JP2002075368A - Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method - Google Patents

Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method

Info

Publication number
JP2002075368A
JP2002075368A JP2000269035A JP2000269035A JP2002075368A JP 2002075368 A JP2002075368 A JP 2002075368A JP 2000269035 A JP2000269035 A JP 2000269035A JP 2000269035 A JP2000269035 A JP 2000269035A JP 2002075368 A JP2002075368 A JP 2002075368A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particles
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000269035A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamaura
潔 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000269035A priority Critical patent/JP2002075368A/en
Publication of JP2002075368A publication Critical patent/JP2002075368A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material having characteristics of both the Ni composite oxide particles with a large energy density and LiFePO4 particles with the capacity deterioration remaining lesser at the time of charging. SOLUTION: The surfaces of particles expressed by the general formula LiNi1-xMxO2, (where M is element(s) containing at least one of Al, B, Co) are covered with particulates expressed by the general formula LiFePO4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムニッケル
複合酸化物を用いた正極活物質及び非水電解質電池、並
びにそれらの製造方法に関する。
The present invention relates to a positive electrode active material and a non-aqueous electrolyte battery using a lithium nickel composite oxide, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、種々の電子機器の飛躍的進歩とと
もに、長時間便利に、かつ経済的に使用できる電源とし
て再充電可能な二次電池の研究が進められている。代表
的な二次電池としては、鉛蓄電池、アルカリ蓄電池、リ
チウム二次電池等が知られている。特に、リチウム二次
電池は、高出力、高エネルギー密度などの利点を有して
いる。上記のリチウム二次電池は、リチウムイオンを可
逆的に脱挿入可能な正極と負極と非水電解液とから構成
される。
2. Description of the Related Art In recent years, with the remarkable progress of various electronic devices, research on a rechargeable secondary battery as a power source that can be used conveniently and economically for a long time has been advanced. As typical secondary batteries, lead storage batteries, alkaline storage batteries, lithium secondary batteries, and the like are known. In particular, lithium secondary batteries have advantages such as high output and high energy density. The above lithium secondary battery includes a positive electrode capable of reversibly inserting and removing lithium ions, a negative electrode, and a non-aqueous electrolyte.

【0003】一般に、負極活物質としては、金属リチウ
ム、リチウム合金、りチウムがドープされた導電性高分
子、層状化合物(炭素材料や金属酸化物など)またはり
チウムを含む化合物と共存させた導電性高分子、層状化
合物(炭素材料や金属酸化物など)が用いられている。
In general, as the negative electrode active material, lithium metal, a lithium alloy, a conductive polymer doped with lithium, a layered compound (such as a carbon material or a metal oxide) or a conductive material coexisting with a compound containing lithium is used. A conductive polymer and a layered compound (such as a carbon material and a metal oxide) are used.

【0004】一方、正極活物質には、金属酸化物、金属
硫化物、あるいはポリマーなどが用いられ、例えばTi
2、MoS2、NbSe2、V25などの非含リチウム
化合物やLiMO2(M=Co、Ni、Mn、Feな
ど)のような既にリチウムを含んでいる複合酸化物が提
案されている。
On the other hand, a metal oxide, a metal sulfide, a polymer, or the like is used as the positive electrode active material.
Non-lithium-containing compounds such as S 2 , MoS 2 , NbSe 2 , V 2 O 5 , and composite oxides already containing lithium such as LiMO 2 (M = Co, Ni, Mn, Fe, etc.) have been proposed. I have.

【0005】電解液としては、プロピレンカーボネート
のような非プロトン性有機溶媒にりチウム塩を溶解させ
た溶液が用いられている。
As an electrolytic solution, a solution in which a lithium salt is dissolved in an aprotic organic solvent such as propylene carbonate is used.

【0006】さらに、セパレータとしてはポリプロピレ
ンなどのような高分子フィルムが用いられるが、この場
合、リチウムイオン伝導度とエネルギー密度の点から可
能な限り薄くしなければならない。通常50μm以下の
セパレータが実用と考えられる。以上のような正極、負
極、そして両者の間に介在したセパレータと電解液から
構成された電池は充放電可能な二次電池として使用でき
る。
Further, a polymer film such as polypropylene is used as the separator. In this case, the separator must be as thin as possible in view of lithium ion conductivity and energy density. Usually, a separator of 50 μm or less is considered practical. A battery composed of the above-described positive electrode, negative electrode, and a separator and an electrolyte interposed therebetween can be used as a chargeable / dischargeable secondary battery.

【0007】[0007]

【発明が解決しようとする課題】リチウム二次電池を高
容量化するNi系正極活物質は、従来のCo系正極活物
質より、充電時に脱するリチウム量が多い。従って、N
i系正極活物質では、構造の安定性が失われてしまい、
充電時の容量劣化が観測されている。一方、LiFeP
4は、充電時の構造安定性に優れ、容量劣化が少ない
ものの、エネルギー密度が小さく、単独での使用が難し
い点があった。
The Ni-based positive electrode active material for increasing the capacity of the lithium secondary battery has a larger amount of lithium removed during charging than the conventional Co-based positive electrode active material. Therefore, N
In the i-type positive electrode active material, structural stability is lost,
Capacity deterioration during charging has been observed. On the other hand, LiFeP
O 4 has excellent structural stability at the time of charging and has little capacity deterioration, but has a low energy density and is difficult to use alone.

【0008】この両者の長所を兼ね備えた、充電時の安
定性に優れ、かつ高容量である正極活物質を得るため、
LiFePO4をNi複合酸化物粒子の表面に付着させ
る手法が探索されていた。しかし、その有効な方法は、
未だ見出されていなかった。
In order to obtain a positive electrode active material which has both of these advantages, is excellent in stability during charging, and has a high capacity,
A technique for attaching LiFePO 4 to the surface of Ni composite oxide particles has been sought. But the effective way is
Not yet found.

【0009】本発明は、上述したような従来の実情に鑑
みて提案されたものであり、エネルギー密度の大きいN
i複合酸化物粒子と、充電時の容量劣化が小さいLiF
ePO4粒子との両方の特性を兼ね備えた正極活物質及
びその正極活物質を用いた非水電解質電池ならびにそれ
らの製造方法を提供することを目的とする。
The present invention has been proposed in view of the above-described conventional situation, and has a large energy density.
i Composite oxide particles and LiF with small capacity deterioration during charging
An object of the present invention is to provide a positive electrode active material having both characteristics of ePO 4 particles, a nonaqueous electrolyte battery using the positive electrode active material, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明の正極活物質は、
一般式LiNi1-xx2(式中、MはAl、B、Co
のうち少なくとも一種を含む元素である。)で表される
粒子の表面が、一般式LiFePO4で表される微粒子
によって被覆されてなることを特徴とする。
Means for Solving the Problems The positive electrode active material of the present invention comprises:
General formula LiNi 1-x M x O 2 (where M is Al, B, Co
Is an element containing at least one of the above. ) Is coated with fine particles represented by the general formula LiFePO 4 .

【0011】上述したような本発明の正極活物質では、
一般式LiNi1-xx2で表される粒子の表面が、一
般式LiFePO4で表される微粒子によって被覆され
てなるので、エネルギー密度の大きいNi複合酸化物粒
子と、構造安定性に優れたLiFePO4粒子との両方
の特性を兼ね備えたものとなる。
In the positive electrode active material of the present invention as described above,
Since the surface of the particles represented by the general formula LiNi 1-x M x O 2 is coated with the fine particles represented by the general formula LiFePO 4 , the Ni composite oxide particles having a large energy density and the structural stability are improved. It has both characteristics of excellent LiFePO 4 particles.

