JPH10255800A - Negative electrode material for lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery

Info

Publication number
JPH10255800A
JPH10255800A JP9070808A JP7080897A JPH10255800A JP H10255800 A JPH10255800 A JP H10255800A JP 9070808 A JP9070808 A JP 9070808A JP 7080897 A JP7080897 A JP 7080897A JP H10255800 A JPH10255800 A JP H10255800A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
graphite
graphite particles
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9070808A
Other languages
Japanese (ja)
Inventor
Tsuzuku Inoue
続 井上
Mamoru Honda
守 本田
Junji Yamaura
純治 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KOZAN KASEI KK
Original Assignee
MITSUI KOZAN KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KOZAN KASEI KK filed Critical MITSUI KOZAN KASEI KK
Priority to JP9070808A priority Critical patent/JPH10255800A/en
Publication of JPH10255800A publication Critical patent/JPH10255800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide negative electrode material which reduces lithium ions remaining in a negative electrode and has high initial discharge efficiency, by composing it with graphite particles adhered to amorphous mineral material solid. SOLUTION: Silicate, phosphate, sulfate and the like of lithium, calcium, sodium, potassium, ion or magnesium, their mixture, silica or boric acid lithium is preferable for amorphous mineral material to adhere to a graphite particle surface. A quantity of the amorphous mineral material is preferably 0.5-10% by weight to the graphite article, and if it exceeds beyond its upper limit it is coated up to a surface between graphite layers where lithium ion is doped and doping of the lithium ion is removed, so that a discharge capacity declines, while enhancement of an initial discharge capacity can not be expected if it is less than its lower limit. A method that the amorphous mineral material is deposited and adhered onto a graphite particle surface, a method that the amorphous material is melted and fused for fitting, and the like are considered. Thereby, negative electrode material with high safety for lithium secondary battery can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用負極材に関し、更に詳しくは、改良された黒鉛粒子か
ら成るリチウムイオン二次電池用負極材に関する。
The present invention relates to a negative electrode material for a lithium secondary battery, and more particularly, to a negative electrode material for a lithium ion secondary battery comprising improved graphite particles.

【0002】[0002]

【従来技術】電子機器の小型化・軽量化に伴い、高エネ
ルギー密度・高出力密度を持つ二次電池の開発が強く望
まれた。この要求に応ずるべく、高電圧・高エネルギー
密度を持つリチウム二次電池が提案された。かかるリチ
ウム二次電池は、急速充電性に劣り、かつ充放電の繰り
返しによるサイクル劣化を有し、更には充電時に負極上
に析出するデンドライトによる火災・爆発の危険性をも
有している。
2. Description of the Related Art As electronic devices have become smaller and lighter, there has been a strong demand for the development of secondary batteries having high energy density and high output density. To meet this demand, a lithium secondary battery having a high voltage and a high energy density has been proposed. Such a lithium secondary battery is inferior in quick chargeability, has cycle deterioration due to repeated charging and discharging, and has a risk of fire or explosion due to dendrite deposited on the negative electrode during charging.

【0003】これらの問題を解決するためにリチウムイ
オン二次電池が開発された。該電池は、従来負極として
使用された金属リチウムに代えて炭素材料又は黒鉛材料
を用いるものであり、充電時にはリチウムイオンが炭素
層間にドーピングされ、いわゆる黒鉛層間化合物が形成
され、一方、放電時には該層間からリチウムイオンが脱
ドーピングされて、再び正極のリチウム化合物と結合す
るものである。該電池は、このようなサイクルを経て充
放電を可能にするものであり、高エネルギー密度の電池
を形成するには、負極である炭素材料又は黒鉛材料が多
くのリチウムイオンをドープ・脱ドープ出来ることが必
要である。
[0003] To solve these problems, lithium ion secondary batteries have been developed. The battery uses a carbon material or a graphite material in place of metal lithium conventionally used as a negative electrode, and lithium ions are doped between carbon layers at the time of charging to form a so-called graphite intercalation compound. Lithium ions are dedoped from between the layers, and are combined again with the lithium compound of the positive electrode. The battery enables charge and discharge through such a cycle, and in order to form a battery with a high energy density, the carbon material or the graphite material as the negative electrode can dope and dedope a large amount of lithium ions. It is necessary.

【0004】しかし、従来の炭素材料等の負極材におい
ては、ドープされたリチウムイオンは完全には脱ドープ
されず、とりわけ、最初の充電時にドープされたリチウ
ムイオンについては、その70〜80%(初期放電効
率)しか脱ドープされないという欠点を有していた。従
って、多量のリチウムイオンが負極内又はその表面に残
留し、活物質であるリチウムが無駄に消費されていた。
また、負極内に残留するリチウムイオンが多いことは正
極材に用いられる希少金属であるコバルトなども無駄に
消費されることとなり、価格的、資源的、エネルギー密
度的に不利であった。
However, in a conventional negative electrode material such as a carbon material, doped lithium ions are not completely undoped, and in particular, 70 to 80% ( Only the initial discharge efficiency). Therefore, a large amount of lithium ions remains in or on the surface of the negative electrode, and lithium as an active material is wasted.
In addition, the large amount of lithium ions remaining in the negative electrode results in wasteful consumption of rare metal, such as cobalt, used for the positive electrode material, which is disadvantageous in terms of price, resources, and energy density.

【0005】また、充放電を繰り返すことにより、リチ
ウムイオンが負極の黒鉛粒子表面やエッジ部分の活性点
でデンドライトを形成し、リチウムイオン電池といえど
もデンドライトによる電池内部での短絡による火災・爆
発の危険性があることも指摘されている。
[0005] In addition, by repeating charge and discharge, lithium ions form dendrites at active points on the surface and edge portions of the graphite particles of the negative electrode, and even in the case of lithium ion batteries, a fire or explosion due to a short circuit inside the battery due to the dendrite may occur. It is pointed out that there is a danger.

