JPH1180395A - Porous film and separator for nonaqueous electrolyte cell or battery - Google Patents

Porous film and separator for nonaqueous electrolyte cell or battery

Info

Publication number
JPH1180395A
JPH1180395A JP9243917A JP24391797A JPH1180395A JP H1180395 A JPH1180395 A JP H1180395A JP 9243917 A JP9243917 A JP 9243917A JP 24391797 A JP24391797 A JP 24391797A JP H1180395 A JPH1180395 A JP H1180395A
Authority
JP
Japan
Prior art keywords
separator
porous membrane
battery
substrate
surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9243917A
Other languages
Japanese (ja)
Inventor
Hiroyuki Higuchi
Yasuhisa Tojo
泰久 東條
浩之 樋口
Original Assignee
Nitto Denko Corp
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, 日東電工株式会社 filed Critical Nitto Denko Corp
Priority to JP9243917A priority Critical patent/JPH1180395A/en
Publication of JPH1180395A publication Critical patent/JPH1180395A/en
Application status is Pending legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a nonaqueous electrolyte cell or battery, hardly causing internal short-circuiting due to the penetration or the like of electroconductive particles and having a high surface hardness and to obtain a porous film suitable for composing the separator. SOLUTION: This porous film having a surface protecting layer is obtained by using a polyolefin porous film such as polyethylene or polypropylene as a substrate, coating at least one surface of the substrate with a mixture containing inorganic fine particles such as aluminum oxide or silicon dioxide and a resin to be a binder and then ultrasonically treating the resultant coated substrate in ethanol.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、多孔質膜および非水電解液電池用セパレータに関するものである。 BACKGROUND OF THE INVENTION The present invention relates to a separator for a porous membrane and a non-aqueous electrolyte battery.

【0002】 [0002]

【従来の技術】種々のタイプの電池が実用に供されており、各々に適した電池用セパレータとして、多孔質フィルムや無孔質フィルム、不織布、紙等が提案されている。 BACKGROUND OF THE INVENTION Various types of batteries have been put to practical use, as a battery separator suitable for each porous film or nonporous film, nonwoven fabric, paper or the like have been proposed. これら電池用セパレータには、電解液との親和性(濡れ性)および保液性、低い電気抵抗および高い通気性、高い機械的強度、化学的安定性等の特性が要求される。 These battery separators, affinity (wettability) and the liquid retaining property of the electrolyte, low electrical resistivity and high air permeability, high mechanical strength, properties such as chemical stability is required. これらの特性のうち、電解液との親和性や保液性、 Of these properties, affinity and liquid retention of the electrolyte solution,
電気抵抗、通気性は電池の放電特性に関係し、電池反応におけるイオンの移動を容易にするために求められるものである。 Electrical resistance, breathable related to the discharge characteristics of the battery, but required to facilitate the transfer of ions in the battery reaction. 機械的強度は、電池の組立て工程等におけるセパレータの破断等による内部短絡の発生を低減するために求められる特性である。 Mechanical strength is a characteristic required in order to reduce the occurrence of an internal short circuit due to breakage of the separator in the assembly process of the battery. また、電池用セパレータは、電池内部の酸化・還元雰囲気に晒されるため、分解・反応等を起こしにくい化学的に安定な材料を使用する必要があり、このような観点からポリオレフィンや、フッ素系ポリマーが多用されている。 Further, the battery separator is, due to exposure to the oxidizing and reducing atmosphere inside the battery, it is necessary to use a hard chemically stable material that undergoes a decomposition and reaction, etc., and polyolefins from this point of view, a fluorine-based polymer There has been frequently used.

【0003】特に近年、電子機器のコードレス化等に対応するため、小型軽量、高エネルギー密度のリチウム電池が注目されている。 [0003] Particularly in recent years, in order to respond to cordless of electronic devices, small and light, a lithium battery having a high energy density has attracted attention. このリチウム電池においては、外部短絡や過充電等の誤使用によって電池温度が過度に上昇する可能性があるため、安全弁、PTC素子(Positi In this lithium battery, since the battery temperature by an external short circuit or misuse of overcharge or the like is likely to rise excessively, the safety valve, PTC element (POSITI
ve Temperature Coeficient;過大電流が流れた際に電流を遮断する)、電流制御回路等種々の安全装置が設けられている。 ve Temperature Coeficient; interrupting the current when an excessive current flows), the current control circuit, etc. Various safety devices are provided. そこで使用されるセパレータにも、適当な温度において無孔化して電気抵抗を増大することにより電池反応を停止させ、温度の過大な増大を防止する機能(これを「シャットダウン(SD)機能」という。)が求められる。 So even separator used to stop the battery reaction by increasing the electrical resistance and no Anaka at a suitable temperature, function of preventing an excessive increase in the temperature (this is called "shutdown (SD) function". ) can be obtained.

【0004】このようなリチウム電池に適するセパレータとしては、ポリプロピレン(以下、「PP」とする。)やポリエチレン(以下、「PE」とする。)等に代表されるポリオレフィンの多孔質膜が多用されており、中でもPPとPEといった融点の異なる2種以上の樹脂を含む混合物、多層体または濃度勾配を有する形態の多孔質膜が、SD特性等の特性、および環境面やコスト面等において優れ、実用性が高い(特開平4−181 [0004] As a separator suitable for such lithium batteries, polypropylene (hereinafter referred to as "PP".), Polyethylene (hereinafter referred to as "PE".) The porous film of the polyolefin represented by the like are frequently used and which, mixtures containing inter alia PP and two or more resins having different melting points such as PE, porous membrane form having a multi-layer body or concentration gradients, excellent in properties such as SD property, and environmental and cost and the like, It is highly practical (Patent 4-181
651号公報、特開平4−206257号公報、特開平6−55629号公報、特開平7−216118号公報等)。 651, JP-A No. 4-206257, JP-A No. 6-55629, JP Patent Laid-Open No. 7-216118 Publication).

【0005】 [0005]

【発明が解決しようとする課題】しかし、これらの電池用セパレーターは、表層がポリオレフィンといった軟らかな材質からなるために、電池の捲回時または保存時に、電極より剥離した導電性の粒子粉がセパレーターを突き破ると、内部短絡が発生する場合があるという問題があった。 [SUMMARY OF THE INVENTION] However, separators for these batteries, since the surface layer is made of soft, material such as polyolefins, the winding time or during storage of the battery, the conductive particle powder was peeled from the electrode separator when breaks through, there is a problem that there are cases where the internal short circuit occurs.

【0006】特開平1−304933号公報では、表面空孔径0.05〜3μm、空孔率30〜90%であり、 [0006] In JP-A 1-304933 discloses a surface pore size 0.05 to 3 [mu] m, a porosity of 30% to 90%,
微多孔性フィルムを構成するポリオレフィン10g当たり0.1から6gのシロキサン重合体を主体とする塗布層を有するポリオレフィン微孔性フィルムについての記述がある。 There are descriptions of the polyolefin microporous film having a coating layer of a polyolefin 10g per 0.1 constituting the microporous film composed mainly of siloxane polymer of 6 g. このような構成にすることによって、ポリオレフィン単独の多孔質膜に比べて高い機械的強度を得ることが期待できるが、ポリシロキサンの塗布量には「微細孔を閉塞せず、表面を被膜している」程度であるという制限があるため、十分な機械的強度を得ることが困難であり、内部短絡不良率を低減するには至らない。 By such a configuration, it can be expected to obtain a high mechanical strength as compared with the porous membrane of polyolefin alone, without closing the "micropores in the coating weight of the polysiloxane, the surface coated since there is a limitation that is about are ", it is difficult to obtain sufficient mechanical strength, it does not result in reducing the internal short-circuit defect rate. また、ポリシロキサンの硬化には高温または長い時間が必要であり、高温を使用した場合は微多孔性フィルムの収縮によって孔が閉塞し、長時間の硬化を行なう場合はコストアップが問題となる。 Further, the curing of the polysiloxane requires high temperature or long time, holes are obstructed when using a high temperature by the contraction of the microporous film, when performing long curing cost is an issue.

【0007】本発明は、機械的強度、特に表面硬度に優れ、電池製造/保管時の内部短絡不良率が小さい非水電解液電池用セパレータ、およびそのようなセパレータを構成するのに適した多孔質膜を提供することを目的とする。 [0007] The present invention, mechanical strength, particularly excellent in surface hardness, porosity suitable for constructing a non-aqueous electrolyte battery separator internal short defect rate during cell manufacturing / storage is small, and such a separator an object of the present invention is to provide a Shitsumaku.

