide particles, the two layers 13 include a carbon material, the thickness of the first layer 12 and T 1, when the thickness of the second layer 13, T 2, T 2 is greater than T 1.

第1層12に含む無機固体酸化物粒子には、アルミナ、シリカ、マグネシアなどリチウムイオンを吸蔵・放出しない絶縁性酸化物も使用できるが、リチウムイオン吸蔵時には電子伝導性を有する点などからスピネル型結晶構造を有するチタン酸リチウムが特に好ましい。チタン酸リチウムは、リチウムイオンの受け入れ性が高く、電極の拡散抵抗を低減しやすい。更に、チタン酸リチウムは、リチウムイオンを吸蔵しない状態では導電性を有さず、炭素材料に比べて、熱安定性も高い。よって、内部短絡が発生した場合には、放電に伴い吸蔵していたリチウムイオンを放出することで導電性を失い絶縁層として機能するため、発熱も抑制される。典型的なスピネル型結晶構造を有するチタン酸リチウムは、式:LiTi12で表される。ただし、一般式:LiTi5−y12+zで表されるチタン酸リチウムも同様に用いることができる。ここで、Mは、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、ホウ素、マグネシウム、カルシウム、ストロンチウム、バリウム、ジルコニウム、ニオブ、モリブデン、タングステン、ビスマス、ナトリウム、ガリウムおよび希土類元素よりなる群から選択された少なくとも1種であり、xは合成直後または完全放電状態におけるチタン酸リチウムの値であって
、3≦x≦5であり、0.005≦y≦1.5であり、−1≦z≦1である。
As the inorganic solid oxide particles contained in the first layer 12, insulating oxides that do not occlude / release lithium ions, such as alumina, silica, and magnesia, can be used. Particularly preferred is lithium titanate having a crystal structure. Lithium titanate has high acceptability of lithium ions, and it is easy to reduce the diffusion resistance of the electrode. Furthermore, lithium titanate does not have conductivity in a state where lithium ions are not occluded, and has higher thermal stability than a carbon material. Therefore, when an internal short-circuit occurs, the lithium ions that have been occluded along with the discharge are released to lose conductivity and function as an insulating layer, so that heat generation is also suppressed. Lithium titanate having a typical spinel crystal structure is represented by the formula: Li 4 Ti 5 O 12 . However, the general formula: Li x Ti 5-y M y O 12 + lithium titanate represented by z may be used as well. Here, M is composed of vanadium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, boron, magnesium, calcium, strontium, barium, zirconium, niobium, molybdenum, tungsten, bismuth, sodium, gallium, and rare earth elements. At least one selected from the group, x is the value of lithium titanate immediately after synthesis or in a fully discharged state, 3 ≦ x ≦ 5, 0.005 ≦ y ≦ 1.5, − 1 ≦ z ≦ 1.

第1層12には無機固体酸化物粒子のほかに、結着剤および導電材を含むことが好ましい。結着剤には、例えば、PVDF、PTFE、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴムまたはカルボキシメチルセルロースなどを使用可能である。また、結着剤には、例えば、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸およびヘキサジエンより選択された2種以上の材料の共重合体を用いてもよい。また、結着剤には、例えば、上記材料から選択された2種以上を混合して用いてもよい。結着剤の量は第1層12と集電体間の密着性を確保できれば特に限定されないが、無機固体酸化物粒子100重量部あたり、0.5〜10重量部が好ましい。導電材は、例えば、天然黒鉛または人造黒鉛のグラファイト類であってもよく、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラックまたはサーマルブラックなどのカーボンブラック類であってもよく、炭素繊維または金属繊維などの導電性繊維類であってもよく、フッ化カーボンであってよい。導電材の量は特に限定されないが、第2層13と集電体間の導通をとりつつ、釘などの異物による短絡発生時には抵抗層として機能するために、無機固体酸化物粒子100重量部あたり、1〜5重量部が好ましい。   The first layer 12 preferably contains a binder and a conductive material in addition to the inorganic solid oxide particles. Examples of the binder include PVDF, PTFE, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, polyacrylic acid hexyl. Esters, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene butadiene rubber or carboxymethyl cellulose Can be used. Examples of the binder include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, and acrylic acid. Alternatively, a copolymer of two or more materials selected from hexadiene may be used. Moreover, you may mix and use 2 or more types selected from the said material for a binder, for example. The amount of the binder is not particularly limited as long as the adhesion between the first layer 12 and the current collector can be secured, but is preferably 0.5 to 10 parts by weight per 100 parts by weight of the inorganic solid oxide particles. The conductive material may be, for example, natural graphite or artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black or thermal black, carbon Conductive fibers such as fibers or metal fibers may be used, and may be carbon fluoride. Although the amount of the conductive material is not particularly limited, the conductive material functions as a resistance layer when a short circuit occurs due to a foreign matter such as a nail while maintaining electrical connection between the second layer 13 and the current collector. 1 to 5 parts by weight is preferable.