【0006】[0006]

【発明が解決しようとする課題】本発明は、負極に残留
するリチウムイオンを減少させ、初期放電効率が高く、
かつ安全性の高いリチウム二次電池用負極材を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention reduces lithium ions remaining in a negative electrode, has a high initial discharge efficiency,
It is another object of the present invention to provide a highly safe negative electrode material for a lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者らは、リチウム
二次電池の負極内又はその表面に、リチウムイオンが脱
ドープせずに残留する原因は、黒鉛粒子表面やエッジ部
分の活性点又は構造欠陥にリチウムイオンが取り込まれ
る結果であると考えて種々検討を重ねた。その結果、こ
れら部分に無定形無機物質を付着させてリチウムイオン
を取り込む活性点及び構造欠陥を潰せば、負極における
リチウムイオンの残留を抑制できること、更には、黒鉛
粒子表面、とりわけエッジ部分の活性点に無定形無機物
質を付着させれば、充放電サイクルを繰り返してもデン
ドライトの生成が全く認められないことをも見出し、本
発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have found that the cause of lithium ions remaining in the negative electrode of the lithium secondary battery or on the surface thereof without undoping is that active points on the graphite particle surface or edge portion or Various investigations were repeated on the assumption that lithium ions were incorporated into the structural defects. As a result, it is possible to suppress lithium ions from remaining on the negative electrode by crushing active points and structural defects that take in lithium ions by attaching an amorphous inorganic substance to these parts, and furthermore, active points at the graphite particle surface, especially at the edge part. It has also been found that if an amorphous inorganic substance is adhered to the carbon black, no dendrite is generated even when the charge / discharge cycle is repeated, and the present invention has been completed.

【0008】即ち、本発明は、(1)無定形無機物質固
体が表面に付着している黒鉛粒子から成るリチウム二次
電池用負極材である。
That is, the present invention is (1) a negative electrode material for a lithium secondary battery comprising graphite particles having an amorphous inorganic substance solid adhered to the surface.

【0009】リチウム二次電池の負極材として用いられ
る黒鉛粒子は、出来るだけ構造欠陥及び活性点が少ない
ことが、負極に残留するリチウムが少くなる点とデンド
ライトの生成が抑制できる点から望まれている。この一
方、高い充放電容量を得るためには、リチウムイオンが
より拡散しやすい微細粒子が望まれるが、かかる微細粒
子は多数の構造欠陥及び活性点を持つという相反する問
題を有している。本発明は、かかる充放電容量の大きい
微細な黒鉛粒子表面の活性点及び構造欠陥に無定形無機
物質を選択的に付着せしめて潰すことにより、電池性能
に無関係な負極に残留するリチウムを極力減少させて、
高い初期放電効率を得ると共に、デンドライトの生成を
も抑制するものである。これにより、高い充放電容量を
持ち、かつ安全性の高いリチウム二次電池を提供するこ
とができるのである。
It is desired that graphite particles used as a negative electrode material of a lithium secondary battery have as few structural defects and active sites as possible from the viewpoint that the amount of lithium remaining in the negative electrode is reduced and the generation of dendrite can be suppressed. I have. On the other hand, in order to obtain a high charge / discharge capacity, fine particles in which lithium ions are more easily diffused are desired. However, such fine particles have a contradictory problem that they have many structural defects and active points. The present invention reduces the lithium remaining on the negative electrode irrelevant to the battery performance as much as possible by selectively attaching and crushing an amorphous inorganic substance to active points and structural defects on the surface of the fine graphite particles having a large charge / discharge capacity. Let me
A high initial discharge efficiency is obtained, and the generation of dendrite is also suppressed. Thereby, a lithium secondary battery having high charge / discharge capacity and high safety can be provided.

【0010】好ましい態様として、(2)無定形無機物
質が、リチウム、ナトリウム、カルシウム、カリウム、
鉄又はマグネシウムの珪酸塩、燐酸塩、硫酸塩、硝酸塩
又はホウ酸塩、若しくはこれらの混合物、あるいはシリ
カ、アルミナ又はマグネシアである上記(1)記載の負
極材、(3)無定形無機物質が、シリカ又はホウ酸リチ
ウムである上記(1)又は(2)記載の負極材、(4)
無定形無機物質を黒鉛粒子に対して0.5〜10重量%
で含有する上記(1)〜(3)のいずれか一つに記載の
負極材、(5)無定形無機物質を黒鉛粒子に対して0.
5〜5重量%で含有する上記(1)〜(3)のいずれか
一つに記載の負極材、(6)黒鉛粒子が天然黒鉛又は膨
脹黒鉛の粉砕物である上記(1)〜(5)のいずれか一
つに記載の負極材、(7)黒鉛粒子の表面に無定形無機
物質を沈積させることにより上記(1)〜(6)のいず
れか一つに記載のリチウム二次電池用負極材を製造する
方法、(8)黒鉛粒子の表面で無機物質を溶融して、該
表面に無定形無機物質を融着させることにより上記
(1)〜(6)のいずれか一つに記載のリチウム二次電
池用負極材を製造する方法を挙げることができる。
In a preferred embodiment, (2) the amorphous inorganic substance is lithium, sodium, calcium, potassium,
The negative electrode material according to the above (1), which is silicate, phosphate, sulfate, nitrate or borate of iron or magnesium, or a mixture thereof, or silica, alumina or magnesia; The negative electrode material according to the above (1) or (2), which is silica or lithium borate, (4)
0.5 to 10% by weight of amorphous inorganic substance based on graphite particles
The negative electrode material as described in any one of (1) to (3) above, and (5) an amorphous inorganic substance in an amount of 0.1 to 100% with respect to graphite particles.
The negative electrode material according to any one of the above (1) to (3), which is contained in an amount of 5 to 5% by weight, and (6) the graphite particles in which the graphite particles are pulverized natural graphite or expanded graphite. The negative electrode material according to any one of (1) to (7), wherein the amorphous inorganic substance is deposited on the surface of the graphite particles to thereby form the negative electrode material for the lithium secondary battery according to any one of (1) to (6) above. (8) The method for producing a negative electrode material as described in any one of (1) to (6) above, wherein (8) the inorganic substance is melted on the surface of the graphite particles and the amorphous inorganic substance is fused to the surface. Of producing a negative electrode material for a lithium secondary battery.