【0008】 [0008]

【課題を解決するための手段】上記目的を達成するために、本発明の多孔質膜の第1の形態は、基体となる膜の少なくとも片面に、無機微粒子を含む通気性を有する表面保護層を形成してなることを特徴とする。 To achieve the above object, according to the Invention The first embodiment of the porous membrane of the present invention, on at least one surface of the film to be the substrate, a surface protective layer having gas permeability comprising inorganic fine particles characterized by comprising forming a. このような構成にしたことにより、機械的強度(表面硬度)が高く、裂けや微粒子等の貫通が起こりにくい多孔質膜とすることができ、非水電解液電池用セパレータとして使用した場合、電池製造/保管時の導電性微粒子の貫通による内部短絡不良率が小さい非水電解液電池を提供することができる。 By that such a configuration, the mechanical strength (surface hardness) is high, tearing and penetration of such particles can be hardly porous membrane, when used as a separator for nonaqueous electrolyte batteries, batteries it is possible to provide a nonaqueous electrolyte battery internal short-circuit defective rate is small due to penetration of the conductive fine particles at the time of manufacturing / storage. なお、ここで「通気性を有する」とは、J Here, "having a breathable" refers, J
IS K8117に記載の方法によって測定されるガーレー秒数が10000秒/100cc以下であることをいう。 Gurley number measured by the method described in IS K8117 refers to or less 10000 sec / 100 cc. また、前記多孔質膜においては、表面保護層を形成した面の表面硬度が鉛筆硬度で4H以上であることが好ましく、これによればより確実に非水電解液電池の内部短絡不良率を低減することができる。 Further, in the above porous membrane, it is preferable that the surface hardness of the surface to form a surface protective layer is 4H or more in pencil hardness, more reliably reduce the internal short-circuit defect rate of the non-aqueous electrolyte battery according to this can do.

【0009】また、本発明の多孔質膜においては、熱伝導率が0.5kW/m・K以上であることが好ましく、 [0009] In the porous membrane of the present invention, it is preferable that the thermal conductivity of 0.5 kW / m · K or more,
このような構成の多孔質膜は温度過昇時の無孔化が迅速に進行するため、セパレータとして使用した場合、安全性の高い非水電解液電池を提供することができる。 The porous membrane of such a construction is for imperforate of temperature KaNoboruji proceeds quickly, when used as a separator, it is possible to provide a highly safe nonaqueous electrolyte battery.

【0010】更に、本発明の多孔質膜の第2の形態は、 Furthermore, the second embodiment of the porous membrane of the present invention,
基体となる膜の少なくとも片面に、メラミン樹脂、ウレタン樹脂、アルキド樹脂およびアクリル樹脂から選ばれる少なくとも1つの樹脂を含む、通気性を有する表面保護層を形成してなることを特徴とする。 On at least one surface of the film to be a base, melamine resins, urethane resins, comprising at least one resin selected from alkyd resins and acrylic resins, characterized in that by forming a surface protective layer having gas permeability. このような構成によっても、第1の形態と同様に、多孔質膜の表面硬度を向上させることができる。 With such a configuration, like the first embodiment, it is possible to improve the surface hardness of the porous membrane. なお、「通気性を有する」 It should be noted that, "having a breathable"
とは前述と同様の意味である。 Is the same meaning as above and.

【0011】また、上述したような多孔質膜を使用した本発明の非水電解液用セパレータおよび電池非水電解液電池によれば、電池製造/保管時の内部短絡不良率が小さく、安全性の高い非水電解液電池とすることができる。 Further, according to the non-aqueous electrolyte separator and a battery nonaqueous electrolyte battery of the present invention using a porous membrane as described above, small internal short-circuit defect rate during cell manufacturing / storage, safety it can have high non-aqueous electrolyte battery of.

【0012】 [0012]

【発明の実施の形態】本発明の多孔質膜は、基体となる膜の片面または両面に表面保護層を設けることにより、 The porous membrane of the embodiment of the present invention, by providing a surface protective layer on one or both sides of the film to be the substrate,
機械的強度に優れた多孔質膜としたものである。 It is obtained by an excellent porous film mechanical strength.

【0013】基体となる膜は多孔質構造を有するものであればよいが、本発明の多孔質膜を非水電解液電池用セパレータとして使用する場合においては、低い電気抵抗と優れたSD機能を有する膜を用いることが好ましい。 [0013] substrate and the film may be any one having a porous structure, in the case of using the porous membrane of the present invention as a non-aqueous electrolyte battery separator is, low electrical resistance and superior SD function it is preferable to use a membrane having.
優れたSD機能とは、例えば、SD機能発現時の電気抵抗増大が急速である、SD開始温度および耐熱温度が適当である等の特性を有することをいう。 Excellent The SD function, for example, SD function expression when the electrical resistance increase is rapid, refers to having the characteristics of equal SD initiation temperature and heat temperature is suitable. このような観点から、以下に本発明において好適な基体について説明する。 From this viewpoint, the preferred substrates in the present invention will be described below.

【0014】基体の材質としては、ポリオレフィン、ポリアミド、ポリエステル、フッ素樹脂等が好適に使用できる。 [0014] As the material of the substrate, polyolefin, polyamide, polyester, fluororesin or the like can be preferably used. 中でもPPやPE等のポリオレフィンが好ましく、SD開始温度および膜の耐熱温度が好適であるという理由から、PPとPEとを含む混合物または多層体が特に好ましい。 Of these polyolefins are preferred, such as PP and PE, for the reason that the heat resistance temperature of SD initiation temperature and film are preferred, mixtures or multilayers comprising a PP and PE are particularly preferred. また、これらの樹脂に、酸化防止剤、着色剤、難燃化剤、充填剤等を添加してもよい。 Further, these resins, antioxidants, colorants, flame retardants, may be added a filler, and the like.

【0015】基体は前述したように多孔質構造を有するものであればよく、微多孔質膜、メッシュ、不織布、織布または発泡体等の単層体または多層体を使用することができる。 The substrate may be used as long as it has a porous structure as described above, microporous membrane, a mesh, a nonwoven fabric, a single layer, or multilayer, such as a woven fabric or foam. 空孔の孔径は0.1〜200μm程度が適当であり、特に0.1〜1.0μmの微多孔質膜が孔の閉塞が迅速であるため好ましい。 Pores of pore size is suitably about 0.1 to 200 [mu] m, particularly preferably for microporous membrane 0.1~1.0μm is rapid blockage of the pores. また、通気度は、ガーレー秒数で10000秒/100cc以下のものが適当であり、好ましくは2000秒/100cc以下、更に好ましくは1000秒/100cc以下とする。 Further, the air permeability is the appropriate the following 10000 sec / 100 cc Gurley seconds, preferably less 2000 sec / 100 cc, more preferably at most 1000 sec / 100 cc. また、基体の膜厚は400μm以下が適当であり、好ましくは1 Also, the substrate film thickness is suitably 400μm or less, preferably 1
00μm以下、更に好ましくは30μm以下とする。 00μm or less, and more preferably 30μm or less.

【0016】基体に設ける表面保護層の材質としては、 [0016] As the material of the surface protective layer provided on the substrate,
基体よりも表面硬度が高い薄膜を形成できるものであればよい。 As long as it can form a thin film surface hardness is higher than the substrate. 以下、このような材料として、無機微粒子を含む材料を採用した形態を「第1の形態」、前述の有機系の樹脂を含む材料を採用した形態を「第2の形態」として説明する。 Hereinafter, Examples of such a material, the "first embodiment" the adopted form a material including an inorganic fine particle, illustrating the configuration of employing a material containing an organic resin described above as the "second embodiment".

【0017】表面保護層の厚さが薄過ぎると十分な強度を確保することが困難であり、厚過ぎるとセパレータとして使用したとき電池特性に悪影響を及ぼすおそれがある。 [0017] it is difficult to ensure sufficient strength is too thin thickness of the surface protective layer, may adversely affect the battery characteristics when used as a too thick separator. よって、第1、第2どちらの形態においても、表面保護層の厚さは0.5〜100μmとすることが適当であり、好ましくは1〜30μm、より好ましくは1〜1 Therefore, first, in the second either embodiment, the thickness of the surface protective layer is suitable to be 0.5 to 100 [mu] m, preferably 1 to 30 [mu] m, more preferably 1 to 1
0μmとする。 And 0μm. また、表面保護層の通気性はガーレー秒数で10000秒/100cc以下、好ましくは200 Further, breathability of the surface protective layer in Gurley seconds 10000 seconds / 100 cc or less, preferably 200
0秒/100cc以下とする。 And following 0 seconds / 100cc.

【0018】第1の形態において使用する無機微粒子としては、特に限定するものではないが、硬質、軽量であり、導電性に乏しいものが好適である。 [0018] The inorganic fine particles used in the first embodiment is not particularly limited, rigid, lightweight and poor in electrical conductivity is preferable. 例としては、各種金属酸化物、金属炭化物、金属窒化物、金属水酸化物、金属塩等が挙げられ、より具体的には、酸化アルミニウム、二酸化珪素、酸化チタン、酸化亜鉛、酸化錫、 Examples include various metal oxides, metal carbides, metal nitrides, metal hydroxides, metal salts and the like, more specifically, aluminum oxide, silicon dioxide, titanium oxide, zinc oxide, tin oxide,
酸化ジルコニウム、酸化マグネシウム、酸化鉄、酸化銅、水酸化アルミニウム、炭化珪素、窒化ホウ素等が挙げられる。 Zirconium oxide, magnesium oxide, iron oxide, copper oxide, aluminum hydroxide, silicon carbide, boron nitride, and the like.