第2層13に含む炭素材料としては、例えば各種天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛または非晶質炭素などの炭素材料が用いられる。また、第2層13には珪素(Si)もしくは錫(Sn)などの単体、珪素化合物(例えば、珪素合金、珪素を含む固溶体)または錫化合物(例えば、錫合金、錫を含む固溶体)を含んでいてもよい。第2層13には結着剤を含むことが好ましい。第2層13には導電材を含んでもよい。第1層12と第2層13の積層方法は特に限定されないが、例えば、第1層12を塗工・乾燥により形成した後、第1層12表面に積層して塗工・乾燥してもよいし、吐出スリットを2つ以上具備したダイコーター等を用いて第1層12の塗料と第2層13の塗料とを同時に塗工した後乾燥させてもよい。   Examples of the carbon material included in the second layer 13 include carbon materials such as various natural graphite, coke, graphitized carbon, carbon fiber, spherical carbon, various artificial graphite, and amorphous carbon. The second layer 13 contains a simple substance such as silicon (Si) or tin (Sn), a silicon compound (for example, a silicon alloy, a solid solution containing silicon) or a tin compound (for example, a tin alloy or a solid solution containing tin). You may go out. The second layer 13 preferably contains a binder. The second layer 13 may include a conductive material. Although the lamination | stacking method of the 1st layer 12 and the 2nd layer 13 is not specifically limited, For example, after forming the 1st layer 12 by application | coating and drying, it may laminate | stack on the 1st layer 12 surface, and may be applied and dried. Alternatively, the coating material of the first layer 12 and the coating material of the second layer 13 may be applied simultaneously using a die coater having two or more discharge slits, and then dried.

第1層12の厚みTが第2層13の厚みTに対して相対的に厚くなりすぎると、負極全体のエネルギー密度が下がるとともに、第1層12中の結着剤が乾燥時に表層側にマイグレーションし集電体との密着性を損なうため、第2層13の厚みTとの比T/Tは1より小さいことが必要である。第1層12の厚みTは1≦T≦30μmであることが好ましい。Tが1μmより小さいと短絡時の高抵抗性を損なう恐れがあり、Tが30μmより大きいと集電体との密着性とエネルギー密度の点で好ましくない。 The thickness T 1 of the first layer 12 becomes too thick relative to the thickness T 2 of the second layer 13, with the energy density of the whole negative electrode is lowered, the binder in the first layer 12 is the surface layer during drying The ratio T 1 / T 2 with the thickness T 2 of the second layer 13 needs to be smaller than 1 in order to migrate to the side and impair the adhesion with the current collector. The thickness T 1 of the first layer 12 is preferably 1 ≦ T 1 ≦ 30 μm. If T 1 is smaller than 1 μm, high resistance at the time of short circuit may be impaired, and if T 1 is larger than 30 μm, it is not preferable in terms of adhesion to the current collector and energy density.

負極集電体11は銅箔、銅合金箔またはニッケル箔が好ましい。集電体の厚さは、例えば5〜30μmであるが、特に限定されない。   The negative electrode current collector 11 is preferably a copper foil, a copper alloy foil or a nickel foil. Although the thickness of a collector is 5-30 micrometers, for example, it is not specifically limited.

本発明の負極と組み合わせる正極は、通常、正極集電体と、正極集電体に担持された正極合剤層とを備えている。正極合剤層は、正極活物質の他に、結着剤および導電剤などを含んでいればよい。正極活物質としては、リチウム複合金属酸化物を用いることができる。リチウム複合金属酸化物は、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y
、LiMn、LiMn2−y、LiMPO、LiMPOF(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBのうち少なくとも1種)である。ここで、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3である。なお、リチウムのモル比を示すx値は、活物質作製直後の値であり、充放電により増減する。また、正極活物質は、上記リチウム複合金属酸化物中の金属元素の一部が異種元素で置換されたものであってもよい。さらに、正極活物質は、上記リチウム複合金属酸化物が金属酸化物、リチウム酸化物または導電剤などで表面処理されたものであってもよいし、上記リチウム複合金属酸化物の表面が疎水化処理されたものであってもよい。
The positive electrode combined with the negative electrode of the present invention usually comprises a positive electrode current collector and a positive electrode mixture layer carried on the positive electrode current collector. The positive electrode mixture layer only needs to contain a binder and a conductive agent in addition to the positive electrode active material. A lithium composite metal oxide can be used as the positive electrode active material. Examples of the lithium composite metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , and Li x Ni 1. -y M y O
z, Li x Mn 2 O 4 , Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn , Al, Cr, Pb, Sb and B). Here, 0 <x ≦ 1.2, 0 <y ≦ 0.9, and 2.0 ≦ z ≦ 2.3. In addition, x value which shows the molar ratio of lithium is a value immediately after active material preparation, and increases / decreases by charging / discharging. In addition, the positive electrode active material may be one in which a part of the metal element in the lithium composite metal oxide is replaced with a different element. Furthermore, the positive electrode active material may be one in which the lithium composite metal oxide is surface-treated with a metal oxide, lithium oxide, or a conductive agent, or the surface of the lithium composite metal oxide is hydrophobized. It may be what was done.