【0011】[0011]

【発明の実施の形態】本発明において、黒鉛粒子表面に
付着せしめる無定形無機物質としては、好ましくはリチ
ウム、ナトリウム、カルシウム、カリウム、鉄又はマグ
ネシウムなどの各種金属の珪酸塩、燐酸塩、硫酸塩、硝
酸塩又はホウ酸塩等、若しくはこれらの混合物、あるい
はシリカ、アルミナ又はマグネシアなどの各種酸化物を
挙げることができる。このなかでもシリカ又はホウ酸リ
チウムが特に好ましく使用される。これらの無定形無機
物質は、その物質中に含まれる酸素原子がなんらかの形
態で黒鉛粒子と結合して、黒鉛粒子表面に付着されるも
のと推定される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the amorphous inorganic substance adhered to the surface of graphite particles is preferably silicate, phosphate, sulfate of various metals such as lithium, sodium, calcium, potassium, iron or magnesium. , Nitrates or borates, or mixtures thereof, or various oxides such as silica, alumina, and magnesia. Among them, silica or lithium borate is particularly preferably used. It is presumed that these amorphous inorganic substances are such that oxygen atoms contained in the substances are bonded to the graphite particles in some form and adhere to the surface of the graphite particles.

【0012】該無定形無機物質の量は、黒鉛粒子に対し
て、上限が好ましくは10重量%、特に好ましくは5重
量%であり、下限が好ましくは0.5重量%である。上
記上限を超えては、リチウムイオンがドープ、脱ドープ
される黒鉛層間面までも被覆されることになり充放電容
量が低下し、上記下限未満では、活性点が多く残るため
に放電時の残留リチウム量が増加して、初期放電効率の
向上が望めなくなる。充放電容量は、無定形無機物質の
付着量が増加するにつれて次第に低下する。しかし、上
記本発明の範囲では、充電容量の低下率が放電容量の低
下率に比べて大きいため、初期放電効率を高く維持し得
るものと考えられる。
The upper limit of the amount of the amorphous inorganic substance is preferably 10% by weight, particularly preferably 5% by weight, and the lower limit is preferably 0.5% by weight, based on the graphite particles. If the upper limit is exceeded, the lithium ion is coated even on the graphite interlayer that is doped and dedoped, and the charge / discharge capacity is reduced. As the amount of lithium increases, improvement in the initial discharge efficiency cannot be expected. The charge / discharge capacity gradually decreases as the amount of the attached amorphous inorganic substance increases. However, in the range of the present invention, the rate of decrease in charge capacity is greater than the rate of decrease in discharge capacity, so it is considered that the initial discharge efficiency can be maintained high.

【0013】該無定形無機物質を黒鉛粒子表面に付着せ
しめる方法には特に制限がない。例えば、無定形無機物
質を黒鉛粒子上に沈積させて付着する方法、あるいは黒
鉛粒子の表面で無機物質を溶融して、該表面に無定形無
機物質を融着させて付着する方法等が挙げられる。好ま
しくは、黒鉛粒子と、上記の無定形無機物質を形成する
ところの物質とを液状媒体中に共存させ、加水分解ある
いは中和処理等を行うことにより、黒鉛粒子上に所望す
る無定形無機物質を沈積させることができる。あるいは
好ましくは、上記の無定形無機物質を形成するところの
物質を黒鉛粒子上に添着させ、次いで加熱溶融すること
により、黒鉛粒子上に所望する無定形無機物質を融着さ
せて付着することができる。いずれの方法を選ぶかは、
黒鉛粒子表面に付着される上記の無定形無機物質の種類
により決定される。
The method for attaching the amorphous inorganic substance to the surface of the graphite particles is not particularly limited. For example, a method in which an amorphous inorganic substance is deposited on graphite particles and adhered thereto, or a method in which an inorganic substance is melted on the surface of graphite particles and the amorphous inorganic substance is fused and adhered to the surface, etc. . Preferably, graphite particles and a substance that forms the above-mentioned amorphous inorganic substance coexist in a liquid medium, and are subjected to hydrolysis or neutralization treatment, etc., to thereby form a desired amorphous inorganic substance on the graphite particles. Can be deposited. Alternatively or preferably, a substance forming the above-mentioned amorphous inorganic substance is attached to the graphite particles, and then heated and melted to fuse and adhere the desired amorphous inorganic substance onto the graphite particles. it can. Which method you choose,
It is determined by the type of the above-mentioned amorphous inorganic substance adhered to the graphite particle surface.

【0014】加水分解による方法の一例を示す。水及び
シラン化合物のいずれとも溶解する溶媒例えばメタノー
ル、エタノール等に、シラン化合物例えばメトキシシラ
ン、エトキシシラン等を溶解する。別途、黒鉛粒子をア
ンモニア水中に添加し十分に攪拌混合してスラリーを調
製した後、上記のシラン化合物溶液を、攪拌しつつある
上記のスラリー中に滴下添加する。添加時の温度は、好
ましくは室温〜70℃である。添加終了後、好ましくは
0.5〜3時間更に攪拌を継続した後、得られたスラリ
ーを濾過し、次いで乾燥してシリカが付着した黒鉛粒子
を得る。
An example of a method by hydrolysis will be described. A silane compound, such as methoxysilane or ethoxysilane, is dissolved in a solvent that dissolves both water and the silane compound, such as methanol and ethanol. Separately, graphite particles are added to aqueous ammonia and sufficiently stirred and mixed to prepare a slurry, and then the silane compound solution is added dropwise to the stirred slurry. The temperature at the time of addition is preferably room temperature to 70 ° C. After completion of the addition, stirring is preferably continued for a further 0.5 to 3 hours, and the obtained slurry is filtered and then dried to obtain graphite particles to which silica has adhered.