【0019】また、無機微粒子の粒径が小さ過ぎると十分な補強効果を得ることが困難であり、粒径が大き過ぎると多孔質膜の総厚みが大きくなるためセパレータとして使用する場合に不適である。 Further, the particle size of the inorganic fine particles is too small, it is difficult to obtain a sufficient reinforcing effect, not suitable when used as a separator for the particle size is too large, the total thickness of the porous film increases is there. よって、無機微粒子の平均粒径は20μm以下が適当であり、好ましくは0.1 Therefore, the average particle diameter of the inorganic fine particles is suitably 20μm or less, preferably 0.1
μm〜20μmである。 It is μm~20μm. なお、柱状または繊維状等の微粒子の場合、平均粒子径を0.1〜10μm、平均粒子長を1〜100μmとすることが好ましい。 In the case of fine particles such as columnar or fibrous, the average particle diameter of 0.1 to 10 [mu] m, an average particle length is preferably set to 1 to 100 [mu] m.

【0020】無機微粒子を含む表面保護層の形成方法の一例としては、無機微粒子を溶媒に分散させ、基体上にキャスティング、ディッピング、またはスプレー塗布した後溶媒を蒸発させる方法が挙げられる。 [0020] As an example of a method for forming a surface protective layer containing inorganic fine particles, inorganic fine particles are dispersed in a solvent, casting on a substrate, dipping or method of evaporating the solvent after the spray coating and the like. 溶媒は揮発性で、基体および無機微粒子を溶解しないものが好ましく、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン、スチレン等の芳香族類、メタノール、エタノール等の各種アルコール類や水等が使用できる。 The solvent is volatile, is preferably that which does not dissolve the substrate and the inorganic fine particles, such as acetone, methyl ethyl ketone, ketones such as methyl isobutyl ketone, toluene, xylene, aromatics such as styrene, methanol, various alcohols such as ethanol and water, and the like can be used. また、上記溶媒に界面活性剤等の添加剤を加えてもよく、このとき添加剤の割合は5重量%以下とすることが好ましい。 Also, may be added an additive such as a surfactant in the above solvent, the proportion of the additive at this time is preferably 5 wt% or less.

【0021】また、溶媒を使用せずに無機微粒子を基体上に散布する方法や、常法により多孔性セラミックを作製して、これを基体に貼り合せ、または単に重ね合わせる方法等も採用できる。 Further, a method of spraying the inorganic fine particles without the use of solvent on the substrate, to prepare a porous ceramic in a conventional manner, which bonded to the substrate, or can be employed simply a method to superimpose the like.

【0022】表面保護層の基体との密着性、脆さ、亀裂の入り易さ等を改善するため、無機微粒子はバインダーとなる樹脂と混合して使用することが好ましい。 The adhesion to the substrate of the surface protective layer, brittleness, to improve the congestion of crack ease like, inorganic fine particles are preferably used in admixture with a resin as a binder. バインダーとしては、従来使用されているものであれば特に制限するものではなく、例えば、各種ポリエステル、各種ポリオレフィン、各種ゴム類、各種アクリル樹脂等を単独または混合して用いることができる。 The binder, not particularly limited as long as it is conventionally used, for example, various polyesters, various polyolefins, various rubbers, various acrylic resins can be used alone or in combination. 無機微粒子とバインダーとの混合重量比は、無機微粒子100部に対して、バインダーを500部以下、好ましくは100部以下、より好ましくは50部以下とする。 Mixing weight ratio between the inorganic fine particles and the binder, relative to 100 parts of the inorganic fine particles, a binder and 500 parts or less, preferably 100 parts or less, more preferably at most 50 parts. これは、バインダーの比率が500部を超えると十分な補強効果を得ることが困難となるからである。 This is because the ratio of the binder is difficult to obtain a sufficient reinforcing effect exceeds 500 parts. なお、バインダーは、加熱または紫外線照射等によって硬化を行なってもよい。 Incidentally, the binder may perform cured by heating or ultraviolet irradiation, or the like.

【0023】バインダーを使用した場合の表面保護層の形成方法としても、キャスティング、ディッピングまたはスプレー塗布等の塗工方法を採用することができる。 The binder as a method of forming the surface protective layer in the case of using, it is possible to employ casting, a coating method such as dipping or spraying.
このとき、必要に応じて上記のような溶媒を使用することもできる。 At this time, it is also possible to use a solvent as described above as needed. 溶媒は、無機微粒子100部に対して10 Solvent, relative to 100 parts of inorganic fine particles 10
000部以下の重量比で使用することが適当である。 It is appropriate to use 000 parts or less by weight ratio.

【0024】バインダーを使用した表面保護層を、上記のような塗工方法で形成する場合、使用する塗布液の濃度または塗布量を調整することによって、前述したような通気度を確保することができる。 [0024] The surface protective layer using the binder, if formed by coating method as described above, by adjusting the concentration or the coating amount of the coating liquid to be used, to ensure the air permeability as described above it can. しかし、通気度の向上を図るために塗布液濃度または塗布量を減少させると、表面保護層中の無機微粒子の濃度が低減するため、 However, reducing the coating solution concentration or the coating amount in order to improve the air permeability, in order to reduce the concentration of the inorganic fine particles in the surface protective layer,
膜の強度向上に限界が生じる。 Limit occurs to the improvement of the strength of the film.

【0025】上記の問題を回避する方法として、表面保護層をスクリーン印刷によってメッシュ状等のように開孔を有するように形成する方法が挙げられる。 [0025] As a method of avoiding the above problem, a method of forming a surface protective layer so as to have an opening so that a mesh-like shape by screen printing. 開孔の大きさは特に限定はしないが、電池用セパレータとして使用する場合には内部短絡の原因となる導電性の粒子の大きさを考慮して、0.1μm〜1mmとすることが適当であり、好ましくは5μm〜20μmとする。 Is not particularly limited the size of the opening, when used as a battery separator in consideration of the size of the conductive particles causing an internal short circuit, suitable to be 0.1μm~1mm Yes, preferably 5μm~20μm. また、開孔は表面保護層の表面において全面積の40〜80%程度を占めることが好ましい。 Further, openings are preferably occupies about 40% to 80% of the total area on the surface of the surface protective layer.

【0026】また、表面保護層を上記の塗工方法等で形成後、表面保護層を構成する樹脂に対する貧溶媒中で超音波処理を行なうことによって、表面保護層に基体の有する孔構造に準じた細孔を形成することができ、この方法によっても前述の問題が回避できる。 Further, after forming a surface protective layer above the coating method or the like, by performing an ultrasonic treatment in a poor solvent for the resin constituting the surface protective layer, according to the pore structure having a substrate on the surface protective layer pores can be formed were the aforementioned problem can be avoided by this method. このような貧溶媒としては、メタノール等の低級アルコールや水等が使用できる。 Such a poor solvent, a lower alcohol and water such as methanol can be used.

【0027】また、予め孔構造を有する表面保護層を作製しておき、これを基体に接合することによって前述の問題を回避することもできる。 [0027] Alternatively, it is acceptable to prepare a surface protective layer having a pre-pore structure, which can also avoid the problems described above by bonding to the substrate. 例えば、抽出、延伸または発泡剤の添加等によって多孔性の表面保護層を作製し、基体に貼合わせまたは重合わせる方法や、剥離紙上にメッシュ状のスクリーン印刷等で表面保護層を形成した後基体表面に転写する方法等が使用できる。 For example, extraction, to produce a porous surface protective layer of the addition of a drawing or blowing agent, or a method combining lamination or heavy to the substrate, after forming a surface protective layer with a mesh screen printing onto the release paper substrate how to transfer on the surface and the like can be used.

【0028】また、第1の形態の好ましい例によれば、 [0028] According to a preferred example of the first embodiment,
本発明の目的である機械的強度の向上はもちろん、熱伝導率の向上を図ることもできる。 Improvement of mechanical strength is an object of the present invention, of course, it is also possible to improve the thermal conductivity. この熱伝導率の向上を重視する場合、使用する無機微粒子としては、酸化アルミニウム、酸化ベリリウム、酸化マグネシウム、雲母等が好ましい。 If you're focused on the thermal conductivity, the inorganic fine particles used, aluminum oxide, beryllium oxide, magnesium oxide, mica and the like are preferable. また、バインダーを使用する場合は、無機微粒子100部に対して100部以下、更には50部以下が好ましい。 Also, when using a binder, 100 parts or less with respect to 100 parts of inorganic fine particles, more preferably less than 50 parts.

【0029】通常、電池用セパレーターに用いられるポリエチレンあるいはポリプロピレン等の有機材料の熱伝導率は単体で0.1〜0.3kW/m・Kであるが、電池用セパレーターは気孔率が10〜90%程度、通常は40〜50%の多孔質体であるために、熱伝導率は通常0.001〜0.1kW/m・K前後である。 [0029] Usually, the thermal conductivity of the organic material such as polyethylene or polypropylene used for the battery separator is unitary with 0.1~0.3kW / m · K, the battery separator porosity 10 to 90 % of, for usually a porous material of 40-50%, the thermal conductivity is usually 0.001~0.1kW / m · K and forth. しかし、 But,
この第1の形態の好ましい例によれば、0.5kW/m According to a preferred embodiment of the first embodiment, 0.5 kW / m
・K以上の熱伝導率とすることも可能である。 - it is also possible to K or more thermal conductivity. 熱伝導率の向上によって、セパレータとして使用したとき、過剰な温度上昇時の細孔閉塞の迅速化が図れ、電池の安全性を向上させることができる。 The improved thermal conductivity, when used as a separator, Hakare excessive temperature faster pore blockage during rising, thereby improving battery safety.