リチウムイオン伝導性を有する電解質層は、非水溶媒および非水溶媒に溶解するリチウム塩を含む。電解質層は、ポリオレフィン製の微多孔質フィルムをセパレータとして含んでもよく、この場合、微多孔質フィルムの細孔内に、リチウム塩が溶解した非水溶媒が含浸される。非水溶媒としては、例えば、エチレンカーボネ−ト(EC)、プロピレンカーボネ−ト(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)およびエチルメチルカーボネート(EMC)が挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。リチウム塩としては、例えば、LiBF、LiPF、LiAlCl、LiClおよびリチウムイミド塩が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The electrolyte layer having lithium ion conductivity includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent. The electrolyte layer may include a polyolefin microporous film as a separator. In this case, a nonaqueous solvent in which a lithium salt is dissolved is impregnated in the pores of the microporous film. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). It is not limited to. These may be used alone or in combination of two or more. Examples of the lithium salt include LiBF 4 , LiPF 6 , LiAlCl 4 , LiCl, and lithium imide salt. These may be used alone or in combination of two or more.

以下、本発明を実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

<実施例1>
(i)負極の作製
(第1層)
スピネル型結晶構造を有するチタン酸リチウム(LiTi12、平均粒径1μm、BET比表面積3m/g)2kgと、人造黒鉛(平均粒径10μm)50gと、日本ゼオン(株)製のBM−400B(固形分40重量%の変性スチレン−ブタジエンゴムの分散液)100gと、カルボキシメチルセルロース(CMC)50gとを、適量の水とともに、双腕式練合機にて攪拌し、チタン酸リチウムを含む第1負極合剤スラリーを調製した。第1負極合剤スラリーを、厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥し、総厚が30μmとなるように圧延して、第1層を形成した。すなわち、第1層の厚さ(T)は、銅箔の片面あたり10μm、第1層の密度は2g/cmとした。
<Example 1>
(I) Production of negative electrode (first layer)
2 kg of lithium titanate having a spinel crystal structure (Li 4 Ti 5 O 12 , average particle size 1 μm, BET specific surface area 3 m 2 / g), artificial graphite (average particle size 10 μm) 50 g, manufactured by Nippon Zeon Co., Ltd. BM-400B (modified styrene-butadiene rubber dispersion having a solid content of 40% by weight) and 50 g of carboxymethylcellulose (CMC) were stirred together with an appropriate amount of water in a double-arm kneader, and titanic acid. A first negative electrode mixture slurry containing lithium was prepared. The first negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried, and rolled to a total thickness of 30 μm to form a first layer. That is, the thickness (T 1 ) of the first layer was 10 μm per side of the copper foil, and the density of the first layer was 2 g / cm 3 .

(第2層)
人造黒鉛(平均粒径10μm、BET比表面積3m/g)3kgと、日本ゼオン(株)製のBM−400B(固形分40重量%の変性スチレン−ブタジエンゴムの分散液)75gと、カルボキシメチルセルロース(CMC)30gとを、適量の水とともに、双腕式練合機にて攪拌し、黒鉛を含む第2負極合剤スラリーを調製した。第2負極合剤スラリーを、銅箔の両面に設けられた第1層の表面にそれぞれ塗布し、乾燥し、総厚が160μmとなるように圧延して、第2層を形成した。すなわち、第2層の厚さ(T)は、銅箔の片面あたり65μm、第2層の密度は1.5g/cmとした。
(Second layer)
3 kg of artificial graphite (average particle size 10 μm, BET specific surface area 3 m 2 / g), 75 g of BM-400B (dispersion of modified styrene-butadiene rubber having a solid content of 40% by weight) manufactured by Nippon Zeon Co., Ltd., and carboxymethylcellulose (CMC) 30 g was stirred together with an appropriate amount of water in a double-arm kneader to prepare a second negative electrode mixture slurry containing graphite. The second negative electrode mixture slurry was applied to the surface of the first layer provided on both sides of the copper foil, dried, and rolled to a total thickness of 160 μm to form a second layer. That is, the thickness (T 2 ) of the second layer was 65 μm per one side of the copper foil, and the density of the second layer was 1.5 g / cm 3 .

得られた極板を幅58mm、長さ750mmに裁断し、負極を得た。この負極は、T/T=0.15を満たす。 The obtained electrode plate was cut into a width of 58 mm and a length of 750 mm to obtain a negative electrode. This negative electrode satisfies T 1 / T 2 = 0.15.