【0015】次に、中和による方法の一例を示す。黒鉛
粒子を分散した水スラリーにアルカリを添加してpHを
10〜11とする。別途、ケイ酸ナトリウム、ケイ酸カ
リウム、ケイ酸カルシウム等のケイ酸塩類の溶液、及び
硫酸、硝酸、塩酸等の酸溶液の夫々を準備する。次に、
上記の黒鉛粒子のスラリー中にそのpHを維持しつつ、
ケイ酸塩類の溶液と酸溶液とを同時に滴下添加する。添
加時の温度は、好ましくは70〜100℃である。添加
完了後、好ましくは2〜3時間更に攪拌を継続した後、
酸を加えて中和し、次いで、得られたスラリーを濾過
し、乾燥してシリカが付着した黒鉛粒子を得る。
Next, an example of a method by neutralization will be described. The pH is adjusted to 10 to 11 by adding an alkali to a water slurry in which graphite particles are dispersed. Separately, a solution of silicates such as sodium silicate, potassium silicate, calcium silicate and the like, and an acid solution such as sulfuric acid, nitric acid, hydrochloric acid and the like are prepared. next,
While maintaining the pH in the above graphite particle slurry,
The silicate solution and the acid solution are simultaneously added dropwise. The temperature at the time of addition is preferably 70 to 100 ° C. After completion of the addition, preferably after further stirring for 2 to 3 hours,
The resulting slurry is filtered and dried to obtain graphite particles to which silica is attached, after neutralizing by adding an acid.

【0016】また、別法として黒鉛粒子の表面で無機物
質を溶融して無定形無機物質を融着させる方法を挙げる
ことができる。例えば、水酸化リチウム、水酸化ナトリ
ウム、水酸化カリウム、水酸化マグネシウム等の水酸化
物と、ホウ酸又はケイ酸等の酸を水に混合した後、これ
を黒鉛表面に添着させる。あるいは、上記の水酸化物と
酸の混合後、更に黒鉛を加えて十分に均一になるまで粉
砕混合して水酸化物と酸を黒鉛表面に添着させる。次い
で、前者の方法においては処理後のスラリーを濾過し、
後者の方法ではそのまま、得られた固形物を乾燥した
後、上記の水酸化物と酸の融点以上の温度で好ましくは
0.5〜3時間、好ましくは不活性ガス雰囲気下におい
て加熱することによりガラス状の薄膜を黒鉛上に付着さ
せる。
As another method, there can be mentioned a method in which an inorganic substance is melted on the surface of graphite particles to fuse an amorphous inorganic substance. For example, after mixing a hydroxide such as lithium hydroxide, sodium hydroxide, potassium hydroxide and magnesium hydroxide and an acid such as boric acid or silicic acid with water, the mixture is impregnated on the graphite surface. Alternatively, after the above-mentioned hydroxide and acid are mixed, graphite is further added and pulverized and mixed until the mixture becomes sufficiently uniform so that the hydroxide and acid are attached to the graphite surface. Next, in the former method, the slurry after the treatment is filtered,
In the latter method, the resulting solid is dried, and then heated at a temperature equal to or higher than the melting points of the hydroxide and the acid, preferably for 0.5 to 3 hours, preferably in an inert gas atmosphere. A glassy thin film is deposited on graphite.

【0017】本発明において用いる黒鉛粒子は、天然黒
鉛あるいは人造黒鉛をジェットミル、ターボミル、マイ
クロミル、ボールミル、超音波等で乾式法若しくは湿式
法により粉砕したものが好ましい。また、該黒鉛粒子と
して、公知の方法で処理された膨脹黒鉛を上記と同様に
して粉砕したものを用いることもできる。
The graphite particles used in the present invention are preferably those obtained by pulverizing natural graphite or artificial graphite by a dry method or a wet method using a jet mill, turbo mill, micro mill, ball mill, ultrasonic wave or the like. Further, as the graphite particles, those obtained by pulverizing expanded graphite treated by a known method in the same manner as described above can also be used.

【0018】該黒鉛粒子は、好ましくは、平均粒子径が
50μm以下、かつ100μm以下の粒子径の粒子が9
5体積%以上であり、特に好ましくは、平均粒子径が2
0μm以下、かつ50μm以下の粒子径の粒子が95体
積%以上である。粒子径が上記範囲を超えれば、リチウ
ムイオンの拡散が遅くなり、高速充放電特性が低下し、
かつ高い放電容量が得られなくなるため好ましくない。
また、粒子径が小さくなるにつれて黒鉛粒子表面の活性
点や構造欠陥が増加するが、本発明ではそれらの活性点
等に無定形無機物質を付着させるので問題はない。
The graphite particles preferably have an average particle diameter of 50 μm or less and particles having a particle diameter of 100 μm or less.
5% by volume or more, particularly preferably an average particle size of 2
Particles having a particle diameter of 0 μm or less and 50 μm or less are 95% by volume or more. If the particle size exceeds the above range, the diffusion of lithium ions will be slow, and the high-speed charge / discharge characteristics will decrease,
In addition, a high discharge capacity cannot be obtained, which is not preferable.
Further, as the particle diameter decreases, active points and structural defects on the surface of the graphite particles increase. However, in the present invention, there is no problem because an amorphous inorganic substance is attached to the active points and the like.