【0030】上記形態の他にも、A)無機繊維不織布と多孔質膜との貼り合せや、B)無機繊維や無機微粒子を添加したポリオレフィン類等を原料とするフィルムの多孔化等によっても高い熱伝導率を有する多孔質膜を得ることができる。 [0030] The addition to the form, A) and bonding between the inorganic fiber nonwoven fabric and the porous membrane, B) higher by a porous, etc. of the film which the inorganic fibers and inorganic particles polyolefins were added such as raw materials it is possible to obtain a porous film having a heat conductivity.

【0031】本発明の第2の形態において、表面保護層として使用する樹脂は、メラミン樹脂、ウレタン樹脂、 [0031] In a second embodiment of the present invention, the resin used as the surface protective layer, a melamine resin, a urethane resin,
アルキド樹脂またはアクリル樹脂である。 Alkyd resins or acrylic resins. これらの樹脂は単独で用いてもよいが、各々の特性を考慮して混合して用いることが好ましい。 These resins may be used alone, it is preferable to use a mixture in consideration of each property. このような混合物としては、 Such mixture,
例えば、メラミン樹脂とアルキド樹脂またはアクリル樹脂との混合物等が挙げられる。 For example, mixtures of melamine resins and alkyd resins or acrylic resins.

【0032】第2の形態における表面保護層の形成方法としては、キャスティング、ディッピング、スプレー塗布等によって塗布した後、加熱、紫外線照射等の塗膜成分に応じた方法で硬化を行う方法が使用できる。 [0032] As a method for forming the surface protective layer in the second embodiment, after coating a casting, dipping, by spraying or the like, heating, a method of performing curing by a method according to the coating composition of the UV irradiation or the like can be used . 塗工液には、上記の樹脂の塗膜を形成する成分の他に硬化促進剤等の添加剤を加えてもよい。 The coating solution may be added an additive such as other curing accelerator component to form a coating film of the resin. また、必要に応じて溶媒を使用してもよく、このような溶媒としては揮発性で基体を溶解しないものを使用し、例えば、トルエン、キシレン、ヘキサン等の炭化水素類、メタノール、イソブチルアルコール等のアルコール類、酢酸エチル、酢酸イソプロピル等のエステル類、エーテル類、テルペン類等が使用できる。 It is also possible to use a solvent if necessary, Examples of such a solvent used which does not dissolve the substrate in a volatile, for example, toluene, xylene, hydrocarbons such as hexane, methanol, isobutyl alcohol, etc. alcohols, ethyl acetate, esters such as isopropyl acetate, ethers, terpenes and the like can be used for.

【0033】また、バインダーを使用した第1の形態と同様に、スクリーン印刷、貧溶媒中での超音波処理等の方法を使用することもでき、これらの方法によれば、表面保護層形成成分の量を制限することなく十分な通気性を確保することができるため好ましい。 Further, like the first embodiment using a binder, screen printing, can also be used ultrasonic treatment or the like method in a poor solvent, according to these methods, the surface protective layer-forming component preferably possible to secure sufficient breathability without limiting the amount of. もちろん、予め表面保護層を独立して作製して延伸等によって多孔化した後、基体に貼合せる方法等も使用できる。 Of course, after the porous by stretching prepared independently beforehand surface protective layer or the like, a method in which is laminated to the substrate can also be used.

【0034】以上のような多孔質膜は表面硬度が高く、 [0034] or more of such a porous film has a high surface hardness,
よってセパレータとして使用したとき、異物によって生じる裂けや破断が起こりにくく、電池製造/保管時の内部短絡不良率が小さく安全性に優れた非水電解液電池を得ることができる。 Thus when used as a separator, tearing or breakage is unlikely to occur due foreign object, it is possible to obtain a nonaqueous electrolyte battery internal short-circuit defect rate during cell manufacturing / storage and excellent small safety.

【0035】このような非水電解液電池は、帯状の負極、正極および本発明の多孔質膜を積層捲回して得た捲回型電極体を電解液と共に電池缶に収納し、その他の必要な部材を市販の電池に準じて適宜配することによって得られる。 [0035] Such non-aqueous electrolyte battery, housed in the battery can strip-shaped anode, a wound electrode body of porous membrane obtained by winding lamination of the positive electrode and the invention together with an electrolyte, other necessary obtained by coordinating appropriately such member in accordance with the commercial battery.

【0036】負極材料としては、金属リチウム、リチウム合金、カーボンやグラファイト等のリチウムイオンを吸着または吸蔵する炭素材料、またはリチウムイオンをドーピングした導電性高分子で形成したもの等が使用できる。 [0036] As the anode material, metal lithium, lithium alloys, such as those formed of carbon material to adsorb or absorb lithium ions, such as carbon or graphite or lithium ions doped conductive polymer, can be used. また、正極材料としては、一般に(CF Xnで示されるフッ化黒鉛、CoLiO 2 、MnO 2 、V 25 、C As the cathode material, generally (CF X) fluorinated graphite represented by n, CoLiO 2, MnO 2, V 2 O 5, C
uO、Ag 2 CrO 4等の金属酸化物、TiO 2 、CuS uO, metal oxides such as Ag 2 CrO 4, TiO 2, CuS
等の硫化物等が使用できる。 Sulfides and the like can be used. また、電解液としては、エチレンカーボネート、プロピレンカーボネート、アセトニトリル、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン等の有機溶媒にLiPF 6 、L As the electrolyte, ethylene carbonate, propylene carbonate, acetonitrile, .gamma.-butyrolactone, 1,2-dimethoxyethane, LiPF 6 in an organic solvent such as tetrahydrofuran, L
iCF 3 SO 3 、LiClO 4 、LiBF 4等を電解質と溶解させたものが使用できる。 iCF 3 SO 3, LiClO 4, that the LiBF 4 or the like is dissolved with the electrolyte can be used.

【0037】 [0037]

【実施例】以下、実施例により本発明を詳細に説明する。 EXAMPLES The following examples illustrate the present invention in detail. ただし、以下の記載において混合割合を表す際に使用する「部」とは「重量部」を意味する。 However, the term "parts" used in representing the mixing ratio in the following description means "part by weight". また、試料の特性は以下の方法で測定した。 Further, characteristics of the sample were measured by the following methods.

【0038】(通気度)JIS K−8117に準じ、 [0038] according to the (air permeability) JIS K-8117,
安田精機製作所製ガーレー式デンソメーターNo. Yasuda Seiki Seisakusho Gurley Densometer No. 32 32
3−Autoを用い、膜面積642mm 2を空気10c Using 3-Auto, the membrane area 642 mm 2 air 10c
cが透過する時間を測定し、この値を10倍して求めた。 c measures the time that passes, was determined this value 10 times.

【0039】(表面硬度)JIS K 5400に規定される鉛筆引っかき法により求めた。 [0039] determined by a pencil scratch method specified in (surface hardness) JIS K 5400.

【0040】(熱伝導率)フィルムを2枚のヒーター板の間に圧着し、一方のヒーター板を加熱する。 [0040] (thermal conductivity) film was crimped into two heater plates, heating the one of the heater plate. 温度が一定になった後、フィルム両面間の温度差ΔT(K)および伝熱量Q(cal/秒)を測定し、その測定結果並びにフィルムの厚みL(cm)および面積A(cm 2 )より、下記式によって熱伝導率λを算出した。 After the temperature became constant, the temperature difference ΔT between the films both surfaces (K) and the heat transfer amount measuring the Q (cal / sec), than the thickness of the measurement result and the film L (cm) and the area A (cm 2) It was calculated λ the thermal conductivity by the following equation. λ(W/m・K)=(Q/A)×(L/ΔT)×41 λ (W / m · K) = (Q / A) × (L / ΔT) × 41
8.6 8.6

【0041】(収縮率)フィルムを長さ方向がその機械方向に一致するように幅約10mm、長さ300mm程度に切り取り、これを圧縮紙の上に無張力で設置した状態で60℃に保った熱風循環式乾燥機中に1時間投入し、加熱前後のフィルムの長さを測定してその減少率から求めた。 The width of about 10mm so that the length direction (shrinkage) film coincides with the machine direction, cut into length of about 300 mm, maintained at 60 ° C. when it is installed without tension on the compressed paper which was charged hot-air circulating drier for 1 hour in was determined from the reduction rate by measuring the length of the before and after heating the film.

【0042】(厚み)全厚みは、1/1000mmのダイアルゲージにて測定した。 [0042] (thickness) total thickness was measured by 1 / 1000mm of the dial gauge. 多層フィルムの各層の厚みは、フィルムを凍結破断し、断面を光学顕微鏡で観察することによって求めた。 The thickness of each layer of the multilayer film, the film was frozen rupture was determined by observing the cross section with an optical microscope.