(ii)正極の作製
コバルト酸リチウム(LiCoO、平均粒径10μm)3kg、PVDFを12重量%含むN−メチル−ピロリドン(以下、NMP(N−methylpyrrolidon
e))溶液(商品名:PVDF#1320、(株)クレハ製)1kg、アセチレンブラック90gおよび適量のNMPを双腕式練合機で攪拌し、正極合剤スラリーを調製した。正極合剤スラリーを、厚さ15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、総厚が120μmとなるように圧延して、正極活物質層を形成した。得られた極板を幅56mm、長さ700mmに裁断し、正極を得た。
(Ii) Production of Positive Electrode N-methyl-pyrrolidone (hereinafter referred to as NMP (N-methylpyrrolidon) containing 3 kg of lithium cobaltate (LiCoO 2 , average particle size 10 μm) and 12% by weight of PVDF
e)) 1 kg of a solution (trade name: PVDF # 1320, manufactured by Kureha Co., Ltd.), 90 g of acetylene black and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and rolled to a total thickness of 120 μm to form a positive electrode active material layer. The obtained electrode plate was cut into a width of 56 mm and a length of 700 mm to obtain a positive electrode.

(非水電解質)
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に、1モル/リットルの濃度でLiPFを溶解させ、さらに全体の3重量%相当のビニレンカーボネートを添加して、非水電解質を得た。
(Nonaqueous electrolyte)
LiPF 6 was dissolved at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1. A non-aqueous electrolyte was obtained by adding 3% by weight of vinylene carbonate.

(電池の組立)
図2に示すような円筒型電池を作製した。
(Battery assembly)
A cylindrical battery as shown in FIG. 2 was produced.

上記の方法に従って作製された正極5と負極6との間にセパレータ7(厚み20μmのポリエチレン樹脂の単層)を挟んで、正極5と負極6とセパレータ7とを捲回した。これにより、電極群9が作製された。この電極群9の長手方向の両端に上部絶縁板8aおよび下部絶縁板8bを配置した後、有底円筒型の電池ケース1(直径18mm、高さ65mm、内径17.85mm)に収容した。アルミニウム製の正極リード5aの他端を正極端子の下面に接続し、ニッケル製の負極リード6aの他端を電池ケース1の内底面に接続した。その後、上述した非水電解質5.5gを電池ケース1内に注液した。ガスケット3を介して、正極端子を支持する封口板2を電池ケース1の開口にかしめた。これにより、電池ケース1は封口された。このようにして、設計容量が2150mAhである円筒型非水電解質二次電池を作製した。この電池を実施例1の電池とする。   The positive electrode 5, the negative electrode 6, and the separator 7 were wound with the separator 7 (single layer of polyethylene resin having a thickness of 20 μm) interposed between the positive electrode 5 and the negative electrode 6 manufactured according to the above method. Thereby, the electrode group 9 was produced. After the upper insulating plate 8a and the lower insulating plate 8b were disposed at both ends of the electrode group 9 in the longitudinal direction, the electrode group 9 was housed in a bottomed cylindrical battery case 1 (diameter 18 mm, height 65 mm, inner diameter 17.85 mm). The other end of the positive electrode lead 5a made of aluminum was connected to the lower surface of the positive electrode terminal, and the other end of the negative electrode lead 6a made of nickel was connected to the inner bottom surface of the battery case 1. Thereafter, 5.5 g of the non-aqueous electrolyte described above was injected into the battery case 1. A sealing plate 2 that supports the positive electrode terminal was caulked to the opening of the battery case 1 through the gasket 3. Thereby, the battery case 1 was sealed. In this way, a cylindrical non-aqueous electrolyte secondary battery having a design capacity of 2150 mAh was produced. This battery is referred to as the battery of Example 1.

<実施例2>
第1層の厚みTおよび第2層の厚みTを、それぞれ1μmおよび70μmとしたこと以外、実施例1と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 2>
A negative electrode was prepared in the same manner as in Example 1 except that the thickness T 1 of the first layer and the thickness T 2 of the second layer were 1 μm and 70 μm, respectively, and further a cylindrical nonaqueous electrolyte secondary battery was manufactured.

<実施例3>
第1層の厚みTおよび第2層の厚みTを、それぞれ5μmおよび70μmとしたこと以外、実施例1と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 3>
A negative electrode was prepared in the same manner as in Example 1 except that the thickness T 1 of the first layer and the thickness T 2 of the second layer were 5 μm and 70 μm, respectively, and a cylindrical nonaqueous electrolyte secondary battery was also prepared.

<実施例4>
第1層の厚みTおよび第2層の厚みTを、それぞれ30μmおよび55μmとし、負極長さ710mm、正極長さ660mmとしたこと以外、実施例1と同様にして、更に円筒型非水電解質二次電池を作製した。
<Example 4>
Cylindrical non-aqueous solution as in Example 1 except that the first layer thickness T 1 and the second layer thickness T 2 were 30 μm and 55 μm, respectively, the negative electrode length was 710 mm, and the positive electrode length was 660 mm. An electrolyte secondary battery was produced.

<実施例5>
第1層の厚みTおよび第2層の厚みTを、それぞれ40μmおよび50μmとし、負極長さ700mm、正極長さ650mmとしたこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Example 5>
Cylindrical non-aqueous electrolyte 2 was prepared in the same manner as in Example 1, except that the first layer thickness T 1 and the second layer thickness T 2 were 40 μm and 50 μm, respectively, the negative electrode length was 700 mm, and the positive electrode length was 650 mm. A secondary battery was produced.

<実施例6>
第1層に含まれる無機固体酸化物粒子をアルミナ(Al、平均粒径0.3μm)としたこと以外、実施例2と同様に負極を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 6>
A negative electrode was prepared in the same manner as in Example 2 except that the inorganic solid oxide particles contained in the first layer were alumina (Al 2 O 3 , average particle size 0.3 μm), and further a cylindrical non-aqueous electrolyte secondary A battery was produced.

<比較例1>
第1層の厚みTおよび第2層の厚みTを、それぞれ50μmおよび40μmとし、負極長さ680mm、正極長さ630mmとしたこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 1>
Cylindrical non-aqueous electrolyte two as in Example 1, except that the first layer thickness T 1 and the second layer thickness T 2 were 50 μm and 40 μm, respectively, the negative electrode length was 680 mm, and the positive electrode length was 630 mm. A secondary battery was produced.

<比較例2>
第1層の厚みTおよび第2層の厚みTを、それぞれ5μmおよび70μmとしたこと以外、実施例6と同様にして円筒型非水電解質二次電池を作製した。
<Comparative example 2>
The thickness T 2 of the thickness T 1 and the second layer of the first layer, except that a 5μm and 70μm, respectively, to produce a cylindrical non-aqueous electrolyte secondary battery in the same manner as in Example 6.

<比較例3>
第1層を形成しなかったこと以外、実施例2と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 3>
A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the first layer was not formed.

(電池の評価方法)
実施例1〜6および比較例1〜3の各電池に対して次に示す釘刺し試験および充放電試験を行って、各電池の安全性および各電池の電池特性を評価した。
(Battery evaluation method)
The batteries of Examples 1 to 6 and Comparative Examples 1 to 3 were subjected to the following nail penetration test and charge / discharge test to evaluate the safety of each battery and the battery characteristics of each battery.

[釘刺し試験]
実施例1〜6および比較例1〜3の各電池に対して、以下の条件で充電した。そして、20℃環境下で、充電状態の電池の側面から直径2.7mmの鉄釘を5mm/秒の速度で2mmの深さまで突き刺して、内部短絡を発生させた。釘刺し後30秒が経過してから、釘刺し位置から離れた電池の側面に配置された熱電対で電池の温度を測定した。結果を表1における「電池の表面温度」に示す。
[Nail penetration test]
The batteries of Examples 1 to 6 and Comparative Examples 1 to 3 were charged under the following conditions. Then, in a 20 ° C. environment, an iron nail having a diameter of 2.7 mm was pierced from the side surface of the charged battery to a depth of 2 mm at a speed of 5 mm / second to generate an internal short circuit. After 30 seconds from the nail penetration, the temperature of the battery was measured with a thermocouple placed on the side of the battery away from the nail penetration position. The results are shown in “Battery surface temperature” in Table 1.

−充電条件−
定電流充電:電流値0.5C,充電終止電圧4.3V
定電圧充電:電圧値4.3V,充電終止電流100mA
[充放電試験]
実施例1〜6および比較例1〜3の各電池に対して、25℃環境下で以下の条件で300回充放電を繰り返した。初期放電容量に対する最終回の放電容量の割合の百分率(%)を求め、容量維持率とした。結果を表1における「容量維持率」に示す。
-Charging conditions-
Constant current charging: Current value 0.5C, end-of-charge voltage 4.3V
Constant voltage charge: Voltage value 4.3V, charge end current 100mA
[Charge / discharge test]
The batteries of Examples 1 to 6 and Comparative Examples 1 to 3 were repeatedly charged and discharged 300 times under the following conditions in a 25 ° C. environment. The percentage (%) of the ratio of the final discharge capacity to the initial discharge capacity was determined and used as the capacity maintenance rate. The results are shown in “Capacity maintenance ratio” in Table 1.

−充放電条件−
定電流充電:電流値1C,充電終止電圧4.2V
定電圧充電:電圧値4.2V,充電終止電流100mA
定電流放電:電流値1C,放電終止電圧1.0V
−Charging / discharging conditions−
Constant current charging: Current value 1C, end-of-charge voltage 4.2V
Constant voltage charging: Voltage value 4.2V, charging end current 100mA
Constant current discharge: current value 1C, final discharge voltage 1.0V

以下、得られた結果について詳述する。   Hereinafter, the obtained results will be described in detail.