【0019】上記のようにして得られた無定形無機物質
が表面に付着している黒鉛粒子を用いて、リチウム二次
電池の負極を製造する方法は特に限定されない。例え
ば、該黒鉛粒子にバインダーと溶剤を加えて充分に混練
後、金属メッシュなどの集電体に圧着する方法や、該黒
鉛粒子、バインダー及び溶剤からなるスラリーを金属板
状にコーティングする方法などにより製造することがで
きる。バインダーとしては、例えば各種のピッチ、ポリ
テトラフルオロエチレン、ポリビニリデンフルオライド
(PVDF)、エチレンプロピレンジエンポリマー(E
PDM)等の公知の材料を用いることができる。なかで
も、PVDF、EPDMが特に好ましい。リチウム二次
電池の正極材料は特に限定されないが、LiCoO2
LiNiO2 、LiMn2 4 などのリチウム含有酸化
物が好ましい。粉末状の正極材料は、バインダー以外に
必要に応じて導電材、溶剤などを加えて充分に混練後、
集電材と共に成形して製造し得る。
The method for producing a negative electrode of a lithium secondary battery using the graphite particles having the amorphous inorganic substance adhered to the surface obtained as described above is not particularly limited. For example, after adding a binder and a solvent to the graphite particles and sufficiently kneading the mixture, a method of pressure-bonding to a current collector such as a metal mesh or a method of coating a slurry comprising the graphite particles, the binder and the solvent in a metal plate shape is used. Can be manufactured. Examples of the binder include various pitches, polytetrafluoroethylene, polyvinylidene fluoride (PVDF), ethylene propylene diene polymer (E
A known material such as PDM) can be used. Among them, PVDF and EPDM are particularly preferred. Although the cathode material of the lithium secondary battery is not particularly limited, LiCoO 2 ,
Lithium-containing oxides such as LiNiO 2 and LiMn 2 O 4 are preferred. The powdered positive electrode material, after adding a conductive material, a solvent, etc. as necessary in addition to the binder and kneading sufficiently,
It can be manufactured by molding with a current collector.

【0020】セパレーターについても特に制限はなく、
公知の材料を適宜利用できる。
There is no particular limitation on the separator.
Known materials can be appropriately used.

【0021】電解液溶媒として用いる非水溶媒として
は、リチウム塩を溶解する公知の非プロトン性低誘電率
の溶媒が好ましい。例えば、エチレンカーボネート、プ
ロピレンカーボネート、ジエチレンカーボネート、アセ
トニトリル、プロピオニトリル、テトラヒドロフラン、
γ‐ブチロラクトン、2‐メチルテトラヒドロフラン、
1,3‐ジオキソラン、4‐メチル‐1,3‐ジオキソ
ラン、1,2‐ジメトキシエタン、1,2‐ジエトキシ
エタン、ジエチルエーテル、スルホラン、メチルスルホ
ラン、ニトロメタン、N,N‐ジメチルホルムアミド、
ジメチルスルホキシドなどの溶媒を単独、又は2種以上
混合して用いることができる。
As the non-aqueous solvent used as the electrolyte solvent, a known aprotic solvent having a low dielectric constant that dissolves a lithium salt is preferable. For example, ethylene carbonate, propylene carbonate, diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran,
γ-butyrolactone, 2-methyltetrahydrofuran,
1,3-dioxolan, 4-methyl-1,3-dioxolan, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methylsulfolane, nitromethane, N, N-dimethylformamide,
Solvents such as dimethyl sulfoxide can be used alone or in combination of two or more.

【0022】電解質として用いられるリチウム塩は、L
iClO4 、LiAsF6 、LiPF6 、LiBF4
LiB(C6 5 4 、LiCl、LiBr、CH3
3Li、CF3 SO3 Liなどが好ましく、これらの
塩を単独、又は2種以上混合して使用しても良い。
The lithium salt used as the electrolyte is L
iClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 ,
LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 S
O 3 Li, CF 3 SO 3 Li and the like are preferable, and these salts may be used alone or as a mixture of two or more.

【0023】以下、実施例により本発明を更に詳細に説
明するが、本発明はこれらの実施例により限定されるも
のではない。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0024】[0024]

【実施例】【Example】

【0025】[0025]

【実施例1】マダガスカル産の天然黒鉛を乾式粉砕機で
粉砕した。粉砕後の黒鉛粒子の平均粒径は16μmであ
った(灰分:0.65重量%)。攪拌機付きの2リット
ルフラスコ中に、該黒鉛粒子50g、水90g及びメタ
ノール10gを入れ、約10分間攪拌し黒鉛粒子を充分
に湿潤させた。更に、水400gを追加して十分に攪拌
した後、5%水酸化ナトリウム水溶液を滴下してpHを
10に調整した黒鉛スラリーを得た。別途、ケイ酸ナト
リウム3.3gをビーカーに秤取り、水で希釈して20
0gとしたもの、及び0.25%の希硫酸200gを用
意した。
Example 1 Natural graphite produced in Madagascar was pulverized by a dry pulverizer. The average particle size of the pulverized graphite particles was 16 μm (ash content: 0.65% by weight). 50 g of the graphite particles, 90 g of water and 10 g of methanol were placed in a 2 liter flask equipped with a stirrer, and stirred for about 10 minutes to sufficiently wet the graphite particles. Further, after adding 400 g of water and sufficiently stirring, a 5% aqueous sodium hydroxide solution was added dropwise to obtain a graphite slurry whose pH was adjusted to 10. Separately, 3.3 g of sodium silicate is weighed into a beaker and diluted with water to obtain 20 g.
0 g and 200 g of 0.25% diluted sulfuric acid were prepared.

【0026】上記の黒鉛スラリーを攪拌しながら90℃
まで昇温し、ケイ酸ナトリウム水溶液と希硫酸を同時に
4時間かけてほぼ同量づつ滴下添加した。添加終了後、
そのまま1時間攪拌を継続した後、希硫酸を加えてpH
を7とした。このスラリーを濾過し、次いで水溶性の塩
が無くなるまで水で十分に洗浄した後、乾燥してシリカ
が付着した黒鉛粒子の49.7gを得た。分析の結果、
得られた黒鉛粒子の灰分は1.67重量%であり、シリ
カが約1重量%付着されたことが分かった。
The above graphite slurry is stirred at 90 ° C.
The aqueous solution of sodium silicate and diluted sulfuric acid were simultaneously added dropwise in approximately the same amount over 4 hours. After the addition,
After continuing stirring for 1 hour, dilute sulfuric acid was added to
Was set to 7. The slurry was filtered, washed thoroughly with water until the water-soluble salt was removed, and dried to obtain 49.7 g of graphite particles having silica attached. As a result of the analysis,
The ash content of the obtained graphite particles was 1.67% by weight, indicating that about 1% by weight of silica was attached.