【0043】(実施例1)重量平均分子量(以下、「M [0043] (Example 1) The weight average molecular weight (hereinafter, "M
w」とする。 And w ". )9.8×10 5のPP単体と、これと同様のPP50部とMw2.6×10 5の高密度PE50 ) And PP single 9.8 × 10 5, which similar PP50 parts and Mw2.6 × 10 5 high density PE50
部との混合物を使用し、3層Tダイ式フィルム成形機によってPP層/PPとPEの混合物層/PP層という3 Using a mixture of Part 3 of the mixture layer / PP layer of PP layer / PP and PE by three layers T-die type film forming machine
層構造を有するフィルムを形成した。 To form a film having a layer structure. このとき、押出し温度は250℃、ドロー比は30であり、得られたフィルムの総厚みは32μm(各層の厚み:PP層/混合物層/PP層=10/11/11μm)であった。 At this time, the extrusion temperature is 250 ° C., the draw ratio is 30, the total thickness of the obtained film 32 [mu] m (the thickness of each layer: PP layer / composition layer / PP layer = 10/11/11 [mu] m) was. このフィルムを25℃、相対湿度30%のクリーンルーム中で、厚み50μmのポリエチレンテレフタレートフィルム2枚に挟み、表面温度150℃のロール表面上におよそ10秒間接触させて熱処理し、鉄芯上に巻き取った。 The film 25 ° C., 30% relative humidity in a clean room, sandwiching a polyethylene terephthalate film two thickness 50 [mu] m, is contacted for approximately 10 seconds on a roll surface of the surface temperature of 0.99 ° C. and heat-treated, and wound on the iron core It was.
更にこれを125℃の乾燥機中に投入して48時間熱処理した。 Was heat treated for 48 hours with further put this in 125 ° C. dryer. 続いてこの熱処理したフィルムを60℃にて、 Then in the heat-treated film 60 ℃,
未延伸フィルムの長さを基準に78%延伸し、更に12 The length was 78% stretched based on the unstretched film, further 12
0℃にて未延伸フィルムの長さを基準に178%延伸した(トータル延伸倍率256%=3.56倍)。 0 the length of the unstretched film was 178% stretched to the reference at ° C. (total draw ratio 256% = 3.56 times). 更に1 In addition 1
20℃にて延伸後のフィルムの長さを基準に26%収縮させ、(最終延伸倍率2.63倍)得られた多孔質膜を基体とする。 Standards was 26% shrinkage in length of the film after stretching at 20 ° C., and (final draw ratio 2.63 times) obtained porous membrane substrate. 平均粒径3μmのアルミナ粒子(昭和電工製 AL15−H)100部に対し、PEワックス(三洋化成製 サンワックス171P)50部、界面活性剤1部、キシレン1000部を加え、100℃で加熱攪拌を行い混合物を得た。 Relative alumina particles (manufactured by Showa Denko AL15-H) 100 parts of an average particle diameter of 3 [mu] m, PE wax (manufactured by Sanyo Chemical Industries, Ltd. Sunwax 171P) 50 parts surfactant, 1 part, 1000 parts of xylene was added, heated and stirred at 100 ° C. It was carried out to obtain a mixture. 基体上にこの混合物を約80℃の温度でキャスティングした。 On the substrate was cast the mixture at a temperature of about 80 ° C.. その後、メタノール中で2 Then, 2 in methanol
分間超音波処理を行った後、80℃の乾燥機でキシレンを蒸発させ、多孔質膜Aを得た。 After minutes sonication, it evaporated xylene at a 80 ° C. oven to obtain a porous membrane A.

【0044】(実施例2)平均粒径1.2μmのシリカ微粒子100部に対してポリノルボルネンゴム(日本ゼオン社製 ノーソレックス)30部、キシレン1000 [0044] (Example 2) polynorbornene rubber (Nippon Zeon Co., Ltd. Norsorex) of the silica fine particles 100 parts of an average particle diameter of 1.2 [mu] m 30 parts of xylene 1000
部を加え、60℃で加熱攪拌を行い混合物を作製した。 Parts was added to prepare a mixture subjected to a heat stirring at 60 ° C..
実施例1と同様にして作製した基体上にこの混合物のスプレー散布を目付け量5g/m 2で行い、その後、90 The spray application of the mixture on a substrate was prepared in the same manner as in Example 1 performed by a weight of 5 g / m 2, then 90
℃で2時間の乾燥を行い多孔質膜Bを得た。 Dry for 2 hours is performed to obtain a porous membrane B in ° C..

【0045】(実施例3)平均繊維径0.3〜0.6μ [0045] (Example 3) Average fiber diameter 0.3~0.6μ
m、平均繊維長10〜20μmの繊維状のチタン酸カリウム粒子(大塚化学社製 ティスモD)100部に対してポリエステル樹脂(東洋紡績社製 バイロン630) m, average fiber length 10~20μm fibrous potassium titanate particles (Otsuka Chemical Co., Ltd. TISMO D) a polyester resin relative to 100 parts (manufactured by Toyobo Co., Ltd. Byron 630)
100部、トルエン250部、メチルイソブチルケトン100部を加え、ボールミルで24時間攪拌を行い混合物を得た。 100 parts, 250 parts of toluene was added 100 parts of methyl isobutyl ketone to obtain a mixture for 24 hours with stirring in a ball mill. 実施例1と同様にして作製した基体上に、この混合物を常温でキャスティングした。 On the substrate prepared in the same manner as in Example 1 was cast the mixture at ambient temperature. その後、メタノール中で2分間の超音波処理を行った後、120℃の乾燥機中で溶媒を蒸発させ、多孔質膜Cを得た。 Then, after sonication for 2 minutes in methanol, the solvent was evaporated in a 120 ° C. oven to obtain a porous membrane C.

【0046】(実施例4)Mw2.5×10 6の超高分子量PE2部と、6.8×10 5のPE8部との混合物に流動パラフィン90部を加えPE組成物の溶液を得た。 The yield and ultra high molecular weight PE2 parts (Example 4) Mw2.5 × 10 6, the mixture of liquid paraffin 90 parts was added PE composition of PE8 parts of 6.8 × 10 5 solution. この溶液100重量部に、2,6−t−ブチル−p To this solution 100 parts, 2, 6-t-butyl -p
−クレゾール(「BHT」、住友化学工業社製)0.1 - cresol ( "BHT", manufactured by Sumitomo Chemical Co., Ltd.) 0.1
25部とテトラキス[メチレン−3−(3,5−ジ−t 25 parts of tetrakis [methylene-3- (3,5-di -t
−ブチル−4−ヒドロキシルフェニル)−プロピオネート]メタン(「イルガノックス1010」、チバガイギー社製)0.25部とを酸化防止剤として加え、混合した。 - butyl-4-hydroxyphenyl) - propionate] methane ( "Irganox 1010", manufactured by Ciba-Geigy) and 0.25 parts added as an antioxidant were mixed. この混合物を攪拌機付きのオートクレーブに充填して均一な溶液を得た。 The mixture was charged to the autoclave equipped with a stirrer to obtain a uniform solution. この溶液を押出し機によりTダイから押出し、冷却ロールで引取りながら、ゲル上シートを成形した。 Extruded from a T-die of this solution by an extruder, while take-up by a cooling roll, was molded gel sheet. 得られたシートを二軸延伸機にセットして、温度115℃、延伸速度0.5m/分で7×7倍に同二軸延伸した。 The obtained sheet was set in a biaxial stretching machine, the temperature 115 ° C., and the biaxially stretched 7 × 7 times at a stretching rate of 0.5 m / min. 得られた延伸膜を塩化メチレンで洗浄して残留する流動パラフィンを抽出除去した後、乾燥してPEの単層多孔質膜である基体を得た。 The resulting was stretched film to extract and remove the liquid paraffin remaining was washed with methylene chloride to give the substrate a monolayer porous film of PE and dried. この基体上に実施例1と同様にして作製した混合物を約80℃の温度でキャスティングした。 The mixture was prepared in the same manner as in Example 1 to the substrate on the casting at a temperature of about 80 ° C.. その後、メタノール中で2分間超音波処理を行った後、80℃の乾燥機でキシレンを蒸発させ、多孔質膜Dを得た。 Then, after 2 minutes sonication in methanol, evaporate xylene at a 80 ° C. oven to obtain a porous membrane D.

【0047】(実施例5)実施例4と同様にして作製した基体を用いた以外は、実施例2と同様の方法で多孔質膜Eを得た。 [0047] except for using (Example 5) substrates were produced in the same manner as in Example 4 to obtain a porous membrane E in the same manner as in Example 2.

【0048】(実施例6)実施例4と同様にして作製した基体を用いた以外は、実施例3と同様の方法で多孔質膜Fを得た。 [0048] except for using a substrate was prepared in the same manner as Example 6 Example 4 to obtain a porous membrane F in the same manner as in Example 3.

【0049】(実施例7)紫外線硬化型のアクリルウレタン系オリゴマー100部およびベンゾフェノン3部を、酢酸エチル400部に溶かし、高速攪拌を行った。 [0049] (Example 7) 100 parts of acrylic urethane oligomer and benzophenone 3 parts of UV-curable, dissolved in 400 parts of ethyl acetate was carried out of a high speed stirring.
実施例1と同様に作製した基体上に、この混合物を常温でキャスティングした。 On a substrate was prepared in the same manner as in Example 1 was cast the mixture at ambient temperature. 酢酸エチルを蒸発させた後、高圧水銀ランプで積算光量150mj/cm 2で光照射して硬化処理し、多孔質膜Gを得た。 After evaporating the ethyl acetate, and light irradiation was cured at integrated light intensity 150 mj / cm 2 by a high pressure mercury lamp to obtain a porous membrane G.

【0050】(実施例8)実施例4と同様にして作製した基体を用いた以外は、実施例7と同様の方法で多孔質膜Hを得た。 [0050] except for using the substrate were prepared in the same manner as Example 8 Example 4 to obtain a porous membrane H in the same manner as in Example 7.

【0051】上記の実施例で得た多孔質膜A〜Hの特性について測定した結果を表1に示す。 [0051] Table 1 shows the results of measuring the characteristics of the porous membrane A~H obtained in the above examples. また、比較例として、表面保護層を形成していない実施例1および4の基体をそれぞれ試料IおよびJとして同様の測定を行った結果を併せて記載する。 As a comparative example, is described in conjunction with results of similar measurement of the substrate of Example 1 and 4 do not form a surface protective layer as a sample I and J, respectively.

【0052】 [0052]

【表1】 試料 通気度 表面硬度 熱伝導率 収縮率(秒/100cc) (鉛筆硬度) (kW/m・K) (%) A 900 4H 0.9 2.0 B 850 4H 0.8 1.9 C 1000 5H 0.7 2.0 D 800 3H 0.9 1.0 E 750 4H 0.7 1.1 F 900 5H 0.6 1.3 G 1200 2H 0.12 2.1 H 1400 3H 0.14 1.1 I 800 H 0.08 2.3 J 700 HB 0.1 1.2 TABLE 1 Sample air permeability surface hardness thermal conductivity shrinkage (sec / 100 cc) (pencil hardness) (kW / m · K) (%) A 900 4H 0.9 2.0 B 850 4H 0.8 1. 9 C 1000 5H 0.7 2.0 D 800 3H 0.9 1.0 E 750 4H 0.7 1.1 F 900 5H 0.6 1.3 G 1200 2H 0.12 2.1 H 1400 3H 0 .14 1.1 I 800 H 0.08 2.3 J 700 HB 0.1 1.2

【0053】また、多孔質膜A〜Hをセパレーターとして用いてリチウムイオン電池を各々1000個づつ作製した。 [0053] Also, to prepare each 1000 increments the lithium ion battery using the porous membrane A~H as a separator. 各電池の電極間の抵抗を測定し、2kΩ以下であるものの存在する割合を内部短絡不良率とした。 The resistance between the electrodes of each battery was measured and the rate of existence of not more 2kΩ or less that an internal short defect rate.

【0054】また、同じく多孔質膜A〜Hをセパレーターとして用いたリチウムイオン電池を各々10個づつ用意して、電池工業会指針SBA G 1101「リチウム二次電池安全性評価基準ガイドライン」に規定される方法に基づいて釘刺し試験を行い、破裂・発火のあった電池の個数を釘刺しによる不良率とした。 [0054] In addition, the same porous membrane A~H with each ten at a time provide a lithium-ion battery that was used as a separator, and is defined in the Battery Association guidelines SBA G 1101 "lithium secondary battery safety guidelines outlined" that performs a nail penetration test according to the methods, the number of a battery of explosion or fire and defective rate due to nail penetration.

【0055】また、比較例として、表面保護層を形成していない、実施例1および4の基体をそれぞれ試料IおよびJとして同様の測定を行った。 [0055] As a comparative example, not forming a surface protective layer, the same measurement was carried out with substrate of Example 1 and 4 as Sample I and J, respectively. 表2に、各試料においての内部短絡不良率および釘刺しによる不良率を示す。 Table 2 shows the failure rate due to internal short-circuit defect rate and nailing of each sample.

【0056】 [0056]

【表2】 試料 内部短絡不良率 釘刺しによる不良率(%) (個/10個) A 0.5 0 B 0.6 0 C 0.4 0 D 0.4 0 E 0.5 0 F 0.3 0 G 0.7 0 H 0.5 0 I 2.3 4 J 1.1 1 TABLE 2 percent defective due to sample internal short defect rate nailing (%) (number / 10) A 0.5 0 B 0.6 0 C 0.4 0 D 0.4 0 E 0.5 0 F 0 .3 0 G 0.7 0 H 0.5 0 I 2.3 4 J 1.1 1

【0057】 [0057]

【発明の効果】以上説明したように、本発明の多孔質膜によれば、基体となる膜の少なくとも片面に、無機微粒子、または前述したような樹脂を含む表面保護層を形成することにより、表面硬度の高い多孔質膜とすることができる。 As described in the foregoing, according to the porous membrane of the present invention, on at least one surface of the film to be the substrate, by forming a surface protective layer containing inorganic fine particles or resin as described above, it can have high surface hardness porous membrane. このような多孔質膜をセパレータとして非水電解液電池に使用することにより、電池の作製時または保存時に電極材から剥離した導電性粒子がセパレートを貫通するような不都合を低減することができ、その結果内部短絡の発生が起こりにくい安全性に優れた非水電解液電池とすることができる。 By using such a porous membrane in a non-aqueous electrolyte battery as a separator, it can be detached conductive particles from the electrode material during the production or storage of the battery to reduce the inconveniences through the separate, it can be a non-aqueous electrolyte battery occurs and excellent unlikely safety resulting internal short circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 FI H01M 10/40 H01M 10/40 Z ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identifications FI H01M 10/40 H01M 10/40 Z

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基体となる膜の少なくとも片面に、無機微粒子を含む通気性を有する表面保護層を形成してなることを特徴とする多孔質膜。 On at least one surface according to claim 1] a base film, a porous membrane, characterized in that by forming a surface protective layer having gas permeability comprising inorganic fine particles.
  2. 【請求項2】 表面保護層を形成した面の表面硬度が鉛筆硬度で4H以上である請求項1に記載の多孔質膜。 2. A porous membrane according to claim 1, wherein the surface hardness of the surface to form a surface protective layer is 4H or more in pencil hardness.
  3. 【請求項3】 熱伝導率が0.5kW/m・K以上である請求項1または2に記載の多孔質膜。 3. A porous membrane according to claim 1 or 2 thermal conductivity of 0.5 kW / m · K or more.
  4. 【請求項4】 基体となる膜の少なくとも片面に、メラミン樹脂、ウレタン樹脂、アルキド樹脂およびアクリル樹脂から選ばれる少なくとも1つの樹脂を含む、通気性を有する表面保護層を形成してなることを特徴とする多孔質膜。 On at least one surface of 4. a base film, a melamine resin, urethane resin, characterized in that it comprises at least one resin selected from alkyd resins and acrylic resins, by forming a surface protective layer having gas permeability the porous membrane to be.
  5. 【請求項5】 請求項1〜4のいずれかに記載の多孔質膜を構成要素とする非水電解液電池用セパレータ。 5. The non-aqueous electrolyte battery separator of the porous membrane structure element according to any of claims 1 to 4.
  6. 【請求項6】 請求項5に記載の非水電解液電池用セパレータを構成要素とする非水電解液電池。 6. The non-aqueous electrolyte battery as a component a non-aqueous electrolyte cell separator according to claim 5.
JP9243917A 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery Pending JPH1180395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9243917A JPH1180395A (en) 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9243917A JPH1180395A (en) 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery

Publications (1)

Publication Number Publication Date
JPH1180395A true JPH1180395A (en) 1999-03-26

Family

ID=17110944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9243917A Pending JPH1180395A (en) 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery

Country Status (1)