【0012】また、本発明の非水電解質電池は、正極活
物質を有する正極と、負極活物質を有する負極と、上記
正極と上記負極との間に介在される非水電解質とを備
え、上記正極活物質は、一般式LiNi1-xx2(式
中、MはAl、B、Coのうち少なくとも一種を含む元
素である。)で表される粒子の表面が、一般式LiFe
PO4で表される微粒子によって被覆されてなることを
特徴とする。
A non-aqueous electrolyte battery according to the present invention includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode. The surface of the particles represented by the general formula LiNi 1-x M x O 2 (where M is an element containing at least one of Al, B, and Co) is used as the positive electrode active material.
It is characterized by being coated with fine particles represented by PO 4 .

【0013】上述したような本発明に係る非水電解質電
池では、正極活物質が一般式LiNi1-xx2で表さ
れる粒子の表面が、一般式LiFePO4で表される微
粒子によって被覆されてなるので、エネルギー密度の大
きいNi複合酸化物粒子と、構造安定性に優れたLiF
ePO4粒子との両方の特性を兼ね備えたものとなる。
そして、そのような正極活物質を用いた本発明の非水電
解質電池は、高容量と高充放電サイクル特性とを兼ね備
えたものとなる。
In the non-aqueous electrolyte battery according to the present invention as described above, the surface of the particles whose positive electrode active material is represented by the general formula LiNi 1-x M x O 2 is made of fine particles represented by the general formula LiFePO 4 . Coated Ni composite oxide particles with high energy density and LiF with excellent structural stability
It has both properties of ePO 4 particles.
The nonaqueous electrolyte battery of the present invention using such a positive electrode active material has both high capacity and high charge / discharge cycle characteristics.

【0014】また、本発明の正極活物質の製造方法は、
一般式LiNi1-xx2(式中、MはAl、B、Co
のうち少なくとも一種を含む元素である。)で表される
粒子と、一般式LiFePO4で表される微粒子とを混
合し、粒子温度(T)が35℃≦T≦45℃の範囲とな
るように攪拌することで、上記粒子の表面を、上記微粒
子によって被覆することを特徴とする。
Further, the method for producing a positive electrode active material of the present invention comprises:
General formula LiNi 1-x M x O 2 (where M is Al, B, Co
Is an element containing at least one of the above. ) And fine particles represented by the general formula LiFePO 4 are mixed and stirred so that the particle temperature (T) falls within a range of 35 ° C. ≦ T ≦ 45 ° C., thereby obtaining the surface of the particles. Is coated with the fine particles.

【0015】上述したような正極活物質の製造方法で
は、混合粒子を攪拌する際の粒子温度を規定すること
で、一般式LiNi1-xx2で表される粒子の表面
に、一般式LiFePO4で表される微粒子を被着させ
た正極活物質が得られる。
In the method for producing a positive electrode active material as described above, by defining the particle temperature when stirring the mixed particles, the surface of the particles represented by the general formula LiNi 1-x M x O 2 is A positive electrode active material on which fine particles represented by the formula LiFePO 4 are adhered is obtained.

【0016】また、本発明の非水電解質電池の製造方法
は、正極活物質を有する正極と、負極活物質を有する負
極と、上記正極と上記負極との間に介在される非水電解
質とを備えた非水電解質電池の製造方法であって、上記
正極活物質を合成する際に、一般式LiNi1-xx2
(式中、MはAl、B、Coのうち少なくとも一種を含
む元素である。)で表される粒子と、一般式LiFeP
4で表される微粒子とを混合し、粒子温度(T)が3
5℃≦T≦45℃の範囲となるように攪拌することで、
上記粒子の表面を、上記微粒子によって被覆して正極活
物質とすることを特徴とする。
Further, the method for producing a nonaqueous electrolyte battery according to the present invention comprises the steps of: forming a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte interposed between the positive electrode and the negative electrode. A method for producing a nonaqueous electrolyte battery comprising the steps of: synthesizing the positive electrode active material according to the general formula LiNi 1-x M x O 2
(Wherein, M is an element containing at least one of Al, B, and Co) and a general formula LiFeP
Mixed with fine particles represented by O 4 , and the particle temperature (T) is 3
By stirring so that 5 ° C ≦ T ≦ 45 ° C,
The surface of the particles is coated with the fine particles to form a positive electrode active material.

【0017】上述したような本発明に係る非水電解質電
池の製造方法では、混合粒子を攪拌する際の粒子温度を
規定することで、一般式LiNi1-xx2で表される
粒子の表面に、一般式LiFePO4で表される微粒子
を被着させた正極活物質が得られる。そしてそのような
正極活物質を用いた本発明の非水電解質電池の製造方法
では、高容量と高充放電サイクル特性とを兼ね備えた非
水電解質電池が得られる。
In the method of manufacturing a non-aqueous electrolyte battery according to the present invention as described above, the particle temperature represented by the general formula LiNi 1-x M x O 2 is determined by defining the particle temperature when stirring the mixed particles. Thus, a positive electrode active material having fine particles represented by the general formula LiFePO 4 adhered to the surface thereof is obtained. In the method for manufacturing a nonaqueous electrolyte battery of the present invention using such a positive electrode active material, a nonaqueous electrolyte battery having both high capacity and high charge / discharge cycle characteristics can be obtained.

【0018】[0018]

【発明の実施の形態】本発明を適用した非水電解液電池
の一構成例を図1に示す。この非水電解液電池1は、負
極2と、負極2を収容する負極缶3と、正極4と、正極
4を収容する正極缶5と、正極4と負極2との間に配さ
れたセパレータ6と、絶縁ガスケット7とを備え、負極
缶3及び正極缶5内に非水電解液が充填されてなる。
FIG. 1 shows an example of the configuration of a nonaqueous electrolyte battery according to the present invention. The nonaqueous electrolyte battery 1 includes a negative electrode 2, a negative electrode can 3 containing the negative electrode 2, a positive electrode 4, a positive electrode can 5 containing the positive electrode 4, and a separator disposed between the positive electrode 4 and the negative electrode 2. 6 and an insulating gasket 7. The negative electrode can 3 and the positive electrode can 5 are filled with a non-aqueous electrolyte.

【0019】負極2は、負極活物質となる例えば金属リ
チウム箔からなる。また、負極活物質として、リチウム
をドープ、脱ドープ可能な材料を用いる場合には、負極
2は、負極集電体上に、上記負極活物質を含有する負極
活物質層が形成されてなる。負極集電体としては、例え
ばニッケル箔等が用いられる。
The negative electrode 2 is made of, for example, a metal lithium foil serving as a negative electrode active material. When a material that can be doped and dedoped with lithium is used as the negative electrode active material, the negative electrode 2 is formed by forming a negative electrode active material layer containing the negative electrode active material on a negative electrode current collector. As the negative electrode current collector, for example, a nickel foil or the like is used.

【0020】リチウムをドープ、脱ドープ可能な負極活
物質としては、金属リチウム、リチウム合金、リチウム
がドープされた導電性高分子、層状化合物(炭素材料や
金属酸化物など)が用いられている。
As the negative electrode active material which can be doped with and dedoped with lithium, lithium metal, lithium alloys, conductive polymers doped with lithium, and layered compounds (such as carbon materials and metal oxides) are used.

【0021】負極活物質層に含有される結合剤として
は、この種の非水電解液電池の負極活物質層の結合剤と
して通常用いられている公知の樹脂材料等を用いること
ができる。
As the binder contained in the negative electrode active material layer, a known resin material or the like usually used as a binder for the negative electrode active material layer of this type of nonaqueous electrolyte battery can be used.

【0022】負極缶3は、負極2を収容するものであ
り、また、非水電解液電池1の外部負極となる。
The negative electrode can 3 houses the negative electrode 2 and serves as an external negative electrode of the nonaqueous electrolyte battery 1.

【0023】正極4は、正極集電体上に、正極活物質を
含有する正極活物質層が形成されてなる。正極集電体と
しては、例えばアルミニウム箔等が用いられる。
The positive electrode 4 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector. As the positive electrode current collector, for example, an aluminum foil or the like is used.

【0024】ここで、本発明では、正極活物質として、
一般式LiNi1-xx2(式中、MはAl、B、Co
のうち少なくとも一種を含む元素である。)と表される
粒子の表面がLiFePO4微粒子によって被覆されて
なるものを用いる。
Here, in the present invention, as the positive electrode active material,
General formula LiNi 1-x M x O 2 (where M is Al, B, Co
Is an element containing at least one of the above. ) Is used in which the surface of the particles is coated with fine particles of LiFePO 4 .

【0025】上述したように、Ni複合酸化物は、エネ
ルギー密度が大きいものの、充電時に脱するリチウム量
が多く、構造が不安定化するため、容量劣化を引き起こ
してしまうという問題があった。一方、LiFePO4
は、充電時の構造安定性に優れ、容量劣化が少ないもの
の、エネルギー密度が小さく、単独での使用が難しいと
いう問題があった。
As described above, although the Ni composite oxide has a large energy density, there is a problem that a large amount of lithium is released during charging and the structure becomes unstable, thereby causing a capacity deterioration. On the other hand, LiFePO 4
Although they have excellent structural stability at the time of charging and have little capacity deterioration, they have a problem that their energy density is small and their use alone is difficult.

【0026】充電時のリチウム脱離により、構造が不安
定化したNi複合酸化物は、電池内部での非水電解液と
の界面で、構造破壊による容量劣化現象が生じる。特
に、高温(40℃〜60℃)において、劣化程度は大き
い。このNi複合酸化物に対し、その表面を熱的に安定
なLiFePO4に改質すると、高温での容量劣化が著
しく低下する。これは、熱的に安定なLiFePO4
表面の構造破壊を抑制するためと考えられる。
The Ni composite oxide, whose structure has been destabilized due to lithium desorption during charging, causes a capacity degradation phenomenon due to structural destruction at the interface with the non-aqueous electrolyte inside the battery. In particular, at high temperatures (40 ° C. to 60 ° C.), the degree of deterioration is large. When the surface of this Ni composite oxide is modified to thermally stable LiFePO 4 , the capacity deterioration at a high temperature is significantly reduced. This is presumably because LiFePO 4 , which is thermally stable, suppresses surface structural destruction.

【0027】このように、一般式LiNi1-xx
2(式中、MはAl、B、Coのうち少なくとも一種を
含む元素である。)と表されるNi複合酸化物粒子の表
面を、LiFePO4微粒子で被覆した正極活物質を用
いることにより、Ni複合酸化物の構造劣化を抑えて、
エネルギー密度が大きいというNi複合酸化物の長所
と、充電時の構造安定性に優れるというLiFePO4
の長所とを兼ね備えた、高容量、高充放電サイクル特性
に優れた非水電解液電池1を実現することができる。
Thus, the general formula LiNi 1-x M x O
2 (where M is an element containing at least one of Al, B, and Co), by using a positive electrode active material in which the surface of Ni composite oxide particles represented by LiFePO 4 fine particles is coated. By suppressing the structural deterioration of the Ni composite oxide,
Advantages of Ni composite oxide, high energy density, and LiFePO 4 , excellent structural stability during charging
The non-aqueous electrolyte battery 1 having the advantages of high capacity and high charge / discharge cycle characteristics can be realized.

【0028】正極活物質層に含有される結合剤として
は、この種の非水電解液電池の正極活物質層の結合剤と
して通常用いられている公知の樹脂材料等を用いること
ができる。
As the binder contained in the positive electrode active material layer, a known resin material or the like which is usually used as a binder for the positive electrode active material layer of this type of nonaqueous electrolyte battery can be used.

【0029】正極缶5は、正極4を収容するものであ
り、また、非水電解液電池1の外部正極となる。
The positive electrode can 5 houses the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.

【0030】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解液電池のセパレ
ータとして通常用いられている公知の材料を用いること
ができ、例えばポリプロピレンなどの高分子フィルムが
用いられる。また、リチウムイオン伝導度とエネルギー
密度との関係から、セパレータの厚みはできるだけ薄い
ことが必要である。具体的には、セパレータの厚みは例
えば50μm以下が適当である。
The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and can be formed of a known material which is generally used as a separator of this type of non-aqueous electrolyte battery. A polymer film is used. In addition, the thickness of the separator needs to be as small as possible from the relationship between lithium ion conductivity and energy density. Specifically, the thickness of the separator is suitably, for example, 50 μm or less.

【0031】絶縁ガスケット7は、負極缶3に組み込ま
れ一体化されている。この絶縁ガスケット7は、負極缶
3及び正極缶5内に充填された非水電解液の漏出を防止
するためのものである。
The insulating gasket 7 is integrated into the negative electrode can 3. The insulating gasket 7 is for preventing the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5 from leaking.

【0032】非水電解液としては、非プロトン性非水溶
媒に電解質を溶解させた溶液が用いられる。
As the non-aqueous electrolyte, a solution in which an electrolyte is dissolved in an aprotic non-aqueous solvent is used.

【0033】非水溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ブチレンカーボネー
ト、ビニレンカーボネート、γ−ブチルラクトン、スル
ホラン、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、2−メチルテトラヒドロフラン、3−メチル
1,3−ジオキソラン、プロピオン酸メチル、酪酸メチ
ル、ジメチルカーボネート、ジエチルカーボネート、ジ
プロピルカーボネート等を使用することができる。特
に、電圧安定性の点からは、プロピレンカーボネート、
ビニレンカーボネート等の環状カーボネート類、ジメチ
ルカーボネート、ジエチルカーボネート、ジプロピルカ
ーボネート等の鎖状カーボネート類を使用することが好
ましい。また、このような非水溶媒は、1種類を単独で
用いてもよいし、2種類以上を混合して用いてもよい。
Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyl lactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, -Methyl 1,3-dioxolan, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used. In particular, from the viewpoint of voltage stability, propylene carbonate,
It is preferable to use cyclic carbonates such as vinylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate. In addition, such a non-aqueous solvent may be used alone or as a mixture of two or more.

【0034】また、非水溶媒に溶解させる電解質として
は、例えば、LiPF6、LiClO4、LiAsF6
LiBF4、LiCF3SO3、LiN(CF3SO22
のリチウム塩を使用することができる。これらのリチウ
ム塩の中でも、LiPF6、LiBF4を使用することが
好ましい。
The electrolyte dissolved in the non-aqueous solvent includes, for example, LiPF 6 , LiClO 4 , LiAsF 6 ,
Lithium salts such as LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 can be used. Among these lithium salts, LiPF 6 and LiBF 4 are preferably used.

【0035】このように、本発明に係る非水電解質電池
1では、一般式LiNi1-xx2(式中、MはAl、
B、Coのうち少なくとも一種を含む元素である。)と
表されるNi複合酸化物粒子の表面を、LiFePO4
微粒子で被覆した正極活物質を用いているので、Ni複
合酸化物の構造劣化を抑えて、エネルギー密度が大きい
というNi複合酸化物の長所と、充電時の構造安定性に
優れるというLiFePO4の長所とを兼ね備えた、高
容量、高充放電サイクル特性に優れた電池となる。
Thus, in the nonaqueous electrolyte battery 1 according to the present invention, the general formula LiNi 1-x M x O 2 (where M is Al,
It is an element containing at least one of B and Co. The Ni surface of the composite oxide particles represented as), LiFePO 4
Since the positive electrode active material coated with fine particles is used, the advantages of the Ni composite oxide, which has a high energy density while suppressing the structural deterioration of the Ni composite oxide, and the advantages of LiFePO 4 , which has excellent structural stability during charging, are provided. And a battery having both high capacity and high charge / discharge cycle characteristics.

【0036】そして、このような非水電解液電池1は例
えばつぎのようにして製造される。
The non-aqueous electrolyte battery 1 is manufactured, for example, as follows.

【0037】まず、上述したような本発明に係る正極活
物質を製造する。
First, the positive electrode active material according to the present invention as described above is manufactured.

【0038】LiNi1-xx2粒子の表面にLiFe
PO4微粒子を被着させるには、例えば当該LiNi1-x
x2粒子にFe又はLiの硝酸塩と燐酸アンモニウム
等との混合水溶液を作用させ、熱処理することによっ
て、LiNi1-xx2粒子の表面にLiFePO4表面
膜を形成するいわゆる水溶液法を挙げることができる。
この水溶液法の場合、LiFePO4表面膜の均一性は
優れているが、還元雰囲気以外の熱処理ではLiFeP
4単相を得る事ができない。還元雰囲気下で熱処理を
行なうと、LiNi1-xx2粒子が構造破壊を引き起
こし、容量劣化してしまう。このような点から、水溶液
法によっては、本発明の目的を達成する正極活物質を得
ることは難しい。
The surface of the LiNi 1-x M x O 2 particles has LiFe
In order to deposit the PO 4 fine particles, for example, the LiNi 1-x
M x O 2 particles is reacted with mixed aqueous solution of nitrate and ammonium phosphate, and the like of Fe or Li, by heat treatment, LiNi 1-x M x O 2 -called solution method for forming a LiFePO 4 surface film on the surface of the particles Can be mentioned.
In the case of this aqueous solution method, the uniformity of the LiFePO 4 surface film is excellent.
O 4 single phase cannot be obtained. When the heat treatment is performed in a reducing atmosphere, the LiNi 1-x M x O 2 particles cause structural destruction, and the capacity is deteriorated. From such a point, it is difficult to obtain a positive electrode active material that achieves the object of the present invention by the aqueous solution method.

【0039】一方、乾式で熱処理を伴わない付着方法と
しては、粒子ハイブリダイゼ−ション法を挙げることが
できる。この粒子ハイブリダイゼ−ション法では、粒径
の異なる粒子を混ぜ、攪拌することによって、紛体衝突
による静電気を発生させ微粒子を大粒子表面に付着させ
る。この方法では加熱過程を経ないため、大気中で表面
改質を行なうことが可能である。しかしながら、本発明
で用いられるLiNi 1-xx2粒子は脆い為、上記粒
子ハイブリダイゼ−ション法では、衝突割れを生じやす
い。この衝突割れの程度は、LiNi1-xx2粒子の
硬度、粒径、あるいは、被付着粒子LiFePO4の硬
度、粒径に依存する。従って、衝突割れの抑制された処
理条件が必要であった。
On the other hand, a dry method without heat treatment
Then, the particle hybridization method may be mentioned.
it can. In this particle hybridization method,
Powder collision by mixing and stirring different particles
Generates static electricity, causing fine particles to adhere to the surface of large particles.
You. Since this method does not go through a heating process,
It is possible to carry out a modification. However, the present invention
LiNi used in 1-xMxOTwoBecause the particles are brittle,
In the child hybridization method, collision cracking is likely to occur.
No. The degree of this collision cracking1-xMxOTwoOf particles
Hardness, particle size or adhered particles LiFePOFourHard
Depends on degree and particle size. Therefore, the process in which collision cracking is suppressed
Requirement was required.

【0040】そこで、本発明者は、粒子の割れを発生さ
せず、旦つ微粒子LiFePO4がNi正極粒子表面に
付着する条件を鋭意検討した結果、上記粒子ハイブリダ
イゼ−ション法によってLiNi1-xx2粒子の表面
にLiFePO4微粒子を被着させるときに、攪拌処理
時の粒子温度Tが、35℃≦T≦45℃の範囲を満たす
ようにすることで、衝突割れを生じずに、良好な結果を
得られることを見出した。
Therefore, the present inventor has conducted intensive studies on the conditions under which fine particles of LiFePO 4 adhere to the surface of the Ni positive electrode particles without causing cracking of the particles. As a result, the LiNi 1-x M the LiFePO 4 particles on the surface of the x O 2 particles when depositing, particle temperature T during the stirring process is that to satisfy the range of 35 ° C. ≦ T ≦ 45 ° C., without causing collision crack, It has been found that good results can be obtained.

【0041】上記粒子温度Tは、攪拌処理時の粒子の衝
突の程度を定量的に観測する指標となるものである。す
なわち、粒子間の衝突によるエネルギーが粒子を加熱、
温度が上昇するのであるから、粒子温度Tを制御するこ
とは、粒子の衝突エネルギーを制御することと同意義で
ある。
The particle temperature T is an index for quantitatively observing the degree of collision of particles during the stirring process. That is, the energy due to the collision between the particles heats the particles,
Since the temperature rises, controlling the particle temperature T is equivalent to controlling the collision energy of the particles.

【0042】具体的には、粒子温度Tが35℃よりも低
い場合には、粒子間の衝突エネルギーが十分に高くな
く、LiNi1-xx2粒子の表面にLiFePO4微粒
子をうまく被着させることができない。一方、粒子温度
Tが45℃よりも高い場合には、粒子間の衝突エネルギ
ーが大きすぎて、却って粒子の衝突割れを引き起こして
しまう。
Specifically, when the particle temperature T is lower than 35 ° C., the collision energy between the particles is not sufficiently high, and the surface of the LiNi 1-x M x O 2 particles is covered with the LiFePO 4 fine particles. I can't wear it. On the other hand, when the particle temperature T is higher than 45 ° C., the collision energy between the particles is too large, which may cause the collision cracking of the particles.

【0043】したがって、LiNi1-xx2粒子とL
iFePO4微粒子とを混合し、攪拌時の粒子温度Tが
35℃≦T≦45℃の範囲を満たす条件で攪拌すること
によって、粒子割れを生ずることなくLiNi1-xx
2粒子の表面にLiFePO4微粒子を被着させて、本発
明の正極活物質を得ることができる。
Therefore, LiNi 1 -x M x O 2 particles and L
By mixing with iFePO 4 fine particles and stirring under conditions that the particle temperature T during stirring satisfies the range of 35 ° C. ≦ T ≦ 45 ° C., LiNi 1-x M x O
The positive electrode active material of the present invention can be obtained by attaching LiFePO 4 fine particles to the surface of the two particles.

【0044】そして、得られた正極活物質を用いて、つ
ぎのようにしてコイン型の非水電解液電池を作製する。
Using the obtained positive electrode active material, a coin-type nonaqueous electrolyte battery is manufactured as follows.

【0045】正極4としては、まず、正極活物質とと結
着剤とを溶媒中に分散させてスラリーの正極合剤を調製
する。次に、得られた正極合剤を正極集電体上に均一に
塗布、乾燥して正極活物質層を形成することにより正極
4が作製される。上記正極合剤の結着剤としては、公知
の結着剤を用いることができるほか、上記正極合剤に公
知の添加剤等を添加することができる。
As the positive electrode 4, first, a positive electrode mixture of a slurry is prepared by dispersing a positive electrode active material and a binder in a solvent. Next, the obtained positive electrode mixture is uniformly applied on a positive electrode current collector and dried to form a positive electrode active material layer, whereby the positive electrode 4 is manufactured. Known binders can be used as the binder of the positive electrode mixture, and known additives and the like can be added to the positive electrode mixture.

【0046】負極2としては、まず、負極活物質と結着
剤とを溶媒中に分散させてスラリーの負極合剤を調製す
る。次に、得られた負極合剤を負極集電体上に均一に塗
布、乾燥して負極活物質層を形成することにより負極2
が作製される。上記負極合剤の結着剤としては、公知の
結着剤を用いることができるほか、上記負極合剤に公知
の添加剤等を添加することができる。また、負極活物質
となる金属リチウムをそのまま負極2として用いること
もできる。
For the negative electrode 2, first, a negative electrode active material and a binder are dispersed in a solvent to prepare a negative electrode mixture of a slurry. Next, the obtained negative electrode mixture is uniformly applied on a negative electrode current collector and dried to form a negative electrode active material layer, thereby forming a negative electrode 2.
Is produced. As the binder of the negative electrode mixture, a known binder can be used, and a known additive or the like can be added to the negative electrode mixture. Further, metallic lithium serving as a negative electrode active material can be used as the negative electrode 2 as it is.

【0047】非水電解液は、電解質塩を非水溶媒中に溶
解することにより調製される。
The non-aqueous electrolyte is prepared by dissolving an electrolyte salt in a non-aqueous solvent.

【0048】そして、負極2を負極缶3に収容し、正極
4を正極缶5に収容し、負極2と正極4との間に、ポリ
プロピレン製多孔質膜等からなるセパレータ6を配す
る。負極缶3及び正極缶5内に非水電解液を注入し、絶
縁ガスケット7を介して負極缶3と正極缶5とをかしめ
て固定することにより、非水電解液電池1が完成する。
Then, the negative electrode 2 is accommodated in the negative electrode can 3, the positive electrode 4 is accommodated in the positive electrode can 5, and a separator 6 made of a porous polypropylene film or the like is disposed between the negative electrode 2 and the positive electrode 4. The non-aqueous electrolyte is injected into the negative electrode can 3 and the positive electrode can 5, and the negative electrode can 3 and the positive electrode can 5 are caulked and fixed via the insulating gasket 7, thereby completing the non-aqueous electrolyte battery 1.

【0049】なお、上述した実施の形態では、非水電解
質電池として、非水電解液を用いた非水電解液電池1を
例に挙げて説明したが、本発明はこれに限定されるもの
ではなく、導電性高分子化合物の単体あるいは混合物を
含有する高分子固体電解質を用いた固体電解質電池や、
膨潤溶媒を含有するゲル状の固体電解質を用いたゲル状
電解質電池についても適用可能である。
In the above-described embodiment, the non-aqueous electrolyte battery 1 using a non-aqueous electrolyte has been described as an example of the non-aqueous electrolyte battery. However, the present invention is not limited to this. Without, a solid electrolyte battery using a polymer solid electrolyte containing a simple substance or a mixture of conductive polymer compounds,
The present invention is also applicable to a gel electrolyte battery using a gel solid electrolyte containing a swelling solvent.

【0050】上記の高分子固体電解質やゲル状電解質に
含有される導電性高分子化合物として具体的には、シリ
コン、アクリル、アクリロニトリル、ポリフォスファゼ
ン変性ポリマ、ポリエチレンオキサイド、ポリプロピレ
ンオキサイド、フッ素系ポリマ又はこれらの化合物の複
合ポリマや架橋ポリマ、変性ポリマ等が挙げられる。上
記フッ素系ポリマとしては、ポリ(ビニリデンフルオラ
イド)、ポリ(ビニリデンフルオライド−co−ヘキサ
フルオロプロピレン)、ポリ(ビニリデンフルオライド
−co−テトラフルオロエチレン)、ポリ(ビニリデン
フルオライド−co−トリフルオリエチレン)等が挙げ
られる。
Specific examples of the conductive polymer compound contained in the polymer solid electrolyte and the gel electrolyte include silicon, acryl, acrylonitrile, polyphosphazene-modified polymer, polyethylene oxide, polypropylene oxide, fluorine-based polymer, and the like. Examples thereof include a composite polymer, a crosslinked polymer, and a modified polymer of these compounds. Examples of the fluorine-based polymer include poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), poly (vinylidene fluoride-co-tetrafluoroethylene), and poly (vinylidene fluoride-co-trifluorethylene). ) And the like.

【0051】また、上述した実施の形態では、二次電池
を例に挙げて説明したが、本発明はこれに限定されるも
のではなく、一次電池についても適用可能である。ま
た、本発明の電池は、円筒型、角型、コイン型、ボタン
型等、その形状については特に限定されることはなく、
また、薄型、大型等の種々の大きさにすることができ
る。
Further, in the above-described embodiment, the description has been given by taking the secondary battery as an example. However, the present invention is not limited to this, and can be applied to a primary battery. In addition, the battery of the present invention has a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and its shape is not particularly limited,
In addition, various sizes such as a thin type and a large size can be used.

【0052】[0052]

【実施例】つぎに、本発明の効果を確認すべく行った、
実施例及び比較例について説明する。なお、以下の実施
例では、具体的な数値を挙げて説明しているが、本発明
はこれに限定されるものではないことは言うまでもな
い。
EXAMPLES Next, the present invention was performed to confirm the effects of the present invention.
Examples and comparative examples will be described. In the following embodiments, specific numerical values are described, but it goes without saying that the present invention is not limited to these.

【0053】〈実施例1〉まず、つぎのようにして本発
明に係る正極活物質を合成した。
Example 1 First, a positive electrode active material according to the present invention was synthesized as follows.

【0054】まず、LiNi0.8Co0.22粒子を3
0.0gと、LiFePO4微粒子を1.0gとを混合
した。ここで、用いたLiNi0.8Co0.22粒子のメ
ジアン径は11.458μmであり、LiFePO4
粒子のメジアン径は0.185μmであった。LiNi
0.8Co0.22粒子の粒度分布測定結果を図2に、Li
FePO4微粒子の粒度分布測定結果を図3に示す。
First, 3 particles of LiNi 0.8 Co 0.2 O 2 were added.
0.0 g and 1.0 g of LiFePO 4 fine particles were mixed. Here, the median diameter of the used LiNi 0.8 Co 0.2 O 2 particles was 11.458 μm, and the median diameter of the LiFePO 4 fine particles was 0.185 μm. LiNi
FIG. 2 shows the measurement results of the particle size distribution of 0.8 Co 0.2 O 2 particles.
FIG. 3 shows the particle size distribution measurement results of the FePO 4 fine particles.

【0055】次に、LiNi0.8Co0.22粒子とLi
FePO4微粒子との混合物を5分間攪拌することによ
って、LiNi0.8Co0.22粒子の表面にLiFeP
4微粒子の被着させて表面改質を行ない、正極活物質
を得た。ここで、粒子の混合攪拌には(株)奈良機械
ハイブリダイゼ−ションシステム NHS−Oを用い、
処理温度Tが36℃になるように回転速度を調整した。
Next, LiNi 0.8 Co 0.2 O 2 particles and Li
By stirring the mixture with the FePO 4 fine particles for 5 minutes, the surface of the LiNi 0.8 Co 0.2 O 2 particles is
Surface modification was performed by attaching O 4 fine particles to obtain a positive electrode active material. Here, Nara Machinery Co., Ltd.
Using the hybridization system NHS-O,
The rotation speed was adjusted so that the processing temperature T became 36 ° C.

【0056】つぎに、上述のようにして得られた正極活
物質を用いてコイン型非水電解液電池を作製した。
Next, a coin-type non-aqueous electrolyte battery was manufactured using the positive electrode active material obtained as described above.

【0057】得られた正極活物質を乾燥重量で80重量
%と、導電剤としてグラファイト(平均粒径5μmから
20μm:商品名KS−15ロンザ)を15重量%と、
結着剤としてポリフッ化ビニリデン(アルドリッチ#1
300)とをジメチルフルオライドを用いて混練して正
極ペーストとした。
80% by weight of the obtained positive electrode active material in dry weight, and 15% by weight of graphite (average particle size of 5 μm to 20 μm: trade name KS-15 Lonza) as a conductive agent;
Polyvinylidene fluoride (Aldrich # 1)
300) was mixed with dimethyl fluoride to obtain a positive electrode paste.

【0058】次に、この正極ぺーストを正極集電体とな
るアルミメッシュ上に塗布し、アルミメッシュと共にペ
レット化して、乾燥アルゴン気流中、100℃で1時間
の乾燥を行ない、正極を得た。なお、この正極には1個
あたり60mgの正極活物質が担持されている。
Next, this positive electrode paste was applied on an aluminum mesh as a positive electrode current collector, pelletized together with the aluminum mesh, and dried at 100 ° C. for 1 hour in a dry argon stream to obtain a positive electrode. . The positive electrode carries 60 mg of a positive electrode active material per one piece.

【0059】また、リチウム金属を上記正極と略同径に
打ち抜くことにより負極とした。
Further, a negative electrode was obtained by punching lithium metal into substantially the same diameter as the positive electrode.

【0060】また、プロピレンカーボネートとジメチル
カーボネートとの等容量混合溶媒にLiPF6を1mo
l/lの濃度で溶解させて非水電解液を調製した。
Further, 1 mol of LiPF 6 was added to a mixed solvent of propylene carbonate and dimethyl carbonate in an equal volume.
A non-aqueous electrolyte was prepared by dissolving at a concentration of 1 / l.

【0061】そして、以上のようにして得られた負極を
負極缶に収容し、正極を正極缶に収容し、負極と正極と
の間に、ポリプロピレン製多孔質膜等からなるセパレー
タを配した。負極缶及び正極缶内に非水電解液を注入
し、絶縁ガスケットを介して負極缶と正極缶とをかしめ
て固定することにより、2025コイン型の非水電解液
電池を完成した。
Then, the negative electrode obtained as described above was accommodated in a negative electrode can, the positive electrode was accommodated in a positive electrode can, and a separator made of a porous film made of polypropylene or the like was disposed between the negative electrode and the positive electrode. A nonaqueous electrolyte solution was injected into the negative electrode can and the positive electrode can, and the negative electrode can and the positive electrode can were caulked and fixed via an insulating gasket, thereby completing a 2025 coin-type nonaqueous electrolyte battery.

【0062】〈実施例2〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが38℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Example 2 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 38 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0063】〈実施例3〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが40℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Example 3 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 40 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0064】〈実施例4〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが42℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Example 4 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 42 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0065】〈実施例5〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが44℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Example 5 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 44 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0066】〈比較例1〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが30℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Comparative Example 1 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 30 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0067】〈比較例2〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが34℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Comparative Example 2 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 34 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0068】〈比較例3〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが46℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Comparative Example 3 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 46 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0069】〈比較例4〉LiNi0.8Co0.22粒子
とLiFePO4微粒子とを混合、攪拌する際に、粒子
温度Tが50℃になるように回転速度を調整したこと以
外は、実施例1と同様にして正極活物質を合成し、その
正極活物質を用いて、実施例1と同様にしてコイン型の
非水電解液電池を作製した。
Comparative Example 4 Example 1 was repeated except that the rotation speed was adjusted so that the particle temperature T became 50 ° C. when mixing and stirring LiNi 0.8 Co 0.2 O 2 particles and LiFePO 4 fine particles. A positive electrode active material was synthesized in the same manner as described above, and a coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 using the positive electrode active material.

【0070】〈比較例5〉LiNi0.8Co0.22粒子
に対する表面改質処理を行わず、当該LiNi0.8Co
0.22粒子を正極活物質として用いて、実施例1と同様
にしてコイン型の非水電解液電池を作製した。
[0070] without surface modification treatment for <Comparative Example 5> LiNi 0.8 Co 0.2 O 2 particles, the LiNi 0.8 Co
A coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that 0.2 O 2 particles were used as the positive electrode active material.

【0071】以上のようにして作製された非水電解液電
池に対して、負荷特性測定を行った。初期充電は、開回
路電圧(OCV)が4.2V士0.05Vに達するま
で、電流密度500uA/セルで行い、また、放電は閉
回路電圧(CCV)が3.0Vに達するまで電流密度5
00uA/セルで行なった。
The load characteristics of the non-aqueous electrolyte battery fabricated as described above were measured. Initial charging is performed at a current density of 500 uA / cell until the open circuit voltage (OCV) reaches 4.2 V and 0.05 V, and discharging is performed at a current density of 5 μA until the closed circuit voltage (CCV) reaches 3.0 V.
Performed at 00 uA / cell.

【0072】さらに、同電流密度でOCVが4.2Vに
なるまで充篭を行ない、60℃で24h保存した。保存
後、同電流密度で初回サイクルと同じ放電を行ない、そ
の容量を計測した。
Further, the battery was charged at the same current density until the OCV became 4.2 V, and stored at 60 ° C. for 24 hours. After storage, the same discharge as in the first cycle was performed at the same current density, and the capacity was measured.

【0073】保存前の放電容量をCap(A)とし、保
存後の放電容量をCap(B)として、容量維持率を以
下の式によって算出した。
The discharge capacity before storage was defined as Cap (A), and the discharge capacity after storage was defined as Cap (B), and the capacity retention was calculated by the following equation.

【0074】容量維持率(%)={Cap(B)/Ca
p(A)}×100 実施例1〜実施例5及び比較例1〜比較例5の非水電解
液電池について、LiNi0.8Co0.22粒子とLiF
ePO4微粒子との攪拌時の粒子温度Tと、非水電解液
電池の容量維持率(%)との関係を図4に示す。なお、
図4中の横点線は、LiNi0.8Co0.22粒子に対す
る表面改質処理を行わなかった比較例5の容量維持率
(%)を表している。
Capacity maintenance rate (%) = {Cap (B) / Ca
p (A)} × 100 For the nonaqueous electrolyte batteries of Examples 1 to 5 and Comparative Examples 1 to 5, LiNi 0.8 Co 0.2 O 2 particles and LiF
FIG. 4 shows the relationship between the particle temperature T during stirring with the ePO 4 fine particles and the capacity retention (%) of the nonaqueous electrolyte battery. In addition,
The horizontal dotted line in FIG. 4 indicates the capacity retention ratio (%) of Comparative Example 5 in which the surface modification treatment was not performed on the LiNi 0.8 Co 0.2 O 2 particles.

【0075】図4から明らかなように、LiNi0.8
0.22粒子とLiFePO4微粒子との攪拌時の粒子
温度Tが35℃よりも低い比較例1及び比較例2の電池
では、表面改質処理を行わなかった比較例5に比べて容
量維持率が低下してしまっている。これは、粒子間の衝
突エネルギーが十分に高くないため、LiNi1-xx
2粒子の表面にLiFePO4微粒子をうまく被着させる
ことができなかったためと考えられる。
As is apparent from FIG.0.8C
o0.2OTwoParticles and LiFePOFourParticles when stirring with fine particles
Batteries of Comparative Examples 1 and 2 whose temperature T is lower than 35 ° C.
In comparison with Comparative Example 5 in which the surface modification treatment was not performed,
The quantity maintenance rate has decreased. This is the impulse between particles.
Since the impact energy is not high enough, LiNi1-xMxO
TwoLiFePO on the particle surfaceFourFine particle deposition
Probably because they could not.

【0076】また、粒子温度Tが45℃よりも高い比較
例3及び比較例4の電池でも、比較例5に比べて容量維
持率が低下してしまっている。これは、粒子間の衝突エ
ネルギーが大きすぎて、却って粒子の衝突割れを引き起
こしてしまったためと考えられる。
Also, in the batteries of Comparative Examples 3 and 4 having a particle temperature T higher than 45 ° C., the capacity retention ratio was lower than that of Comparative Example 5. This is presumably because the collision energy between the particles was too large, causing collision cracking of the particles.

【0077】一方、粒子温度Tが35℃≦T≦45℃の
範囲を満たす実施例1〜実施例5の電池では、比較例5
に比べてはるかに良好な容量維持率が得られている。こ
れは粒子間の衝突エネルギーが適正な範囲に制御されて
いるため、粒子割れを生ずることなくLiNi1-xx
2粒子の表面にLiFePO4微粒子を被着させることが
できたためと考えられる。そしてそのような正極活物質
を用いた非水電解液電池は、高容量、高充放電サイクル
特性に優れたものとなることがわかった。
On the other hand, the batteries of Examples 1 to 5 in which the particle temperature T satisfies the range of 35 ° C. ≦ T ≦ 45 ° C.
A much better capacity retention ratio is obtained as compared with. This is because the collision energy between the particles is controlled to an appropriate range, and thus the particles do not crack and the LiNi 1-x M x O
It is considered that LiFePO 4 fine particles could be adhered to the surface of the two particles. And it turned out that the nonaqueous electrolyte battery using such a positive electrode active material is excellent in high capacity and high charge / discharge cycle characteristics.

【0078】[0078]

【発明の効果】本発明では、一般式LiNi1-xx2
(式中、MはAl、B、Coのうち少なくとも一種を含
む元素である。)と表されるNi複合酸化物粒子の表面
を、LiFePO4微粒子で被覆しているので、Ni複
合酸化物の構造劣化を抑えて、エネルギー密度が大きい
というNi複合酸化物の長所と、充電時の構造安定性に
優れるというLiFePO4の長所とを兼ね備えた正極
活物質となり、当該正極活物質を用いることで、高容
量、高充放電サイクル特性に優れた非水電解質電池を実
現することができる。
According to the present invention, the general formula LiNi 1-x M x O 2
(In the formula, M is an element containing at least one of Al, B, and Co.) Since the surfaces of the Ni composite oxide particles represented by LiFePO 4 fine particles are covered, By suppressing structural deterioration, the positive electrode active material has both the advantages of a Ni composite oxide having a high energy density and the advantages of LiFePO 4 having excellent structural stability during charging, and by using the positive electrode active material, A nonaqueous electrolyte battery having high capacity and excellent charge / discharge cycle characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解質電池の一構成例を示す
断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration example of a nonaqueous electrolyte battery according to the present invention.

【図2】実施例で用いたLiNi0.8Co0.22粒子の
粒度分布を示す図である。
FIG. 2 is a diagram showing a particle size distribution of LiNi 0.8 Co 0.2 O 2 particles used in Examples.

【図3】実施例で用いたLiFePO4微粒子の粒度分
布を示す図である。
FIG. 3 is a view showing a particle size distribution of LiFePO 4 fine particles used in Examples.

【図4】実施例で作成した電池について、混合粒子の攪
拌温度Tと、容量維持率との関係を示した図である。
FIG. 4 is a diagram showing a relationship between a stirring temperature T of mixed particles and a capacity retention ratio for a battery prepared in an example.

【符号の説明】[Explanation of symbols]

1 非水電解液電池、 2 負極、 3 負極缶、 4
正極、 5 正極缶、6 セパレータ、 7 絶縁ガ
スケット
1 non-aqueous electrolyte battery, 2 negative electrode, 3 negative electrode can, 4
Positive electrode, 5 Positive electrode can, 6 Separator, 7 Insulating gasket

フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB04 AC06 AD03 AE05 5H029 AJ03 AJ05 AK03 AM03 AM05 AM07 BJ03 CJ05 CJ08 CJ28 DJ12 DJ16 HJ14 5H050 AA07 AA08 BA17 CA08 CB07 CB12 FA12 FA18 GA07 GA10 GA27 HA02 HA14 Continued on front page F term (reference) 4G048 AA04 AB01 AB04 AC06 AD03 AE05 5H029 AJ03 AJ05 AK03 AM03 AM05 AM07 BJ03 CJ05 CJ08 CJ28 DJ12 DJ16 HJ14 5H050 AA07 AA08 BA17 CA08 CB07 CB12 FA12 FA18 GA07 GA10 GA27 HA02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式LiNi1-xx2(式中、Mは
Al、B、Coのうち少なくとも一種を含む元素であ
る。)で表される粒子の表面が、一般式LiFePO4
で表される微粒子によって被覆されてなることを特徴と
する正極活物質。
1. The surface of a particle represented by a general formula LiNi 1-x M x O 2 (where M is an element containing at least one of Al, B and Co) has a general formula LiFePO 4
A positive electrode active material characterized by being coated with fine particles represented by the formula:
【請求項2】 正極活物質を有する正極と、 負極活物質を有する負極と、 上記正極と上記負極との間に介在される非水電解質とを
備え、 上記正極活物質は、一般式LiNi1-xx2(式中、
MはAl、B、Coのうち少なくとも一種を含む元素で
ある。)で表される粒子の表面が、一般式LiFePO
4で表される微粒子によって被覆されてなることを特徴
とする非水電解質電池。
2. A positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode active material has a general formula of LiNi 1 -x M x O 2 (where
M is an element containing at least one of Al, B, and Co. ) Is represented by the general formula LiFePO
A nonaqueous electrolyte battery characterized by being coated with the fine particles represented by 4 .
【請求項3】 一般式LiNi1-xx2(式中、Mは
Al、B、Coのうち少なくとも一種を含む元素であ
る。)で表される粒子と、一般式LiFePO4で表さ
れる微粒子とを混合し、粒子温度(T)が35℃≦T≦
45℃の範囲となるように攪拌することで、上記粒子の
表面を、上記微粒子によって被覆することを特徴とする
正極活物質の製造方法。
3. A particle represented by the general formula LiNi 1-x M x O 2 (where M is an element containing at least one of Al, B and Co) and a particle represented by the general formula LiFePO 4 And the particle temperature (T) is 35 ° C. ≦ T ≦
A method for producing a positive electrode active material, wherein the surface of the particles is covered with the fine particles by stirring the mixture to a temperature of 45 ° C.
【請求項4】 正極活物質を有する正極と、負極活物質
を有する負極と、上記正極と上記負極との間に介在され
る非水電解質とを備えた非水電解質電池の製造方法であ
って、 上記正極活物質を合成する際に、一般式LiNi1-xx
2(式中、MはAl、B、Coのうち少なくとも一種
を含む元素である。)で表される粒子と、一般式LiF
ePO4で表される微粒子とを混合し、粒子温度(T)
が35℃≦T≦45℃の範囲となるように攪拌すること
で、上記粒子の表面を、上記微粒子によって被覆して正
極活物質とすることを特徴とする非水電解質電池の製造
方法。
4. A method for producing a non-aqueous electrolyte battery comprising: a positive electrode having a positive electrode active material; a negative electrode having a negative electrode active material; and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode. When synthesizing the positive electrode active material, the general formula LiNi 1-x M x
A particle represented by O 2 (where M is an element containing at least one of Al, B, and Co);
ePO 4 is mixed with fine particles, and the particle temperature (T)
A method for producing a non-aqueous electrolyte battery, characterized in that the surface of the particles is covered with the fine particles to form a positive electrode active material by stirring so that the temperature falls within a range of 35 ° C. ≦ T ≦ 45 ° C.
JP2000269035A 2000-09-05 2000-09-05 Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method Withdrawn JP2002075368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000269035A JP2002075368A (en) 2000-09-05 2000-09-05 Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269035A JP2002075368A (en) 2000-09-05 2000-09-05 Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2002075368A true JP2002075368A (en) 2002-03-15