【0027】次に、該シリカが付着した黒鉛粒子につい
て、リチウム2次電池用負極材としての性能試験を実施
した。シリカが付着した黒鉛を負極、コバルト酸リチウ
ムを正極とする非水溶媒電池を作成して充放電を行い、
該負極へのリチウムイオンのドーピング及び脱ドーピン
グの容量を測定した。
Next, the graphite particles to which the silica was adhered were subjected to a performance test as a negative electrode material for a lithium secondary battery. A non-aqueous solvent battery using graphite with silica attached as a negative electrode and lithium cobalt oxide as a positive electrode is charged and discharged,
The capacity of doping and undoping of lithium ions to the negative electrode was measured.

【0028】ここで、負極は以下の方法で製造した。上
記のシリカが付着された黒鉛粒子90重量部に、バイン
ダーとしてのポリビニリデンフルオライド(PVDF)
10重量部及び溶剤として少量のN‐メチルピロリドン
を加えてよく混合してペースト化した後、円形のステン
レスメッシュ(2.5cm2 )に3.6トン/cm2
加圧成形し、次いで、該成形物を200℃で2時間真空
乾燥して製造した。
Here, the negative electrode was manufactured by the following method. Polyvinylidene fluoride (PVDF) as a binder is added to 90 parts by weight of the graphite particles to which the silica is attached.
After adding 10 parts by weight and a small amount of N-methylpyrrolidone as a solvent and mixing well to form a paste, the mixture was pressure-formed on a circular stainless steel mesh (2.5 cm 2 ) at 3.6 ton / cm 2 , The molded product was manufactured by vacuum drying at 200 ° C. for 2 hours.

【0029】正極は以下の方法で製造した。コバルト酸
リチウム90重量部と人造黒鉛10重量部を混合した
後、PVDF10重量部及び少量のN‐メチルピロリド
ンを更に加えてよく混合してペースト化した。次いで、
負極と同一の面積を持つ円形のステンレス板上に負極と
同一の方法で加圧成形し乾燥して製造した。
The positive electrode was manufactured by the following method. After 90 parts by weight of lithium cobaltate and 10 parts by weight of artificial graphite were mixed, 10 parts by weight of PVDF and a small amount of N-methylpyrrolidone were further added and mixed well to form a paste. Then
It was manufactured by pressing and drying on a circular stainless steel plate having the same area as the negative electrode in the same manner as the negative electrode.

【0030】電解溶媒としてはエチレンカーボネートと
ジメチルカーボネートとの混合溶媒(体積比1:2)を
用いた。電解質にはLiPF6 を用い、その濃度を1.
0モル/リットルに調整した。
As an electrolytic solvent, a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 2) was used. LiPF 6 was used as the electrolyte, and its concentration was 1.
It was adjusted to 0 mol / l.

【0031】セパレーターには多孔質ポリプロピレン不
織布を用い、グラスファイバー濾紙に電解液を含浸さ
せ、アルゴン雰囲気下でコイン型セルを作成した。
A porous polypropylene non-woven fabric was used as a separator, a glass fiber filter was impregnated with an electrolyte, and a coin cell was prepared in an argon atmosphere.

【0032】充放電試験において、充電、放電時の電流
密度は0.4mA/cm2 とした。初期充電量は387
mAh/gであった。放電は1.5Vでカットしてサイ
クル試験を行った。1サイクル目の放電量は358mA
h/gであり、初期放電効率(放電/充電量×100
%)は92.5%となった。200サイクルの試験を行
ったが、200サイクル目まで放電量の低下は認められ
なかった。充放電試験後アルゴン気流中で電池を分解
し、負極を顕微鏡観察したところ、黒鉛表面上に金属リ
チウムのデンドライトの生成は認められなかった。
In the charge / discharge test, the current density during charge and discharge was 0.4 mA / cm 2 . Initial charge is 387
mAh / g. The discharge was cut at 1.5 V to perform a cycle test. The discharge amount in the first cycle is 358 mA
h / g, and the initial discharge efficiency (discharge / charge amount × 100)
%) Was 92.5%. The test was performed for 200 cycles, but no decrease in the discharge amount was observed until the 200th cycle. After the charge / discharge test, the battery was disassembled in an argon stream, and the negative electrode was observed under a microscope. As a result, no formation of metallic lithium dendrites was observed on the graphite surface.

【0033】[0033]

【実施例2】エタノールにエトキシシラン[Si(OC
3 )H3 ]1.4gを添加して、207gのエトキシ
シラン溶液を調製した。別途、エタノール497gに2
8%アンモニア水55gを加えてアンモニア溶液を調製
した。次に、該アンモニア溶液中に、実施例1と同一の
黒鉛粒子を15g添加して1時間攪拌し、黒鉛粒子を分
散してスラリー化した。
Embodiment 2 Ethoxysilane [Si (OC
H 3 ) H 3 ] was added to prepare 207 g of an ethoxysilane solution. Separately, 2 in 497 g of ethanol
55 g of 8% aqueous ammonia was added to prepare an ammonia solution. Next, 15 g of the same graphite particles as in Example 1 were added to the ammonia solution and stirred for 1 hour to disperse the graphite particles to form a slurry.

【0034】該スラリーを攪拌しながら、上記のエトキ
シシラン溶液を滴下添加し、滴下後30分間更に攪拌を
継続した。その後、濾過、乾燥してシリカが付着してい
る鉛粒子15.9gを得た。分析の結果、得られた黒鉛
粒子の灰分は1.59重量%であり、シリカが約1重量
%付着されたことが分かった。
While stirring the slurry, the above ethoxysilane solution was added dropwise, and after the dropping, the stirring was further continued for 30 minutes. Thereafter, the mixture was filtered and dried to obtain 15.9 g of lead particles to which silica had adhered. As a result of the analysis, it was found that the ash content of the obtained graphite particles was 1.59% by weight, and about 1% by weight of silica was attached.