Country Link
JP (1) JPH1180395A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035468A (en) * 1999-07-16 2001-02-09 Teijin Ltd Polyolefin porous film with inorganic thin film formed thereon and its manufacture
JP2001043842A (en) * 1999-07-28 2001-02-16 Teijin Ltd Separator for separating electrodes
JP2001210300A (en) * 2000-01-28 2001-08-03 Matsushita Electric Ind Co Ltd Separator for alkaline storage battery and its production
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2006012788A (en) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
WO2006025662A1 (en) * 2004-09-02 2006-03-09 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2006269358A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Porous separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using above
JP2006310302A (en) * 2005-04-28 2006-11-09 Samsung Sdi Co Ltd Lithium secondary battery
US20070122694A1 (en) * 2005-11-14 2007-05-31 Junichi Yamaki Non-aqueous electrolyte secondary battery
JP2007188777A (en) * 2006-01-13 2007-07-26 Sony Corp Separator and nonaqueous electrolytic solution battery
KR100755644B1 (en) 2005-11-28 2007-09-04 주식회사 엘지화학 Organic/inorganic composite porous membrane and electrochemical device using the same
EP1829139A1 (en) 2004-12-22 2007-09-05 LG Chemical Co. Ltd Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
KR100770105B1 (en) 2005-07-06 2007-10-24 삼성에스디아이 주식회사 Lithium rechargeable battery
KR100778975B1 (en) 2007-03-08 2007-11-28 삼성에스디아이 주식회사 Lithium rechargeable battery
JP2008503049A (en) * 2004-07-07 2008-01-31 エルジー・ケム・リミテッド Organic-inorganic composite porous film and electrochemical device using the same
JP2008508391A (en) * 2004-09-02 2008-03-21 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
WO2008093575A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
JP2008210782A (en) * 2007-01-29 2008-09-11 Hitachi Maxell Ltd Separator for battery, manufacturing method of separator for battery, and lithium secondary battery
JP2008210794A (en) * 2007-01-30 2008-09-11 Asahi Kasei Chemicals Corp Multilayer porous membrane and method for producing the same
WO2008149986A1 (en) * 2007-06-06 2008-12-11 Asahi Kasei E-Materials Corporation Multilayer porous film
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
JP2009527091A (en) * 2006-02-16 2009-07-23 エルジー・ケム・リミテッド Electrochemical element with improved heat resistance
WO2009123220A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
WO2009123218A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
JP2010033968A (en) * 2008-07-30 2010-02-12 Nissan Motor Co Ltd Electrochemical device
WO2010024559A2 (en) 2008-08-25 2010-03-04 주식회사 엘지화학 Separator furnished with porous coating layer, method of manufacturing same, and electrochemical device furnished therewith
JP2010520095A (en) * 2007-03-07 2010-06-10 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
KR100979084B1 (en) 2002-08-24 2010-08-31 에보닉 데구사 게엠베하 Electric separator comprising a shut-down mechanism, method for the production thereof and its use in lithium batteries
US20100221965A1 (en) * 2008-01-29 2010-09-02 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
EP2225787A2 (en) * 2007-11-29 2010-09-08 LG Chem, Ltd. Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
WO2010104077A1 (en) 2009-03-09 2010-09-16 旭化成イーマテリアルズ株式会社 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
KR100988449B1 (en) * 2002-08-24 2010-10-18 에보닉 데구사 게엠베하 Electric separator, method for making same and use thereof in high-power lithium cells
JP2011113770A (en) * 2009-11-26 2011-06-09 Hitachi Ltd Lithium battery
KR101055536B1 (en) 2009-04-10 2011-08-08 주식회사 엘지화학 Separator comprising a porous coating layer, a method of manufacturing the same and an electrochemical device having the same
KR101078456B1 (en) 2004-10-01 2011-10-31 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane
JP2011233534A (en) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp Separator for rechargeable battery with nonaqueous electrolyte and rechargeable battery with nonaqueous electrolyte
JP2012009326A (en) * 2010-06-25 2012-01-12 Toyota Motor Corp Nonaqueous electrolyte secondary battery, vehicle and apparatus using battery
JP2012072285A (en) * 2010-09-29 2012-04-12 Nitto Denko Corp Porous film, electrical insulation maintenance film, separator for non-aqueous electrolyte battery and electrochemical element
WO2013002116A1 (en) 2011-06-28 2013-01-03 日産自動車株式会社 Separator having heat-resistant insulating layer
WO2013051468A1 (en) 2011-10-04 2013-04-11 日産自動車株式会社 Separator with heat resistant insulating layer
JP2013522829A (en) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for dynamic use
JP2013137984A (en) * 2011-09-05 2013-07-11 Sony Corp Separator and nonaqueous electrolyte battery
JP2013149434A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2013129009A1 (en) 2012-02-28 2013-09-06 日産自動車株式会社 Non-aqueous electrolyte secondary battery
EP2544260A3 (en) * 2004-12-07 2013-10-09 LG Chemical Co. Ltd Surface-treated microporous membrane and electrochemical device prepared thereby
JP2014078515A (en) * 2013-11-26 2014-05-01 Asahi Kasei Chemicals Corp Porous membrane having high thermal resistance and high permeability, and manufacturing method of the same
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
KR20140070160A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Separator for secondary battery
EP2990198A4 (en) * 2013-04-22 2016-11-23 Toray Battery Separator Film Laminated porous membrane, process for manufacturing same and separator for battery
JP2018130966A (en) * 2014-04-09 2018-08-23 住友化学株式会社 Laminated porous film and nonaqueous electrolyte secondary battery
WO2018221503A1 (en) * 2017-05-30 2018-12-06 東レ株式会社 Separator

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563526B2 (en) * 1999-07-16 2010-10-13 帝人株式会社 Polyolefin porous membrane on which inorganic thin film is formed and method for producing the same
JP2001035468A (en) * 1999-07-16 2001-02-09 Teijin Ltd Polyolefin porous film with inorganic thin film formed thereon and its manufacture
JP2001043842A (en) * 1999-07-28 2001-02-16 Teijin Ltd Separator for separating electrodes
JP2001210300A (en) * 2000-01-28 2001-08-03 Matsushita Electric Ind Co Ltd Separator for alkaline storage battery and its production
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
EP1184927A4 (en) * 2000-02-10 2006-06-28 Mitsubishi Electric Corp Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery
KR100990003B1 (en) * 2000-04-10 2010-10-26 셀가드 인코포레이티드 A high energy rechargeable lithium battery
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
KR100979084B1 (en) 2002-08-24 2010-08-31 에보닉 데구사 게엠베하 Electric separator comprising a shut-down mechanism, method for the production thereof and its use in lithium batteries
KR100988449B1 (en) * 2002-08-24 2010-10-18 에보닉 데구사 게엠베하 Electric separator, method for making same and use thereof in high-power lithium cells
US7892673B2 (en) 2002-08-24 2011-02-22 Evonik Degussa Gmbh Electric separator, method for making same and use thereof in high-power lithium cells
KR101059726B1 (en) 2002-08-24 2011-08-26 에보닉 데구사 게엠베하 Its use in electrical separators and high power lithium batteries
US20110281172A1 (en) * 2004-02-09 2011-11-17 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP4657001B2 (en) * 2004-05-25 2011-03-23 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2006012788A (en) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2011138780A (en) * 2004-07-07 2011-07-14 Lg Chem Ltd Organic inorganic complex porous film and electrochemical element using the same
JP2018063948A (en) * 2004-07-07 2018-04-19 エルジー・ケム・リミテッド Organic/inorganic composite porous film, and electrochemical element comprising the same
JP2008503049A (en) * 2004-07-07 2008-01-31 エルジー・ケム・リミテッド Organic-inorganic composite porous film and electrochemical device using the same
US20170005309A1 (en) * 2004-09-02 2017-01-05 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2008508391A (en) * 2004-09-02 2008-03-21 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
EP1784876A4 (en) * 2004-09-02 2011-05-11 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP4846717B2 (en) * 2004-09-02 2011-12-28 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
JP2014130819A (en) * 2004-09-02 2014-07-10 Lg Chem Ltd Organic/inorganic composite porous film and electrochemical device using the same
WO2006025662A1 (en) * 2004-09-02 2006-03-09 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2011190447A (en) * 2004-09-02 2011-09-29 Lg Chem Ltd Organic-inorganic composite porous film, and electrochemical element using the same
KR101078456B1 (en) 2004-10-01 2011-10-31 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane
US10384426B2 (en) 2004-10-01 2019-08-20 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
US9741989B2 (en) 2004-10-01 2017-08-22 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
EP2544260A3 (en) * 2004-12-07 2013-10-09 LG Chemical Co. Ltd Surface-treated microporous membrane and electrochemical device prepared thereby
US8841031B2 (en) 2004-12-07 2014-09-23 Lg Chem, Ltd. Surface-treated microporous membrane and electrochemical device prepared thereby
KR100775310B1 (en) 2004-12-22 2007-11-08 주식회사 엘지화학 Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2763211A2 (en) 2004-12-22 2014-08-06 LG Chem, Ltd. Notebook computer or personal computer comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP2763210A2 (en) 2004-12-22 2014-08-06 LG Chem, Ltd. Portable phone comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP2528141A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2763210A3 (en) * 2004-12-22 2015-05-06 LG Chem, Ltd. Portable phone comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP3567655A1 (en) * 2004-12-22 2019-11-13 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2014082216A (en) * 2004-12-22 2014-05-08 Lg Chem Ltd Organic/inorganic composite porous membrane
EP1829139B1 (en) * 2004-12-22 2014-01-01 LG Chem, Ltd Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2763211A3 (en) * 2004-12-22 2015-05-06 LG Chem, Ltd. Notebook computer or personal computer comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP1829139A1 (en) 2004-12-22 2007-09-05 LG Chemical Co. Ltd Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2528140A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2008524824A (en) * 2004-12-22 2008-07-10 エルジー・ケム・リミテッド Presence / absence composite porous separator membrane and electrochemical device using the separator membrane
JP2013014142A (en) * 2004-12-22 2013-01-24 Lg Chem Ltd Organic/inorganic composite microporous polymer film
EP2528139A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2528142A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2528142A2 (en) 2004-12-22 2012-11-28 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2006269358A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Porous separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using above
US8062789B2 (en) 2005-04-28 2011-11-22 Samsung Sdi Co., Ltd. Lithium secondary battery
JP4516544B2 (en) * 2005-04-28 2010-08-04 三星エスディアイ株式会社 Lithium secondary battery
JP2006310302A (en) * 2005-04-28 2006-11-09 Samsung Sdi Co Ltd Lithium secondary battery
KR100770105B1 (en) 2005-07-06 2007-10-24 삼성에스디아이 주식회사 Lithium rechargeable battery
US8835059B2 (en) 2005-07-06 2014-09-16 Samsung Sdi Co., Ltd. Lithium rechargeable battery, and separator for lithium rechargeable battery
US20070122694A1 (en) * 2005-11-14 2007-05-31 Junichi Yamaki Non-aqueous electrolyte secondary battery
KR100755644B1 (en) 2005-11-28 2007-09-04 주식회사 엘지화학 Organic/inorganic composite porous membrane and electrochemical device using the same
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
JP2007188777A (en) * 2006-01-13 2007-07-26 Sony Corp Separator and nonaqueous electrolytic solution battery
EP3460877A1 (en) * 2006-02-16 2019-03-27 LG Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
US10305138B2 (en) 2006-02-16 2019-05-28 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
JP2009527091A (en) * 2006-02-16 2009-07-23 エルジー・ケム・リミテッド Electrochemical element with improved heat resistance
US9017878B2 (en) 2006-02-16 2015-04-28 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
JP2008210782A (en) * 2007-01-29 2008-09-11 Hitachi Maxell Ltd Separator for battery, manufacturing method of separator for battery, and lithium secondary battery
JP2008210794A (en) * 2007-01-30 2008-09-11 Asahi Kasei Chemicals Corp Multilayer porous membrane and method for producing the same
US9293752B2 (en) 2007-01-30 2016-03-22 Asahi Kasei E-Materials Corporation Multilayer porous membrane and production method thereof
WO2008093575A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
JP4694641B2 (en) * 2007-03-07 2011-06-08 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
JP2010520095A (en) * 2007-03-07 2010-06-10 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
KR100778975B1 (en) 2007-03-08 2007-11-28 삼성에스디아이 주식회사 Lithium rechargeable battery
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
EP2153990A4 (en) * 2007-06-06 2010-09-15 Asahi Kasei E Materials Corp Multilayer porous film
JP4789274B2 (en) * 2007-06-06 2011-10-12 旭化成イーマテリアルズ株式会社 Multilayer porous membrane
US9070935B2 (en) 2007-06-06 2015-06-30 Asahi Kasei E-Materials Corporation Multilayer porous film
EP2153990A1 (en) * 2007-06-06 2010-02-17 Asahi Kasei E-materials Corporation Multilayer porous film
WO2008149986A1 (en) * 2007-06-06 2008-12-11 Asahi Kasei E-Materials Corporation Multilayer porous film
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
WO2009014388A3 (en) * 2007-07-25 2009-03-19 Lg Chemical Ltd Electrochemical device and its manufacturing method
US9799866B2 (en) 2007-07-25 2017-10-24 Lg Chem, Ltd. Electrochemical device and its manufacturing method
EP2225787A2 (en) * 2007-11-29 2010-09-08 LG Chem, Ltd. Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
EP2225787A4 (en) * 2007-11-29 2013-03-06 Lg Chemical Ltd Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
US20100221965A1 (en) * 2008-01-29 2010-09-02 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
US9972816B2 (en) 2008-01-29 2018-05-15 Microconnect Corp. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
JP2009266811A (en) * 2008-03-31 2009-11-12 Nitto Denko Corp Cell separator and cell using the same
CN101983445A (en) * 2008-03-31 2011-03-02 日东电工株式会社 Cell separator and cell using the same
US9142817B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
JP2009266812A (en) * 2008-03-31 2009-11-12 Nitto Denko Corp Cell separator and cell using the same
US9142818B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
WO2009123218A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
WO2009123220A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
JP2010033968A (en) * 2008-07-30 2010-02-12 Nissan Motor Co Ltd Electrochemical device
US9005795B2 (en) 2008-08-25 2015-04-14 Lg Chem, Ltd. Separator having porous coating layer, manufacturing method of the same, and electrochemical device having the same
WO2010024559A2 (en) 2008-08-25 2010-03-04 주식회사 엘지화학 Separator furnished with porous coating layer, method of manufacturing same, and electrochemical device furnished therewith
KR20160111547A (en) 2009-03-09 2016-09-26 아사히 가세이 이-매터리얼즈 가부시키가이샤 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
US9882190B2 (en) 2009-03-09 2018-01-30 Asahi Kasei E-Materials Corporation Laminated polymicroporous membrane including propylene copolymer and method of producing the same
US9966583B2 (en) 2009-03-09 2018-05-08 Asahi Kasei E-Materials Corporation Laminated polyolefin microporous membrane including propylene copolymer and method of producing the same
KR20180100729A (en) 2009-03-09 2018-09-11 아사히 가세이 이-매터리얼즈 가부시키가이샤 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
EP3376564A1 (en) 2009-03-09 2018-09-19 Asahi Kasei Kabushiki Kaisha Use of a laminated polyolefin microporous membrane as a separator for electricity storage devices
WO2010104077A1 (en) 2009-03-09 2010-09-16 旭化成イーマテリアルズ株式会社 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
US9356275B2 (en) 2009-03-09 2016-05-31 Asahi Kasei E-Materials Corporation Laminated separator including inorganic particle and polyolefin layer for electricity storage device
US9853272B2 (en) 2009-03-09 2017-12-26 Asahi Kasei E-Materials Corporation Laminated polyolefin microporous membrane including propylene-α-olefin copolymer and method of producing the same
KR101055536B1 (en) 2009-04-10 2011-08-08 주식회사 엘지화학 Separator comprising a porous coating layer, a method of manufacturing the same and an electrochemical device having the same
JP2011113770A (en) * 2009-11-26 2011-06-09 Hitachi Ltd Lithium battery
JP2013522829A (en) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for dynamic use
JP2012009326A (en) * 2010-06-25 2012-01-12 Toyota Motor Corp Nonaqueous electrolyte secondary battery, vehicle and apparatus using battery
JP2012072285A (en) * 2010-09-29 2012-04-12 Nitto Denko Corp Porous film, electrical insulation maintenance film, separator for non-aqueous electrolyte battery and electrochemical element
JP2011233534A (en) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp Separator for rechargeable battery with nonaqueous electrolyte and rechargeable battery with nonaqueous electrolyte
WO2013002116A1 (en) 2011-06-28 2013-01-03 日産自動車株式会社 Separator having heat-resistant insulating layer
US9728757B2 (en) 2011-06-28 2017-08-08 Nissan Motor Co., Ltd. Separator having heat-resistant insulating layer and electric device comprising the same
JP2013137984A (en) * 2011-09-05 2013-07-11 Sony Corp Separator and nonaqueous electrolyte battery
KR20140069240A (en) 2011-10-04 2014-06-09 닛산 지도우샤 가부시키가이샤 Separator with heat resistant insulating layer
US9496535B2 (en) 2011-10-04 2016-11-15 Nissan Motor Co., Ltd. Separator with heat resistant insulation layer
WO2013051468A1 (en) 2011-10-04 2013-04-11 日産自動車株式会社 Separator with heat resistant insulating layer
JP2013149434A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP2822080A1 (en) * 2012-02-28 2015-01-07 Nissan Motor Company, Limited Non-aqueous electrolyte secondary battery
WO2013129009A1 (en) 2012-02-28 2013-09-06 日産自動車株式会社 Non-aqueous electrolyte secondary battery
EP2822080A4 (en) * 2012-02-28 2015-04-01 Nissan Motor Non-aqueous electrolyte secondary battery
US10224527B2 (en) 2012-02-28 2019-03-05 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
KR20140070160A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Separator for secondary battery
EP2990198A4 (en) * 2013-04-22 2016-11-23 Toray Battery Separator Film Laminated porous membrane, process for manufacturing same and separator for battery
JP2014078515A (en) * 2013-11-26 2014-05-01 Asahi Kasei Chemicals Corp Porous membrane having high thermal resistance and high permeability, and manufacturing method of the same
JP2018130966A (en) * 2014-04-09 2018-08-23 住友化学株式会社 Laminated porous film and nonaqueous electrolyte secondary battery
WO2018221503A1 (en) * 2017-05-30 2018-12-06 東レ株式会社 Separator

Similar Documents

Publication Publication Date Title
JP4789274B2 (en) Multilayer porous membrane
CA2775316C (en) Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same
KR100727248B1 (en) Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
CN100448922C (en) Microporous membrane made from polyolefin
KR101404461B1 (en) Microporous polyolefin composite film with a thermally stable porous layer at high temperature
JP6091742B2 (en) Electrochemical element with improved heat resistance
JP4792688B2 (en) Method for producing separator for non-aqueous electrolyte secondary battery
EP1359632B1 (en) Separator for lithium ion secondary battery
KR101223081B1 (en) Battery separator and lithium secondary battery
KR101227325B1 (en) Multilayer porous membrane and method for producing the same
CN101031421B (en) Polyolefin microporous membrane
KR100775295B1 (en) Organic/inorganic composite electrolyte and electrochemical device prepared thereby
JP2007324073A (en) Lithium secondary battery, its separator and its manufacturing method
JP4931083B2 (en) Multilayer porous membrane and method for producing the same
JP5591704B2 (en) Batteries having inorganic / organic porous membrane
KR101093858B1 (en) A separator having porous coating layer, and electrochemical device containing the same
KR101091228B1 (en) A separator having porous coating layer and electrochemical device containing the same
JP5196780B2 (en) Multilayer porous membrane and method for producing the same
JP5742717B2 (en) Porous membrane for secondary battery and secondary battery
JP4743747B2 (en) Separator, manufacturing method thereof, and nonaqueous electrolyte battery
EP1925047B1 (en) Separator with improved ease of handling
EP2502743A1 (en) Laminated porous film, separator for battery, and battery
CN100440583C (en) Electric separator, method for the production and use thereof
KR101251437B1 (en) Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
KR101246825B1 (en) Separator with heat resistance, rechargeable battery using the same and method of manufacturing the same