Family

ID=18755720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269035A Withdrawn JP2002075368A (en) 2000-09-05 2000-09-05 Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2002075368A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216755A (en) * 2001-01-22 2002-08-02 Denso Corp Nonaqueous electrolyte secondary battery
US20040201948A1 (en) * 2003-04-11 2004-10-14 Sony Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2007103339A (en) * 2005-09-08 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007335245A (en) * 2006-06-15 2007-12-27 Sanyo Electric Co Ltd Cathode active material, its manufacturing method, and nonaqueous secondary battery
WO2008091707A2 (en) * 2007-01-25 2008-07-31 Massachusetts Institute Of Technology Oxide coatings on lithium oxide particles
JP2008210701A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2008546629A (en) * 2005-06-29 2008-12-25 ユミコア Crystalline nanometer LiFePO4
EP2012379A2 (en) 2007-04-27 2009-01-07 TDK Corporation Active material, electrode, battery, and method of manufacturing active material
WO2010053174A1 (en) 2008-11-06 2010-05-14 株式会社ジーエス・ユアサコーポレーション Positive electrode for lithium secondary battery, and lithium secondary battery
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
EP2206181A1 (en) * 2007-10-29 2010-07-14 Daejung EM CO., LTD. Cathode active material for lithium secondary batteries with high safety, method of preparing the same, and lithium secondary batteries comprising the same
JP2011515812A (en) * 2008-03-26 2011-05-19 ビーワイディー カンパニー リミテッド Cathode material for lithium batteries
JP2011200847A (en) * 2010-03-26 2011-10-13 Mitsubishi Chemicals Corp Powder surface treatment device and method of manufacturing surface treatment powder
WO2011136035A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8597830B2 (en) 2010-05-28 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2014166634A (en) * 2014-04-15 2014-09-11 Mitsubishi Chemicals Corp Powder surface treatment apparatus and method of producing surface-treated powder
US8927148B2 (en) 2010-06-02 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2016019977A (en) * 2015-08-20 2016-02-04 三菱化学株式会社 Powder surface treatment apparatus and production method of surface-treated powder
US9343739B2 (en) 2010-12-03 2016-05-17 Samsung Sdi Co., Ltd. Positive active material including lithium nickel composite oxide core and coating layer containing lithium metal phosphate and metal phosphate, manufacturing method thereof, and electrode and lithium battery containing the same
US9419271B2 (en) 2010-07-02 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for forming electrode material
US20170155137A1 (en) * 2002-08-27 2017-06-01 Sony Corporation Positive active material and non-aqueous electrolyte secondary battery
JP2019050104A (en) * 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP2019169323A (en) * 2018-03-23 2019-10-03 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery, and method for producing the same
WO2021141112A1 (en) 2020-01-09 2021-07-15 住友化学株式会社 Lithium metal composite oxide, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium metal composite oxide

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216755A (en) * 2001-01-22 2002-08-02 Denso Corp Nonaqueous electrolyte secondary battery
US20170155137A1 (en) * 2002-08-27 2017-06-01 Sony Corporation Positive active material and non-aqueous electrolyte secondary battery
US20040201948A1 (en) * 2003-04-11 2004-10-14 Sony Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US10153485B2 (en) * 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2008546629A (en) * 2005-06-29 2008-12-25 ユミコア Crystalline nanometer LiFePO4
US9954227B2 (en) 2005-06-29 2018-04-24 Umicore Crystalline nanometric LiFePO4
JP2010001214A (en) * 2005-06-29 2010-01-07 Umicore Crystalline nanometric lifepo4
JP2007103339A (en) * 2005-09-08 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007335245A (en) * 2006-06-15 2007-12-27 Sanyo Electric Co Ltd Cathode active material, its manufacturing method, and nonaqueous secondary battery
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
CN104466084A (en) * 2007-01-24 2015-03-25 株式会社Lg化学 Secondary battery with improved safety
US8568611B2 (en) 2007-01-25 2013-10-29 Massachusetts Institute Of Technology Oxide coatings on lithium oxide particles
WO2008091707A2 (en) * 2007-01-25 2008-07-31 Massachusetts Institute Of Technology Oxide coatings on lithium oxide particles
WO2008091707A3 (en) * 2007-01-25 2009-01-15 Massachusetts Inst Technology Oxide coatings on lithium oxide particles
US7700009B2 (en) 2007-02-27 2010-04-20 Sanyo Electric Co., Ltd. Method for producing positive electrode active material of non-aqueous electrolyte secondary cell
JP2008210701A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
EP2012379A2 (en) 2007-04-27 2009-01-07 TDK Corporation Active material, electrode, battery, and method of manufacturing active material
US8785045B2 (en) 2007-04-27 2014-07-22 Tdk Corporation Active material, electrode, battery, and method of manufacturing active material
JP2011502332A (en) * 2007-10-29 2011-01-20 デジョン イーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode of lithium secondary battery including the same, and lithium secondary battery
EP2206181A4 (en) * 2007-10-29 2012-12-26 Daejung Em Co Ltd Cathode active material for lithium secondary batteries with high safety, method of preparing the same, and lithium secondary batteries comprising the same
US20100203388A1 (en) * 2007-10-29 2010-08-12 Daejung Em Co., Ltd. Cathode active material for lithium secondary batteries with high safety, method of preparing the same, and lithium secondary batteries comprising the same
EP2206181A1 (en) * 2007-10-29 2010-07-14 Daejung EM CO., LTD. Cathode active material for lithium secondary batteries with high safety, method of preparing the same, and lithium secondary batteries comprising the same
US8927153B2 (en) 2007-10-29 2015-01-06 Daejung Em Co., Ltd. Cathode active material for lithium secondary batteries with core of lithium metal oxide and shell of lithium iron phosphate oxide, method of preparing the same, and lithium secondary batteries comprising the same
JP2011515812A (en) * 2008-03-26 2011-05-19 ビーワイディー カンパニー リミテッド Cathode material for lithium batteries
WO2010053174A1 (en) 2008-11-06 2010-05-14 株式会社ジーエス・ユアサコーポレーション Positive electrode for lithium secondary battery, and lithium secondary battery
JP2011200847A (en) * 2010-03-26 2011-10-13 Mitsubishi Chemicals Corp Powder surface treatment device and method of manufacturing surface treatment powder
KR20130092990A (en) * 2010-04-28 2013-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device
JP2015028958A (en) * 2010-04-28 2015-02-12 株式会社半導体エネルギー研究所 Power storage device
WO2011136035A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2011249323A (en) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd Power storage device
JP2016181523A (en) * 2010-04-28 2016-10-13 株式会社半導体エネルギー研究所 Positive electrode for lithium secondary battery
US8597830B2 (en) 2010-05-28 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8927148B2 (en) 2010-06-02 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9929402B2 (en) 2010-06-02 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US10256467B2 (en) 2010-07-02 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for forming electrode material
US9419271B2 (en) 2010-07-02 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for forming electrode material
US9343739B2 (en) 2010-12-03 2016-05-17 Samsung Sdi Co., Ltd. Positive active material including lithium nickel composite oxide core and coating layer containing lithium metal phosphate and metal phosphate, manufacturing method thereof, and electrode and lithium battery containing the same
JP2014166634A (en) * 2014-04-15 2014-09-11 Mitsubishi Chemicals Corp Powder surface treatment apparatus and method of producing surface-treated powder
JP2016019977A (en) * 2015-08-20 2016-02-04 三菱化学株式会社 Powder surface treatment apparatus and production method of surface-treated powder
JP2019050104A (en) * 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP2019169323A (en) * 2018-03-23 2019-10-03 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery, and method for producing the same
WO2021141112A1 (en) 2020-01-09 2021-07-15 住友化学株式会社 Lithium metal composite oxide, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium metal composite oxide
KR20220124706A (en) 2020-01-09 2022-09-14 스미또모 가가꾸 가부시끼가이샤 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery and manufacturing method of lithium metal composite oxide

Similar Documents

Publication Publication Date Title
JP2002075368A (en) Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method
US20190088988A1 (en) Cathode additives to provide an excess lithium source for lithium ion batteries
JP4734701B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
US20030049529A1 (en) Active material for battery and method of preparing same
US20020192148A1 (en) Method of preparing positive active material for rechargeable lithium batteries
JP2004152743A (en) Positive electrode for lithium sulfur battery, and lithium sulfur battery containing this
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2000353526A (en) Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
JP4879226B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2007123251A (en) Nonaqueous electrolyte secondary battery
JP2008181850A (en) Nonaqueous electrolyte secondary battery
JP4848582B2 (en) Method for producing positive electrode active material
JP2009245917A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
JP2001307731A (en) Positive active material and nonaqueous electrolyte battery
JP7249964B2 (en) Manufacturing method of lithium ion battery
JP2001202992A (en) Electrolytic solution for lithium secondary battery
JP2000251887A (en) Nonaqueous electrolyte battery
JP2003282147A (en) Lithium ion secondary battery
JP2003263979A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002042890A (en) Nonaqueous electrolyte battery
JP2003331922A (en) Cell
JP4491947B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
US9172089B2 (en) Anode active material, method of preparing the same, anode including the anode active material, and lithium battery including the anode
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106