【0035】次いで、得られたシリカが付着された黒鉛
粒子を用いて、実施例1と同一にして電池を作成した。
Next, a battery was prepared in the same manner as in Example 1 using the obtained graphite particles to which silica was attached.

【0036】充放電試験は実施例1と同一にして実施し
た。初期充電量は385mAh/gであった。1サイク
ル目の放電量は350mAh/gであり、初期放電効率
は90.9%となった。また、200サイクルでの放電
量の低下は認められなかった。顕微鏡観察の結果、負極
の黒鉛表面上に金属リチウムのデンドライトの生成は認
められなかった。
The charge / discharge test was performed in the same manner as in Example 1. The initial charge amount was 385 mAh / g. The discharge amount in the first cycle was 350 mAh / g, and the initial discharge efficiency was 90.9%. Further, no decrease in the discharge amount at 200 cycles was observed. As a result of microscopic observation, formation of metallic lithium dendrites was not observed on the graphite surface of the negative electrode.

【0037】[0037]

【実施例3】水酸化リチウム2.4gとオルトホウ酸
3.0gを混合した後、粉砕した。次に、これを実施例
1の黒鉛粒子100gに対して2重量%で添加した後、
更に水100gを添加して、よく混練して黒鉛粒子上に
添着せしめた。得た混練物を乾燥した後、窒素気流下に
800℃で1時間加熱して、水酸化リチウムとオルトホ
ウ酸を十分に溶融した後冷却して、黒鉛粒子の表面にホ
ウ酸リチウムのガラス膜を付着せしめた。該黒鉛粒子を
用い、実施例1と同じ方法で電池を作成した。
Example 3 2.4 g of lithium hydroxide and 3.0 g of orthoboric acid were mixed and pulverized. Next, this was added at 2% by weight based on 100 g of the graphite particles of Example 1,
Further, 100 g of water was added, and the mixture was kneaded well and impregnated on graphite particles. After drying the obtained kneaded material, it was heated at 800 ° C. for 1 hour under a nitrogen stream to sufficiently melt lithium hydroxide and orthoboric acid, and then cooled to form a glass film of lithium borate on the surface of the graphite particles. I let it adhere. Using the graphite particles, a battery was prepared in the same manner as in Example 1.

【0038】充放電試験は実施例1と同一にして実施し
た。初期充電量は397mA/gであった。1サイクル
目の放電量は366mAh/gであり、初期放電効率は
92.2%となった。また、200サイクルでの放電量
の低下は認められなかった。顕微鏡観察の結果、負極の
黒鉛表面上に金属リチウムのデンドライトの生成は認め
られなかった。
The charge / discharge test was performed in the same manner as in Example 1. The initial charge amount was 397 mA / g. The discharge amount in the first cycle was 366 mAh / g, and the initial discharge efficiency was 92.2%. Further, no decrease in the discharge amount at 200 cycles was observed. As a result of microscopic observation, formation of metallic lithium dendrites was not observed on the graphite surface of the negative electrode.

【0039】[0039]

【比較例1】実施例1の黒鉛粒子を用い、これにシリカ
を付着させずに、実施例1と同一の方法で電池を作成し
た。
Comparative Example 1 A battery was prepared in the same manner as in Example 1 except that the graphite particles of Example 1 were used and silica was not attached thereto.

【0040】充放電試験は実施例1と同一にして実施し
た。初期充電量は437mAh/gであった。1サイク
ル目の放電量は344mAh/gであり、初期放電効率
は78.7%であった。また、200サイクル後、実施
例1と同様の方法で負極を観察したところ、黒鉛のエッ
ジ面に金属リチウムのデンドライトの生成が認められ
た。
The charge / discharge test was performed in the same manner as in Example 1. The initial charge amount was 437 mAh / g. The discharge amount in the first cycle was 344 mAh / g, and the initial discharge efficiency was 78.7%. After 200 cycles, when the negative electrode was observed in the same manner as in Example 1, formation of metallic lithium dendrite was observed on the graphite edge surface.

【0041】[0041]

【発明の効果】本発明は、負極に残留するリチウムイオ
ンを減少させ、初期効率が高く、かつ安全性の高いリチ
ウム二次電池用負極材を提供する。
According to the present invention, there is provided a negative electrode material for a lithium secondary battery which has a high initial efficiency and a high safety by reducing lithium ions remaining in the negative electrode.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 無定形無機物質固体が表面に付着してい
る黒鉛粒子から成るリチウム二次電池用負極材。
1. A negative electrode material for a lithium secondary battery comprising graphite particles having an amorphous inorganic substance solid adhered to the surface.
【請求項2】 無定形無機物質が、リチウム、ナトリウ
ム、カルシウム、カリウム、鉄又はマグネシウムの珪酸
塩、燐酸塩、硫酸塩、硝酸塩又はホウ酸塩、若しくはこ
れらの混合物、あるいはシリカ、アルミナ又はマグネシ
アである請求項1記載の負極材。
2. The amorphous inorganic material is lithium, sodium, calcium, potassium, iron or magnesium silicate, phosphate, sulfate, nitrate or borate, or a mixture thereof, or silica, alumina or magnesia. The negative electrode material according to claim 1.
【請求項3】 無定形無機物質が、シリカ又はホウ酸リ
チウムである請求項1又は2記載の負極材。
3. The negative electrode material according to claim 1, wherein the amorphous inorganic substance is silica or lithium borate.
【請求項4】 無定形無機物質を黒鉛粒子に対して0.
5〜10重量%の量で含有する請求項1〜3のいずれか
一つに記載の負極材。
4. An amorphous inorganic substance is added to graphite particles in an amount of 0.1 to 0.1%.
The negative electrode material according to any one of claims 1 to 3, which is contained in an amount of 5 to 10% by weight.
【請求項5】 黒鉛粒子が天然黒鉛又は膨脹黒鉛の粉砕
物である請求項1〜4のいずれか一つに記載の負極材。
5. The negative electrode material according to claim 1, wherein the graphite particles are pulverized products of natural graphite or expanded graphite.
【請求項6】 黒鉛粒子の表面に無定形無機物質を沈積
させることにより請求項1〜5のいずれか一つに記載の
リチウム二次電池用負極材を製造する方法。
6. The method for producing a negative electrode material for a lithium secondary battery according to claim 1, wherein an amorphous inorganic substance is deposited on the surface of the graphite particles.
【請求項7】 黒鉛粒子の表面で無機物質を溶融して、
該表面に無定形無機物質を融着させることにより請求項
1〜5のいずれか一つに記載のリチウム二次電池用負極
材を製造する方法。
7. An inorganic substance is melted on the surface of graphite particles,
The method for producing a negative electrode material for a lithium secondary battery according to claim 1, wherein an amorphous inorganic substance is fused to the surface.
JP9070808A 1997-03-07 1997-03-07 Negative electrode material for lithium secondary battery Pending JPH10255800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9070808A JPH10255800A (en) 1997-03-07 1997-03-07 Negative electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9070808A JPH10255800A (en) 1997-03-07 1997-03-07 Negative electrode material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10255800A true JPH10255800A (en) 1998-09-25