実施例1、3、4は、釘刺し時の電池の表面温度も低く、容量維持率も高い電池が得られた。実施例2は釘刺し時の電池の表面温度がやや高かった。これは第1層の厚みTが1μmと薄いため、短絡時の高抵抗性がやや低下したためと考えられる。実施例5および6は容量維持率がやや低下した。実施例5は第1層の厚みTが40μmと厚く、実施例6は第1層中の無機固体酸化物粒子にリチウムイオンを吸蔵・放出しない絶縁性酸化物であるアルミナを用いたため、それぞれ充放電特性が低下したものと考えられる。 In Examples 1, 3, and 4, a battery having a low surface temperature and a high capacity retention rate when nailing was obtained. In Example 2, the surface temperature of the battery at the time of nail penetration was slightly high. This is probably because the first layer thickness T 1 is as thin as 1 μm, so that the high resistance at the time of short circuit is slightly lowered. In Examples 5 and 6, the capacity retention rate was slightly decreased. Example 5 is thick and the thickness T 1 is 40μm of the first layer, for Example 6 using alumina is an insulating oxide which does not absorb and desorb lithium ions inorganic solid oxide particles in the first layer, respectively It is considered that the charge / discharge characteristics have deteriorated.

比較例1および2は、容量維持率の低下が著しく、得られる電池容量も少なかった。比較例1は第1層の厚みTが第2層の厚みTより大きいため、充放電時に抵抗層として働くことによる特性の低下およびエネルギー密度の低下を招いたためと考えられる。比較例2はアルミナを含む第1層の抵抗が高いために初期から電池容量が得られず、特性の低下を招いたものと考えられる。比較例3は第1層が存在しないため釘刺し時の電池表面温度が高かった。 In Comparative Examples 1 and 2, the capacity retention rate was significantly reduced, and the battery capacity obtained was also small. Comparative Example 1 because the thickness T 1 of the first layer is greater than the thickness T 2 of the second layer, presumably because led to decrease in the reduction and energy density characteristics by acting as a resistance layer during charging and discharging. In Comparative Example 2, it is considered that since the resistance of the first layer containing alumina is high, the battery capacity cannot be obtained from the beginning, and the characteristics are deteriorated. In Comparative Example 3, since the first layer was not present, the battery surface temperature during nail penetration was high.

以上の結果より、第1層の厚みTと、第2層の厚みTとの比T/Tが1より小さいことが必要であり、1≦T≦30μmであることが好ましいことがわかった。 From the above results, the ratio T 1 / T 2 between the thickness T 1 of the first layer and the thickness T 2 of the second layer needs to be smaller than 1, and preferably 1 ≦ T 1 ≦ 30 μm. I understood it.

本発明では、電池特性の低下を防ぎつつ優れた安全性を有する非水電解質二次電池を提供できる。よって、本発明は、携帯電子機器等の小型電源だけでなくEV(Electric Vehicle)などの大型電源へも展開できる技術として有用である。   The present invention can provide a nonaqueous electrolyte secondary battery having excellent safety while preventing deterioration of battery characteristics. Therefore, the present invention is useful as a technology that can be applied not only to a small power source such as a portable electronic device but also to a large power source such as an EV (Electric Vehicle).

1 電池ケース
2 封口板
3 ガスケット
5 正極
5a 正極リード
6 負極
6a 負極リード
7 セパレータ
8a 上部絶縁板
8b 下部絶縁板
9 電極群
11 負極集電体
12 第1層
13 第2層
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 5 Positive electrode 5a Positive electrode lead 6 Negative electrode 6a Negative electrode lead 7 Separator 8a Upper insulating plate 8b Lower insulating plate 9 Electrode group 11 Negative electrode collector 12 First layer 13 Second layer

Claims (5)

集電体と、前記集電体の表面に形成された第1層と、前記第1層上に積層された第2層を備え、前記第1層には無機固体酸化物粒子を含み、前記第2層には炭素材料を含み、前記第1層の厚みをTとし、前記第2層の厚みをTとすると、TがTより厚いことを特徴とする、非水電解質二次電池用負極。 A current collector, a first layer formed on a surface of the current collector, and a second layer laminated on the first layer, the first layer including inorganic solid oxide particles, The second layer contains a carbon material, and when the thickness of the first layer is T 1 and the thickness of the second layer is T 2 , T 2 is thicker than T 1. Negative electrode for secondary battery. 前記第1層の厚みTと、前記第2層の厚みTとの比T/Tが、0.15以上0.55以下であることを特徴とする、請求項1記載の非水電解質二次電池用負極。 Wherein the thickness T 1 of the first layer, wherein the ratio T 1 / T 2 of the the thickness T 2 of the second layer, characterized in that 0.15 to 0.55, according to claim 1 Non according Negative electrode for water electrolyte secondary battery. 前記無機固体酸化物粒子は、スピネル型結晶構造を有するチタン酸リチウムである、請求項1または2に記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the inorganic solid oxide particles are lithium titanate having a spinel crystal structure. 前記第1層の厚みTが、1μm以上30μm以下であることを特徴とする1から3のいずれか1項に記載の非水電解質二次電池用負極。 4. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein a thickness T 1 of the first layer is 1 μm or more and 30 μm or less. 請求項1から4のいずれか1項に記載の非水電解質二次電池用負極を用いた非水電解質二次電池。   The nonaqueous electrolyte secondary battery using the negative electrode for nonaqueous electrolyte secondary batteries of any one of Claim 1 to 4.
JP2011173518A 2011-08-09 2011-08-09 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery Withdrawn JP2014199714A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011173518A JP2014199714A (en) 2011-08-09 2011-08-09 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
PCT/JP2012/005022 WO2013021630A1 (en) 2011-08-09 2012-08-07 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173518A JP2014199714A (en) 2011-08-09 2011-08-09 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014199714A true JP2014199714A (en) 2014-10-23

Family

ID=47668165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173518A Withdrawn JP2014199714A (en) 2011-08-09 2011-08-09 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2014199714A (en)
WO (1) WO2013021630A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060009A (en) * 2012-09-14 2014-04-03 Toshiba Corp Method for manufacturing nonaqueous electrolyte battery, method for manufacturing battery pack, and use of nonaqueous electrolyte battery
WO2017154313A1 (en) * 2016-03-11 2017-09-14 Necエナジーデバイス株式会社 Electrochemical device electrode, electrochemical device, and manufacturing method for said electrode and said device
JP2019102381A (en) * 2017-12-07 2019-06-24 トヨタ自動車株式会社 Negative electrode for lithium ion secondary battery
JP2021099948A (en) * 2019-12-23 2021-07-01 パナソニック株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP3796427A4 (en) * 2018-10-31 2021-08-25 Contemporary Amperex Technology Co., Limited Negative pole piece, secondary battery, battery module, battery pack, and device
JP2022019136A (en) * 2020-07-17 2022-01-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US20220181610A1 (en) * 2020-12-03 2022-06-09 Toyota Jidosha Kabushiki Kaisha All solid state battery
JP2022088945A (en) * 2020-12-03 2022-06-15 トヨタ自動車株式会社 All-solid battery
US20220238864A1 (en) * 2021-01-28 2022-07-28 Toyota Jidosha Kabushiki Kaisha All solid state battery
DE102022108703A1 (en) 2021-04-20 2022-10-20 Panasonic Holdings Corporation BATTERY
JP2022172514A (en) * 2021-05-06 2022-11-17 本田技研工業株式会社 Electrode for secondary battery, solid-state battery with the same, and method of manufacturing electrode for secondary battery
JP2023515496A (en) * 2020-10-15 2023-04-13 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, BATTERY MODULE, BATTERY PACK AND APPARATUS INCLUDING THIS SECONDARY BATTERY

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
EP2810321A1 (en) 2012-01-30 2014-12-10 Nexeon Limited Composition of si/c electro active material
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
GB2507535B (en) * 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
CN103762335B (en) * 2013-12-30 2016-08-24 曙鹏科技(深圳)有限公司 Lithium titanate electrode plate and lithium ion battery
KR101567203B1 (en) 2014-04-09 2015-11-09 (주)오렌지파워 Negative electrode material for rechargeable battery and method of fabricating the same
KR101604352B1 (en) 2014-04-22 2016-03-18 (주)오렌지파워 Negative electrode active material and rechargeable battery having the same
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
US10199655B2 (en) 2015-11-30 2019-02-05 Nissan North America, Inc. Electrode structure having structured conductive buffer layer
US10038195B2 (en) 2015-11-30 2018-07-31 Nissan North America, Inc. Electrode structure having structured conductive buffer layer
US10103386B2 (en) 2015-12-15 2018-10-16 Nissan North America, Inc. Electrode with modified current collector structure and method of making the same
US10319987B2 (en) 2015-12-21 2019-06-11 Nissan North America, Inc. Active material with expansion structure for use in lithium ion batteries
US9728786B2 (en) 2015-12-21 2017-08-08 Nissan North America, Inc. Electrode having active material encased in conductive net
CN105680046A (en) * 2016-03-25 2016-06-15 江苏富朗特新能源有限公司 Sizing agents for external coatings of positive and negative electrode coils of lithium ion batteries
CN105680089A (en) * 2016-03-25 2016-06-15 江苏富朗特新能源有限公司 Positive/negative pole roll with dual coating layers for lithium ion battery
JP7080584B2 (en) * 2017-03-17 2022-06-06 株式会社東芝 Rechargeable batteries, battery packs, and vehicles
CN111200102B (en) 2018-11-16 2020-12-29 宁德时代新能源科技股份有限公司 Positive pole piece and electrochemical device
CN114008826A (en) * 2019-03-27 2022-02-01 株式会社杰士汤浅国际 Collector, conductive layer forming paste, electrode, and electricity storage element
JP7025377B2 (en) * 2019-06-20 2022-02-24 プライムアースEvエナジー株式会社 Negative electrode for lithium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520921B2 (en) * 2001-03-27 2004-04-19 日本電気株式会社 Negative electrode for secondary battery and secondary battery using the same
JP4623940B2 (en) * 2003-06-02 2011-02-02 日本電気株式会社 Negative electrode material and secondary battery using the same
JP2007200862A (en) * 2005-12-28 2007-08-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5218808B2 (en) * 2007-06-11 2013-06-26 トヨタ自動車株式会社 Lithium ion battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060009A (en) * 2012-09-14 2014-04-03 Toshiba Corp Method for manufacturing nonaqueous electrolyte battery, method for manufacturing battery pack, and use of nonaqueous electrolyte battery
WO2017154313A1 (en) * 2016-03-11 2017-09-14 Necエナジーデバイス株式会社 Electrochemical device electrode, electrochemical device, and manufacturing method for said electrode and said device
CN108780876A (en) * 2016-03-11 2018-11-09 Nec能源元器件株式会社 Electrochemical device electrode, electrochemical device and the method for manufacturing electrochemical device electrode and electrochemical device
JPWO2017154313A1 (en) * 2016-03-11 2019-01-24 Necエナジーデバイス株式会社 Electrode for electrochemical device, electrochemical device and method for producing the same
JP2019102381A (en) * 2017-12-07 2019-06-24 トヨタ自動車株式会社 Negative electrode for lithium ion secondary battery
EP3796427A4 (en) * 2018-10-31 2021-08-25 Contemporary Amperex Technology Co., Limited Negative pole piece, secondary battery, battery module, battery pack, and device
JP2021099948A (en) * 2019-12-23 2021-07-01 パナソニック株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7358229B2 (en) 2019-12-23 2023-10-10 パナソニックホールディングス株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP2022019136A (en) * 2020-07-17 2022-01-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7371581B2 (en) 2020-07-17 2023-10-31 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7523559B2 (en) 2020-10-15 2024-07-26 寧徳時代新能源科技股▲分▼有限公司 Secondary battery, its manufacturing method, battery module including the secondary battery, battery pack, and device
JP2023515496A (en) * 2020-10-15 2023-04-13 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, BATTERY MODULE, BATTERY PACK AND APPARATUS INCLUDING THIS SECONDARY BATTERY
EP4027427A1 (en) 2020-12-03 2022-07-13 Toyota Jidosha Kabushiki Kaisha All solid state battery
JP2022088945A (en) * 2020-12-03 2022-06-15 トヨタ自動車株式会社 All-solid battery
CN114613939A (en) * 2020-12-03 2022-06-10 丰田自动车株式会社 All-solid-state battery
KR20220078484A (en) 2020-12-03 2022-06-10 도요타 지도샤(주) All solid state battery
CN114613939B (en) * 2020-12-03 2024-02-09 丰田自动车株式会社 All-solid battery
JP7484683B2 (en) 2020-12-03 2024-05-16 トヨタ自動車株式会社 All-solid-state battery
US20220181610A1 (en) * 2020-12-03 2022-06-09 Toyota Jidosha Kabushiki Kaisha All solid state battery
US20220238864A1 (en) * 2021-01-28 2022-07-28 Toyota Jidosha Kabushiki Kaisha All solid state battery
EP4037039A1 (en) 2021-01-28 2022-08-03 Toyota Jidosha Kabushiki Kaisha All solid state battery
KR20220109312A (en) 2021-01-28 2022-08-04 도요타 지도샤(주) All solid state battery
DE102022108703A1 (en) 2021-04-20 2022-10-20 Panasonic Holdings Corporation BATTERY
KR20220145271A (en) 2021-04-20 2022-10-28 도요타 지도샤(주) Battery
JP2022172514A (en) * 2021-05-06 2022-11-17 本田技研工業株式会社 Electrode for secondary battery, solid-state battery with the same, and method of manufacturing electrode for secondary battery

Also Published As

Publication number Publication date
WO2013021630A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6542031B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN101276940B (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4667373B2 (en) Lithium ion secondary battery and its charge / discharge control system
JP4920423B2 (en) Lithium ion secondary battery
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP4541324B2 (en) Nonaqueous electrolyte secondary battery
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6016038B2 (en) Nonaqueous electrolyte secondary battery
JP2008300302A (en) Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
JP2011192539A (en) Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
KR20080092281A (en) Nonaqueous electrolyte secondary battery
JP2007179864A (en) Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
KR101697008B1 (en) Lithium secondary battery
CN110462885B (en) Bar-shaped electrode for cylindrical jelly roll and lithium secondary battery comprising same
JP2011210450A (en) Cell electrode plate and cell
JP2015046218A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP2013218913A (en) Nonaqueous electrolyte secondary battery
JP2011060481A (en) Nonaqueous electrolyte secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
CN110178250B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013134923A (en) Lithium ion secondary battery
WO2013038702A1 (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104