Family

ID=13442246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9070808A Pending JPH10255800A (en) 1997-03-07 1997-03-07 Negative electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10255800A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002313339A (en) * 2001-04-16 2002-10-25 Matsushita Battery Industrial Co Ltd Nonaqueous electrolyte secondary battery
JP2002352801A (en) * 2001-05-25 2002-12-06 Rikogaku Shinkokai Lithium secondary cell, negative electrode material for it, and improving method therefor
KR100370290B1 (en) * 2000-06-16 2003-01-30 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
KR100378013B1 (en) * 1999-09-28 2003-03-29 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
WO2003080508A1 (en) * 2002-03-27 2003-10-02 Jfe Chemical Corporation Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2005339938A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for lithium-ion secondary battery
JP2009135112A (en) * 2009-03-16 2009-06-18 Kyocera Corp Lithium cell
JP2009176741A (en) * 2009-03-16 2009-08-06 Kyocera Corp Lithium battery
US7584813B2 (en) 2004-11-08 2009-09-08 Toyota Jidosha Kabushiki Kaisha Driving device and motor vehicle equipped with driving device
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
JP2012094497A (en) * 2010-09-27 2012-05-17 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery, negative electrode material, and nonaqueous secondary battery
US8329343B2 (en) 2008-08-05 2012-12-11 Sony Corporation Battery and electrode
JP2016076469A (en) * 2014-03-13 2016-05-12 株式会社半導体エネルギー研究所 Electrode, power storage device, electronic equipment, and method for manufacturing electrode
CN107768635A (en) * 2017-10-18 2018-03-06 安徽工业大学 A kind of preparation method of lithium ion battery barium titanate sodium composite negative pole material
US10312518B2 (en) 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100378013B1 (en) * 1999-09-28 2003-03-29 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
KR100370290B1 (en) * 2000-06-16 2003-01-30 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
JP2002313339A (en) * 2001-04-16 2002-10-25 Matsushita Battery Industrial Co Ltd Nonaqueous electrolyte secondary battery
JP2002352801A (en) * 2001-05-25 2002-12-06 Rikogaku Shinkokai Lithium secondary cell, negative electrode material for it, and improving method therefor
WO2003080508A1 (en) * 2002-03-27 2003-10-02 Jfe Chemical Corporation Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4686974B2 (en) * 2002-12-17 2011-05-25 三菱化学株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2005339938A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for lithium-ion secondary battery
JP4531444B2 (en) * 2004-05-26 2010-08-25 パナソニック株式会社 Method for producing electrode for lithium ion secondary battery
US7584813B2 (en) 2004-11-08 2009-09-08 Toyota Jidosha Kabushiki Kaisha Driving device and motor vehicle equipped with driving device
US10312518B2 (en) 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
US8329343B2 (en) 2008-08-05 2012-12-11 Sony Corporation Battery and electrode
JP2009176741A (en) * 2009-03-16 2009-08-06 Kyocera Corp Lithium battery
JP2009135112A (en) * 2009-03-16 2009-06-18 Kyocera Corp Lithium cell
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
JP2012094497A (en) * 2010-09-27 2012-05-17 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery, negative electrode material, and nonaqueous secondary battery
JP2016076469A (en) * 2014-03-13 2016-05-12 株式会社半導体エネルギー研究所 Electrode, power storage device, electronic equipment, and method for manufacturing electrode
US10354810B2 (en) 2014-03-13 2019-07-16 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and method for fabricating electrode
CN107768635A (en) * 2017-10-18 2018-03-06 安徽工业大学 A kind of preparation method of lithium ion battery barium titanate sodium composite negative pole material

Similar Documents

Publication Publication Date Title
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
JP5266861B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4734701B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
EP1291941B1 (en) Active material for battery and method of preparing the same
KR101304868B1 (en) Cathode Active Material for Lithium Secondary Battery
KR101154876B1 (en) Cathode Active Material for Lithium Secondary Battery
JP4742413B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
CN108539122A (en) A kind of positive plate and the lithium rechargeable battery comprising the positive plate
JPH10255800A (en) Negative electrode material for lithium secondary battery
JP2013161705A (en) Active material for secondary battery and method for producing the same
CN105161695A (en) Spherical active material particles for lithium ion battery negative electrode, preparation method and application of spherical active material particles
US11437612B2 (en) Cathode mixture and method for producing the same
JP2012079471A (en) Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002075368A (en) Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method
CN110556572B (en) Positive electrode mixture and method for producing same
CN111525091B (en) Negative electrode layer and all-solid-state battery
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
CN114512660B (en) Positive active material precursor, preparation method thereof and positive active material
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
US9716264B2 (en) Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
KR20160059121A (en) Silicon based anode material for lithium secondary battery with controlled nano size particles, lithium secondary battery having the same, and method for preparing the same
JP4491947B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery