JP2013161705A - Active material for secondary battery and method for producing the same - Google Patents

Active material for secondary battery and method for producing the same Download PDF

Info

Publication number
JP2013161705A
JP2013161705A JP2012024113A JP2012024113A JP2013161705A JP 2013161705 A JP2013161705 A JP 2013161705A JP 2012024113 A JP2012024113 A JP 2012024113A JP 2012024113 A JP2012024113 A JP 2012024113A JP 2013161705 A JP2013161705 A JP 2013161705A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
lithium
sio
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012024113A
Other languages
Japanese (ja)
Other versions
JP5831268B2 (en
Inventor
Yusuke Sugiyama
佑介 杉山
Naoto Yasuda
直人 安田
Nagisa Watanabe
渚 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012024113A priority Critical patent/JP5831268B2/en
Publication of JP2013161705A publication Critical patent/JP2013161705A/en
Application granted granted Critical
Publication of JP5831268B2 publication Critical patent/JP5831268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a novel active material for a secondary battery, excellent in initial charge/discharge efficiency, and a method for producing the active material for a secondary battery.SOLUTION: An active material for a secondary battery of the present invention contains a compound phase including a lithium metasilicate-based compound containing LiSiOas a basic composition and an Si-containing phase including Si fine particles, and the Si-containing phase is in a dispersion state. The active material for a secondary battery can be obtained through: a melting reaction step of allowing lithium hydroxide and a silicon-containing raw material at least including Si to react in an alkali metal nitrate-containing molten salt at 450°C or below; and a recovery step of recovering a reaction product from a mixture of the reaction product obtained in the melting reaction step and the molten salt.

Description

本発明は、リチウムイオン二次電池などに使用される二次電池用活物質およびその製造方法に関するものである。   The present invention relates to an active material for a secondary battery used for a lithium ion secondary battery and a method for producing the same.

リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノートパソコンといった幅広い分野で用いられている。リチウムイオン二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。なかでも電極に含まれる活物質材料の研究開発が活発に行われている。現在、一般的に用いられている負極活物質として黒鉛などの炭素系材料がある。黒鉛などを負極活物質とする炭素負極は、インターカレーション反応を有することから、サイクル特性や出力は良いものの、今後大幅な容量向上は期待出来ない。その一方で、リチウムイオン二次電池は仕様および用途の広がりとともに、さらなる容量向上に対する要求が強くなっている。そのため、炭素よりも高容量、すなわち高エネルギー密度を有する負極活物質の検討が行われている。   Secondary batteries such as lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers. The performance of the lithium ion secondary battery depends on the materials of the positive electrode, the negative electrode, and the electrolyte constituting the secondary battery. In particular, research and development of active material materials contained in electrodes are being actively conducted. Currently, there is a carbon-based material such as graphite as a negative electrode active material that is generally used. Since the carbon negative electrode using graphite or the like as the negative electrode active material has an intercalation reaction, the cycle characteristics and output are good, but a significant increase in capacity cannot be expected in the future. On the other hand, with respect to lithium ion secondary batteries, there is an increasing demand for further capacity improvement as specifications and applications expand. Therefore, a negative electrode active material having a higher capacity than carbon, that is, a high energy density has been studied.

高エネルギー密度を実現可能な負極活物質として、珪素や酸化珪素のような珪素系材料が挙げられる。珪素は、単位体積当りまたは単位質量当たりのリチウムイオンの吸蔵放出量が多く、炭素の10倍以上の高容量を示す。しかし、珪素系材料は、充放電容量が大きいものの、リチウム吸蔵時の体積膨張による電極破壊、珪素の微粉化による電極からの珪素の滑落およびそれらに起因する導電パスの切断、などが原因で、充放電サイクル特性に乏しいという課題がある。   Examples of the negative electrode active material capable of realizing a high energy density include silicon-based materials such as silicon and silicon oxide. Silicon has a large amount of occlusion and release of lithium ions per unit volume or unit mass, and exhibits a capacity 10 times or more that of carbon. However, although the silicon-based material has a large charge / discharge capacity, due to electrode destruction due to volume expansion during occlusion of lithium, silicon slid from the electrode due to silicon pulverization, and disconnection of conductive paths caused by them, etc. There is a problem that charge / discharge cycle characteristics are poor.

珪素の充放電サイクル特性の改善対策として、酸化珪素を負極活物質として用いることが知られている。酸化珪素(SiO:xは0.5≦x≦1.5程度)は、熱処理されると、SiとSiOとに分解することが知られている。これは不均化反応とよばれ、SiとOとの比が概ね1:1の均質な固体の一酸化珪素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。二相のうち微小なSi相が、主としてリチウムの吸蔵放出を行う。SiO相は、複数の微小なSi相を覆い電解液の分解を抑制する働きをもつ。したがって、Si相とSiO相とに分解したSiOからなる負極活物質を用いた二次電池は、サイクル特性に優れる。一方、酸化物の導電性が低いため、リチウムの拡散が不十分となる。また、SiO相がリチウムと電気化学反応してケイ酸塩を形成するため、不可逆容量(初期充電時に充電した容量のうち外部に取り出すことのできない容量、すなわち最初の充電容量と最初の放電容量との差)の増大、ひいては初期充放電効率が低下するという問題点を有していた。 As measures for improving the charge / discharge cycle characteristics of silicon, it is known to use silicon oxide as a negative electrode active material. It is known that silicon oxide (SiO x : x is about 0.5 ≦ x ≦ 1.5) decomposes into Si and SiO 2 when heat-treated. This is called a disproportionation reaction, and if it is a homogeneous solid silicon monoxide SiO in which the ratio of Si to O is approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by solid internal reaction. To do. Of the two phases, the fine Si phase mainly stores and releases lithium. The SiO 2 phase has a function of covering a plurality of minute Si phases and suppressing decomposition of the electrolytic solution. Therefore, the secondary battery using the negative electrode active material composed of SiO x decomposed into the Si phase and the SiO 2 phase has excellent cycle characteristics. On the other hand, since the conductivity of the oxide is low, lithium diffusion is insufficient. In addition, since the SiO 2 phase electrochemically reacts with lithium to form silicate, irreversible capacity (capacity that cannot be taken out of the capacity charged during initial charging, that is, initial charge capacity and initial discharge capacity) Difference) and thus the initial charge / discharge efficiency is reduced.

初期充放電効率を向上させるために、たとえば、不可逆容量分を予め電気化学的に充電したり、金属リチウムを貼り付けた負極を用いたりして、不可逆容量を補う方法が試みられている。また、珪素系材料とリチウムとを反応させて、リチウム含有珪素系材料を合成して不可逆容量を補う方法もある。   In order to improve the initial charge / discharge efficiency, for example, a method of compensating the irreversible capacity by electrochemically charging the irreversible capacity in advance or using a negative electrode attached with metallic lithium has been attempted. There is also a method of compensating for irreversible capacity by reacting a silicon-based material with lithium to synthesize a lithium-containing silicon-based material.

特許文献1には、リチウムが酸化珪素と融合化し一部が結晶化しているリチウム含有酸化珪素粉末が記載されている。たとえば、特許文献1の実施例1ではSi1モルに対し0.08モルのLiが、実施例5ではSi1モルに対し0.16モルのLiが、酸化珪素にドープされたリチウム含有酸化珪素粉末が、それぞれ示されている。図1および図2にはそれぞれのX線回折測定結果が示されているが、LiSiOやLiSiOといったケイ酸リチウム化合物の存在は確認できない。 Patent Document 1 describes a lithium-containing silicon oxide powder in which lithium is fused with silicon oxide and partly crystallized. For example, in Example 1 of Patent Document 1, 0.08 mol of Li per mol of Si is used, and in Example 5, 0.16 mol of Li per mol of Si is a lithium-containing silicon oxide powder doped with silicon oxide. , Respectively. Although the X-ray diffraction measurement results are shown in FIG. 1 and FIG. 2, the presence of lithium silicate compounds such as Li 2 SiO 3 and Li 4 SiO 4 cannot be confirmed.

特許文献2には、炭素質物と、炭素質物中に分散されたシリコン酸化物と、シリコン酸化物中に分散されたシリコンと、シリコン酸化物中に含まれLiSiOを主成分とするリチウムシリケート相と、を有する複合体粒子が開示されている。 Patent Document 2 discloses a carbonaceous material, silicon oxide dispersed in the carbonaceous material, silicon dispersed in the silicon oxide, and lithium containing Li 4 SiO 4 as a main component contained in the silicon oxide. Composite particles having a silicate phase are disclosed.

特許文献1に記載のリチウム含有酸化珪素粉末も特許文献2に記載の複合体粒子も、原料である酸化珪素とリチウム塩とを焼成することで、固体のままの原料の表面から反応させる、いわゆる固相法により合成されている。   Both the lithium-containing silicon oxide powder described in Patent Document 1 and the composite particle described in Patent Document 2 are reacted from the surface of a raw material that remains solid by firing silicon oxide and a lithium salt as raw materials. It is synthesized by the solid phase method.

特開2003−160328号公報JP 2003-160328 A 特開2007−59213号公報JP 2007-59213 A

固相法では、粉末状の原料(たとえばSiO粉末およびLiOH粉末)が混合された状態で反応が進む。SiO粒子の表面であってLiOH粉末と接触している箇所から順次シリケート化されて、ケイ酸リチウム化合物が生成される。しかし、固相法の場合には、LiOH粉末と接触しない箇所、たとえばSiO粒子の内部やSiO粒子の表面の一部に、未反応のSiOが残存する。未反応のSiOの存在は、リチウムのドープ量が不十分であり不可逆容量の低減効果が小さいことを意味する。また、SiO粒子の表層が十分にシリケート化していても内部がシリケート化されていない場合には、内部に未反応のSiOが存在し、充放電を担うSi相がSiO相とともに内部に偏在していると考えられる。しかし、シリケート化により形成された表層のケイ酸リチウム化合物がリチウムイオンなどの電解質イオンの移動を妨げる要因となり、不可逆容量の増大の原因になり得る。 In the solid phase method, the reaction proceeds in a state where powdery raw materials (for example, SiO powder and LiOH powder) are mixed. Silicates are sequentially formed from the surface of the SiO particles that are in contact with the LiOH powder to produce a lithium silicate compound. However, in the case of the solid phase method, unreacted SiO remains in a portion that does not come into contact with the LiOH powder, for example, in the inside of the SiO particles or a part of the surface of the SiO particles. The presence of unreacted SiO means that the doping amount of lithium is insufficient and the effect of reducing the irreversible capacity is small. In addition, when the surface layer of the SiO particles is sufficiently silicate but the inside is not silicate, there is unreacted SiO inside, and the Si phase responsible for charge / discharge is unevenly distributed inside the SiO 2 phase. It is thought that. However, the lithium silicate compound in the surface layer formed by silicate formation may hinder the movement of electrolyte ions such as lithium ions, and may increase the irreversible capacity.

本発明は、上記の問題点に鑑み、初期充放電効率に優れた新規の二次電池用活物質およびその製造方法を提供することを目的とする。   An object of this invention is to provide the novel active material for secondary batteries excellent in initial stage charge / discharge efficiency, and its manufacturing method in view of said problem.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、SiO粉末とLiOH粉末とを、LiNOの溶融塩中で反応させる溶融塩法により得られる反応生成物は、LiSiO相とSi微粒子とを含有し、充放電に関与するSi微粒子が分散した均一な組織を有することがわかった。この成果を発展させることで、本発明者は以降に述べる種々の発明を完成させるに至った。 As a result of extensive research and trial and error, the present inventor has obtained a reaction product obtained by a molten salt method in which a SiO powder and a LiOH powder are reacted in a molten salt of LiNO 3. It has been found that it contains a 2 SiO 3 phase and Si fine particles and has a uniform structure in which Si fine particles involved in charge and discharge are dispersed. By developing this result, the present inventor has completed various inventions described below.

本発明の二次電池用活物質は、LiSiOを基本組成とするメタケイ酸リチウム系化合物を含む化合物相と、Si微粒子を含むSi含有相と、を含有し該Si微粒子が分散状態にあることを特徴とする。 The active material for a secondary battery of the present invention includes a compound phase containing a lithium metasilicate compound having a basic composition of Li 2 SiO 3 and a Si-containing phase containing Si fine particles, and the Si fine particles are in a dispersed state. It is characterized by being.

なお、「分散状態」とは、換言すれば、Si微粒子が二次電池用活物質中で略均一に存在する状態である。たとえば、二次電池用活物質が粉末であれば、Si微粒子が他の粒子と共に粉末中に一様に混在している状態の他、粉末の一粒子を構成する母相中にSi微粒子が一様に存在する状態であってもよい。一粒子を構成する母相中にSi微粒子が偏在している場合には、巨視的には二次電池用活物質全体においてSi微粒子は凝集していると見なすことができ、そのようなSi微粒子は分散状態にはない。   In addition, the “dispersed state”, in other words, is a state where the Si fine particles are present substantially uniformly in the active material for the secondary battery. For example, if the active material for a secondary battery is a powder, in addition to a state in which Si fine particles are uniformly mixed in the powder together with other particles, there is one Si fine particle in the matrix constituting one particle of the powder. The state which exists like this may be sufficient. When Si fine particles are unevenly distributed in the matrix constituting one particle, it can be regarded macroscopically that the Si fine particles are aggregated in the entire active material for a secondary battery. Is not in a distributed state.

また、「基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるLi、Si、Oのサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等して化学量論組成から僅かにずれた非化学量論組成のものも含むことを意味する。   In addition, the term “basic composition” includes not only the composition represented by the composition formula but also those obtained by substituting some of the Li, Si, and O sites in the crystal structure with other elements. means. Further, it means that not only a stoichiometric composition but also a non-stoichiometric composition slightly deviating from the stoichiometric composition due to a deficiency in some elements.

本発明の二次電池用活物質は、リチウムを含む珪素系材料であるため、珪素系材料が元々有する不可逆容量が補われる。また、本発明の二次電池用活物質では、Si微粒子が、偏在せず分散して存在する。充放電を担うSi微粒子が分散状態にあるため、電解質イオンの移動が容易となり、ひいては不可逆容量の増大が抑制される。   Since the active material for a secondary battery of the present invention is a silicon-based material containing lithium, the irreversible capacity inherent in the silicon-based material is supplemented. In the active material for a secondary battery of the present invention, Si fine particles are present in a dispersed manner without being unevenly distributed. Since the Si fine particles responsible for charge and discharge are in a dispersed state, the movement of electrolyte ions is facilitated, and as a result, an increase in irreversible capacity is suppressed.

また、本発明の二次電池用活物質の製造方法は、
少なくともSiを含む珪素含有原料およびリチウム水酸化物を、アルカリ金属硝酸塩を含む450℃以下の溶融塩中で反応させる溶融反応工程と、
前記溶融反応工程にて得られた反応生成物と前記溶融塩との混合物から、該反応生成物を回収する回収工程と、
を含むことを特徴とする。
Moreover, the method for producing an active material for a secondary battery of the present invention includes:
A melt reaction step in which a silicon-containing raw material containing at least Si and lithium hydroxide are reacted in a molten salt of 450 ° C. or lower containing an alkali metal nitrate;
A recovery step of recovering the reaction product from a mixture of the reaction product obtained in the melting reaction step and the molten salt;
It is characterized by including.

珪素含有原料およびリチウム水酸化物のみを反応させると、リチウム水酸化物は反応性が高いため、珪素含有原料に含まれるSiを容易にシリケート化し、オルトケイ酸リチウム(LiSiO)を生成すると考えられる。この反応をアルカリ金属硝酸塩の溶融塩中で行うと、リチウム水酸化物の反応性が適度に抑制されると推察される。そのため、珪素含有原料に含まれるSiは全てがシリケート化されず、反応生成物にSiを残存させられる。Siは、充放電に積極的に寄与する。そして、珪素含有原料に含まれる一部のSiからLiSiOを基本組成とするメタケイ酸リチウム系化合物を含む化合物相が生成される。また、溶融塩中では、珪素含有原料およびリチウム水酸化物が微分散するため、原料全体が十分に反応した均一な組織が形成されやすい。その結果、LiSiOを基本組成とするメタケイ酸リチウム系化合物を含む化合物相と、Si微粒子を含むSi含有相と、を含有し該Si微粒子が分散状態にあるリチウム含有珪素系材料(すなわち本発明の二次電池用活物質)が容易に得られる。 When only the silicon-containing raw material and lithium hydroxide are reacted, since lithium hydroxide is highly reactive, Si contained in the silicon-containing raw material is easily silicated to produce lithium orthosilicate (Li 4 SiO 4 ). Conceivable. If this reaction is carried out in a molten salt of alkali metal nitrate, it is presumed that the reactivity of lithium hydroxide is moderately suppressed. Therefore, all the Si contained in the silicon-containing raw material is not silicate, and Si can remain in the reaction product. Si positively contributes to charge and discharge. Then, a compound phase containing a lithium metasilicate compound having a basic composition of Li 2 SiO 3 is generated from a part of Si contained in the silicon-containing raw material. Further, in the molten salt, since the silicon-containing raw material and lithium hydroxide are finely dispersed, it is easy to form a uniform structure in which the whole raw material is sufficiently reacted. As a result, a lithium-containing silicon-based material containing a compound phase containing a lithium metasilicate compound having a basic composition of Li 2 SiO 3 and a Si-containing phase containing Si fine particles, in which the Si fine particles are in a dispersed state (ie, The secondary battery active material of the present invention is easily obtained.

また、溶融塩中では、低温であっても、珪素含有原料とリチウム水酸化物との反応を進めることができる。そのため、高い温度で反応させる必要がある固相法に比べて、エネルギー的に有利である。   In the molten salt, the reaction between the silicon-containing raw material and the lithium hydroxide can proceed even at a low temperature. Therefore, it is advantageous in terms of energy compared to the solid phase method that requires the reaction at a high temperature.

本発明の二次電池用活物質は、リチウムイオン二次電池などの二次電池用負極材料として好適である。   The active material for a secondary battery of the present invention is suitable as a negative electrode material for a secondary battery such as a lithium ion secondary battery.

本発明の二次電池用活物質は、初期充放電効率に優れる。また、本発明の二次電池用活物質の製造方法によれば、優れた初期充放電効率を示すリチウム含有珪素系材料が容易に得られる。   The active material for a secondary battery of the present invention is excellent in initial charge / discharge efficiency. Moreover, according to the manufacturing method of the active material for secondary batteries of this invention, the lithium containing silicon type material which shows the outstanding initial stage charge / discharge efficiency is obtained easily.

本発明の二次電池用活物質であるリチウム含有珪素系材料粉末のX線回折(XRD)測定の結果を示す。The result of the X-ray diffraction (XRD) measurement of the lithium containing silicon type material powder which is the active material for secondary batteries of this invention is shown. 本発明の二次電池用活物質の断面を、走査電子顕微鏡(SEM)を用いて観察した結果を示す。The result of having observed the cross section of the active material for secondary batteries of this invention using the scanning electron microscope (SEM) is shown. 従来の固相法によるリチウム含有珪素系材料粉末の合成を低温にて行った場合に得られる反応生成物のXRD測定結果を示す。The XRD measurement result of the reaction product obtained when the synthesis | combination of the lithium containing silicon-type material powder by the conventional solid-phase method is performed at low temperature is shown. 従来の固相法により合成されたリチウム含有珪素系材料粉末のXRD測定結果を示す。The XRD measurement result of the lithium containing silicon type material powder synthesize | combined by the conventional solid-phase method is shown. 従来の固相法により合成されたリチウム含有珪素系材料粉末を、SEMを用いて観察した結果を示す。The result of having observed the lithium containing silicon system material powder synthesize | combined by the conventional solid-phase method using SEM is shown. リチウム含有珪素系材料粉末の一粒子の断面を示す模式図である。It is a mimetic diagram showing the section of one particle of lithium content silicon system material powder. 珪素含有原料に対するリチウム水酸化物の配合割合を変更して合成した本発明の二次電池用活物質であるリチウム含有珪素系材料粉末のXRD測定結果を示す。The XRD measurement result of the lithium containing silicon system material powder which is the active material for secondary batteries of this invention synthesize | combined by changing the mixture ratio of the lithium hydroxide with respect to a silicon containing raw material is shown. 高温条件下で合成された本発明の二次電池用活物質であるリチウム含有珪素系材料粉末のXRD測定結果を示す。The XRD measurement result of the lithium containing silicon type material powder which is the active material for secondary batteries of this invention synthesize | combined on high temperature conditions is shown. 珪素含有原料とリチウム水酸化物とをアルカリ金属硝酸塩の溶融塩中で高温条件下において反応させて得られた反応生成物のXRD測定結果を示す。The XRD measurement result of the reaction product obtained by making a silicon containing raw material and lithium hydroxide react under high temperature conditions in the molten salt of alkali metal nitrate is shown. 珪素含有原料をアルカリ金属硝酸塩の溶融塩中で反応させて得られる反応生成物のXRD測定結果を示す。The XRD measurement result of the reaction product obtained by making a silicon containing raw material react in the molten salt of alkali metal nitrate is shown.

以下に、本発明の二次電池用活物質およびその製造方法を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。   Below, the form for implementing the active material for secondary batteries of this invention and its manufacturing method is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.

<二次電池用活物質>
本発明の二次電池用活物質(「本発明の活物質」と略記することもある)は、メタケイ酸リチウム系化合物を含む化合物相とSi微粒子を含むSi含有相とを含有する。化合物相は、LiSiOを基本組成とするメタケイ酸リチウム系化合物を含む。Si含有相は、Si微粒子が分散状態にある。
<Active materials for secondary batteries>
The active material for secondary battery of the present invention (sometimes abbreviated as “active material of the present invention”) contains a compound phase containing a lithium metasilicate compound and a Si-containing phase containing Si fine particles. The compound phase includes a lithium metasilicate compound having a basic composition of Li 2 SiO 3 . In the Si-containing phase, Si fine particles are in a dispersed state.

化合物相は、LiSiOを基本組成とするメタケイ酸リチウム系化合物を含む。LiSiOを基本組成とするメタケイ酸リチウム系化合物の存在は、XRD測定により確認することができる。化合物相は、二次電池において電解質イオンの吸蔵放出に寄与しない不活性な相であるが、充放電に伴う活物質の体積変化を緩和する働きをもつ。したがって、本発明の活物質を用いた二次電池は、サイクル特性に優れる。また、メタケイ酸リチウム系化合物は、リチウム等と不可逆容量の原因となるような電気化学的な反応を起こしにくい。 The compound phase includes a lithium metasilicate compound having a basic composition of Li 2 SiO 3 . The presence of a lithium metasilicate compound having a basic composition of Li 2 SiO 3 can be confirmed by XRD measurement. The compound phase is an inactive phase that does not contribute to the occlusion and release of electrolyte ions in the secondary battery, but has a function of relaxing the volume change of the active material accompanying charge / discharge. Therefore, the secondary battery using the active material of the present invention is excellent in cycle characteristics. In addition, lithium metasilicate compounds do not easily cause an electrochemical reaction that causes irreversible capacity with lithium or the like.

また、化合物相は、たとえばLiSiOを基本組成とするオルトケイ酸リチウム系化合物のような他のケイ酸リチウム系化合物を実質的に含まないのが好ましい。メタケイ酸リチウム系化合物は、オルトケイ酸リチウム系化合物に比べて大気中で加水分解が進行しにくく取り扱いが容易であるため、化合物相に含まれるケイ酸リチウム系化合物として好適であると言える。 Further, compound phase is preferably for example not contain any other lithium silicate-based compounds such as the Li 4 SiO 4 orthosilicate lithium compound and basic composition essentially. Lithium metasilicate compounds can be said to be suitable as lithium silicate compounds contained in the compound phase because they are less prone to hydrolysis in the atmosphere and easier to handle than lithium orthosilicate compounds.

メタケイ酸リチウム系化合物は、Liの一部が他のアルカリ金属元素で置換されていてもよい。他のアルカリ金属元素は、Na、K、RbおよびCsのうちの一種以上である。メタケイ酸リチウム系化合物に含まれるLiを100原子%としたときに、10原子%以下さらには0.01〜5原子%のLiが他のアルカリ金属元素に置換されていてもよい。また、メタケイ酸リチウム系化合物は、Siの一部が他の金属元素で置換されていてもよい。他の金属元素としては、P、Ge、Sn、Al、Mg、Ca等が挙げられ、これらのうちの一種以上が好ましい。メタケイ酸リチウム系化合物に含まれるSiを100原子%としたときに、10原子%以下さらには0.01〜50原子%のSiが他の金属元素に置換されていてもよい。   In the lithium metasilicate compound, a part of Li may be substituted with another alkali metal element. The other alkali metal element is one or more of Na, K, Rb, and Cs. When Li contained in the lithium metasilicate compound is 100 atomic%, 10 atomic% or less, and 0.01 to 5 atomic% of Li may be substituted with another alkali metal element. In the lithium metasilicate compound, part of Si may be substituted with another metal element. Examples of other metal elements include P, Ge, Sn, Al, Mg, and Ca, and one or more of these are preferable. When Si contained in the lithium metasilicate compound is 100 atomic%, 10 atomic% or less, further 0.01 to 50 atomic% of Si may be substituted with another metal element.

Si含有相は、分散状態にあるSi微粒子を含む。Si微粒子は、化合物相中に分散して存在するのが好ましく、単結晶で分散していてもよいし、2以上の微結晶からなる多結晶で分散していてもよい。Si微粒子の存在も、XRD測定により確認することができる。   The Si-containing phase includes Si fine particles in a dispersed state. The Si fine particles are preferably present dispersed in the compound phase, and may be dispersed as a single crystal or may be dispersed as a polycrystal composed of two or more microcrystals. The presence of Si fine particles can also be confirmed by XRD measurement.

Si含有相は、粉末X線回折法で得られる(111)面の回折ピーク(2θが28°〜29°の位置に存在)の半値幅からシェラーの式より算出される結晶粒径が20nm以下さらには1〜10nmさらには1〜7nmであるのが好ましい。Si含有相に含まれる結晶の粒径がこの範囲にあれば、リチウムイオンなどの電解質イオンを吸蔵および放出する際の体積膨張および収縮により生じる応力が緩和され、また、粒子の微粉化およびそれに伴う電極劣化が抑制される。   The Si-containing phase has a crystal grain size of 20 nm or less calculated from Scherrer's equation from the half-value width of the diffraction peak of (111) plane (2θ exists at a position of 28 ° to 29 °) obtained by powder X-ray diffraction method. Further, it is preferably 1 to 10 nm, more preferably 1 to 7 nm. If the particle size of the crystals contained in the Si-containing phase is within this range, the stress caused by volume expansion and contraction when electrolyte ions such as lithium ions are occluded and released is relieved, and the particles are pulverized and accompanied by the associated fine particles. Electrode deterioration is suppressed.

また、本発明の活物質は、化合物相および前記Si含有相で構成される複合粒子を含むことが好ましい。複合粒子は、化合物相中にSi微粒子が分散してなるのが好ましい。複合粒子の大きさに特に限定はないが、本発明の活物質は、平均粒径が0.5〜50μmさらには1〜5μmである複合粒子の粉末を含むのが好ましい。平均粒径がこの範囲にあれば、電解質イオンの吸蔵放出に関与する表面積が十分に得られるため、好適である。なお、平均粒径は、たとえば、走査顕微鏡(SEM)観察を行い、SEM像より測定した複数の粒子の最大径(粒子を2本の平行線で挟んだとき平行線の間隔の最大値)の平均値とする。   Moreover, it is preferable that the active material of this invention contains the composite particle comprised by a compound phase and the said Si containing phase. The composite particles are preferably formed by dispersing Si fine particles in the compound phase. Although the size of the composite particles is not particularly limited, the active material of the present invention preferably contains a composite particle powder having an average particle size of 0.5 to 50 μm, more preferably 1 to 5 μm. If the average particle diameter is in this range, it is preferable because the surface area involved in the occlusion and release of electrolyte ions can be sufficiently obtained. The average particle diameter is, for example, the maximum diameter of a plurality of particles measured by scanning microscope (SEM) observation and measured from an SEM image (the maximum value of the interval between parallel lines when the particles are sandwiched between two parallel lines). Average value.

本発明の活物質は、化合物相とSi含有相とを含み、珪素酸化物を実質的に含まないほうがよい。たとえば、SiOは導電性が低く、リチウムイオンと結合して不可逆容量の原因となるため、本発明の活物質に含まれないのが好ましい。また、化合物相とSi含有相とが複合粒子を構成する場合には、化合物相が複合粒子に偏在しないのが好ましい。「複合粒子に偏在する」とは、粒子の一部のみに存在する場合、たとえば、粒子の表層を覆うようにして存在する場合に相当する。後に詳説する製造方法によれば、原料全体が均一に反応した均一な組織の複合粒子を製造できるため、化合物相は複合粒子内に均一に存在することができる。 The active material of the present invention preferably contains a compound phase and a Si-containing phase and substantially does not contain silicon oxide. For example, since SiO 2 has low conductivity and binds to lithium ions to cause irreversible capacity, it is preferably not included in the active material of the present invention. Further, when the compound phase and the Si-containing phase constitute the composite particle, it is preferable that the compound phase is not unevenly distributed in the composite particle. “Unevenly distributed in the composite particles” corresponds to the case where the particles exist only in a part of the particles, for example, the case where the particles exist so as to cover the surface of the particles. According to the production method described in detail later, since the composite particles having a uniform structure in which the entire raw material is uniformly reacted can be produced, the compound phase can exist uniformly in the composite particles.

<二次電池用負極>
本発明の活物質を用いて二次電池の電極が構成されるが、本発明の活物質は二次電池の負極活物質として好適である。負極は、集電体と、本発明の活物質を含み集電体上に結着された負極活物質層と、を有する。負極活物質層は、負極活物質およびバインダー樹脂に、必要に応じて導電助材および適量の有機溶剤を加えて混合し、スラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダー樹脂を硬化させることによって作製することができる。
<Anode for secondary battery>
Although the electrode of a secondary battery is comprised using the active material of this invention, the active material of this invention is suitable as a negative electrode active material of a secondary battery. The negative electrode includes a current collector and a negative electrode active material layer that includes the active material of the present invention and is bound on the current collector. The negative electrode active material layer is prepared by adding a conductive additive and an appropriate amount of an organic solvent to a negative electrode active material and a binder resin, and mixing them into a slurry. A roll coating method, a dip coating method, a doctor blade method, It can be produced by applying onto a current collector by a method such as spray coating or curtain coating and curing the binder resin.

集電体は、金属製のメッシュ、箔または板などの形状を採用することができるが、目的に応じた形状であれば特に限定されない。集電体として、たとえば銅箔やアルミニウム箔を好適に用いることができる。   The current collector can adopt a shape such as a metal mesh, foil, or plate, but is not particularly limited as long as it has a shape according to the purpose. For example, a copper foil or an aluminum foil can be suitably used as the current collector.

なお、負極活物質層は、上記本発明の活物質を必須として含み、他の負極活物質を含んでもよい。他の負極活物質としては、電解質イオンを吸蔵・放出可能である単体または化合物であれば特に限定はない。たとえば、リチウム、リチウムと合金化反応可能な元素であるNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Ge、Sn、Pb、SbおよびBiのうちの少なくとも一種を含む負極材料が挙げられる。具体的には、Cu−Sn合金、Co−Sn合金等の錫化合物、各種黒鉛などの炭素系材料が挙げられる。これらのうちの一種以上を、上記の負極活物質とともに使用可能である。   Note that the negative electrode active material layer includes the active material of the present invention as an essential component, and may include other negative electrode active materials. Other negative electrode active materials are not particularly limited as long as they are simple substances or compounds that can occlude and release electrolyte ions. For example, lithium, elements that can be alloyed with lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, A negative electrode material containing at least one of Ge, Sn, Pb, Sb, and Bi can be given. Specific examples include tin compounds such as Cu—Sn alloys and Co—Sn alloys, and carbon-based materials such as various graphites. One or more of these can be used together with the negative electrode active material.

導電助材は、電極の導電性を高めるために添加される。導電助材として二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、黒鉛、アセチレンブラックやケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物、Niフレークなどの既知の導電助材を用いてもよい。これらのうちの一種を単独でまたは二種以上を混合して用いるとよい。導電助材の使用量については、特に限定的ではないが、たとえば、活物質100質量部に対して、20〜100質量部程度とすることができる。導電助材の量が20質量部未満では効率のよい導電パスを形成できず、100質量部を超えると電極の成形性が悪化するとともにエネルギー密度が低くなる。なお、炭素材料からなる被覆層をもつ珪素酸化物粒子を用いる場合には、導電助材の添加量を低減することができ、あるいは添加しないでもよい。   The conductive additive is added to increase the conductivity of the electrode. What is necessary is just to use the material generally used with the electrode of a secondary battery as a conductive support material. For example, it is preferable to use conductive carbon materials such as carbon black (carbonaceous fine particles) such as graphite, acetylene black and ketjen black, and carbon fiber. In addition to the conductive carbon material, conductive organic compounds, Ni flakes, etc. For example, a known conductive aid may be used. One of these may be used alone or in combination of two or more. The amount of the conductive aid used is not particularly limited, but can be, for example, about 20 to 100 parts by mass with respect to 100 parts by mass of the active material. When the amount of the conductive additive is less than 20 parts by mass, an efficient conductive path cannot be formed, and when it exceeds 100 parts by mass, the moldability of the electrode is deteriorated and the energy density is lowered. When silicon oxide particles having a coating layer made of a carbon material are used, the amount of conductive additive added can be reduced or not added.

バインダー樹脂は、活物質および導電助材を集電体に結着するための結着剤として用いられる。バインダー樹脂はなるべく少ない量で活物質等を結着させることが求められ、その量は、負極活物質、導電助材およびバインダー樹脂を合計で100質量%としたときに、0.5〜50質量%が望ましい。バインダー樹脂量が0.5質量%未満では電極の成形性が低下し、50質量%を超えると電極のエネルギー密度が低くなる。なお、バインダー樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴム(SBR)等のゴム、ポリイミド等のイミド系ポリマー、ポリアミドイミド、アルコキシルシリル基含有樹脂、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、アルギン酸、ゼラチンなどが例示される。またアクリル酸と、メタクリル酸、イタコン酸、フマル酸、マレイン酸などの酸モノマーとの共重合物を用いることもできる。中でもポリアクリル酸など、カルボキシル基を含有する樹脂が特に望ましく、カルボキシル基の含有量が多い樹脂ほど好ましい。   The binder resin is used as a binder for binding the active material and the conductive additive to the current collector. The binder resin is required to bind the active material and the like in as little amount as possible, and the amount is 0.5 to 50 mass when the negative electrode active material, the conductive additive and the binder resin are 100 mass% in total. % Is desirable. When the amount of the binder resin is less than 0.5% by mass, the moldability of the electrode is deteriorated. In addition, as binder resin, fluoropolymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), imide polymers such as polyimide, polyamideimide, alkoxylsilyl groups Examples thereof include resins containing polyacrylic acid, polymethacrylic acid, polyitaconic acid, alginic acid, and gelatin. A copolymer of acrylic acid and an acid monomer such as methacrylic acid, itaconic acid, fumaric acid or maleic acid can also be used. Among them, a resin containing a carboxyl group such as polyacrylic acid is particularly desirable, and a resin having a higher carboxyl group content is more preferable.

<二次電池用活物質の製造方法>
次に、本発明の活物質を容易に合成可能な負極活物質の製造方法(本発明の製造方法)を説明する。本発明の製造方法は、主として、溶融反応工程と回収工程とを含む。以下にそれぞれの工程を説明する。
<Method for producing active material for secondary battery>
Next, a method for producing a negative electrode active material capable of easily synthesizing the active material of the present invention (production method of the present invention) will be described. The production method of the present invention mainly includes a melting reaction step and a recovery step. Each process will be described below.

溶融反応工程は、少なくともSiを含む珪素含有原料およびリチウム水酸化物を、アルカリ金属硝酸塩を含む溶融塩中で反応させる工程である。   The melting reaction step is a step in which a silicon-containing raw material containing at least Si and lithium hydroxide are reacted in a molten salt containing an alkali metal nitrate.

リチウム水酸化物は、本発明の活物質を構成するLi源となる。リチウム水酸化物として、無水水酸化リチウム(LiOH)および/または水酸化リチウム一水和物(LiOH・HO)を使用可能である。 Lithium hydroxide becomes a Li source constituting the active material of the present invention. As lithium hydroxide, anhydrous lithium hydroxide (LiOH) and / or lithium hydroxide monohydrate (LiOH.H 2 O) can be used.

珪素含有原料は、本発明の活物質を構成するSi源となる。珪素含有原料は、Siを含有する材料であれば、単体、化合物および合金のうちのいずれであってもよい。具体的には、単体珪素、一酸化珪素(SiO:xは0.9≦x≦1.9)、二酸化珪素(SiO:yは2)等が挙げられる。珪素含有原料としては、これらのうちの一種以上を含めばよいが、特に好ましくは、一酸化珪素(SiO)である。SiOは、前述の不均化処理の有無に関わらず使用可能であるが、不均化処理によりSiO相とSi相との二相に予め分離したものを使用してもよい。 The silicon-containing raw material becomes a Si source constituting the active material of the present invention. The silicon-containing raw material may be any of a simple substance, a compound, and an alloy as long as it contains Si. Specific examples include simple silicon, silicon monoxide (SiO x : x is 0.9 ≦ x ≦ 1.9), silicon dioxide (SiO y : y is 2), and the like. The silicon-containing raw material may include one or more of these, but silicon monoxide (SiO x ) is particularly preferable. SiO x can be used regardless of whether or not the above-mentioned disproportionation treatment is performed, but it is also possible to use a material that has been separated into two phases of SiO 2 phase and Si phase by disproportionation treatment.

SiとOとの原子比が概ね1:1の均質な固体である一酸化珪素(SiO)は、固体内部の反応によりSiOがSiO相とSi相との二相に不均化する。不均化により得られる酸化珪素粉末は、SiO相とSi相とを含む。不均化は、SiOにエネルギーを付与することにより進行する。エネルギー付与手段としては、熱エネルギーを付与する、ミリングなどにより機械的エネルギーを付与する、などが挙げられる。 In silicon monoxide (SiO x ), which is a homogeneous solid with an atomic ratio of Si and O of approximately 1: 1, SiO x is disproportionated into two phases of SiO 2 phase and Si phase due to the reaction inside the solid. . The silicon oxide powder obtained by disproportionation includes a SiO 2 phase and a Si phase. Disproportionation proceeds by applying energy to SiO x . Examples of the energy application means include application of thermal energy, application of mechanical energy by milling or the like.

熱エネルギーを付与する場合には、SiOを加熱するとよい。一般に、酸素を絶った状態であれば800℃以上で、ほぼすべての一酸化珪素が不均化して二相に分離すると言われている。具体的には、非結晶性の一酸化珪素粉末を含む原料粉末に対して、真空中または不活性ガス中などの不活性雰囲気中で800〜1200℃、1〜5時間の熱処理を行うことにより、非結晶性のSiO相と結晶性のSi相の二相を含む酸化珪素粉末が得られる。 When applying heat energy, it is preferable to heat SiO x . In general, it is said that almost all silicon monoxide is disproportionated and separated into two phases at 800 ° C. or higher when oxygen is turned off. Specifically, a raw material powder containing amorphous silicon monoxide powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as in a vacuum or an inert gas. A silicon oxide powder containing two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.

また、一酸化珪素をミリングすると、ミリングの機械的エネルギーが一酸化珪素の固相界面における化学的な原子拡散に寄与し、酸化物相および珪素相を生成する。ミリングは、真空中、アルゴンガス中などの不活性ガス雰囲気下で行うとよい。V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用することが可能である。一酸化珪素のミリング中、あるいはミリング後に加熱することで、一酸化珪素の不均化をさらに促進させてもよい。   In addition, when silicon monoxide is milled, the mechanical energy of milling contributes to chemical atomic diffusion at the solid phase interface of silicon monoxide, generating an oxide phase and a silicon phase. Milling may be performed in an inert gas atmosphere such as vacuum or argon gas. A V-type mixer, ball mill, attritor, jet mill, vibration mill, high energy ball mill, or the like can be used. Disproportionation of silicon monoxide may be further promoted by heating during or after milling of silicon monoxide.

珪素含有原料は、粉末状であるのが好ましい。珪素含有原料は、溶融塩中で溶解して微細に分散するため、その粒径に特に限定はないが、平均粒径で0.5〜50μmの粉末を用いるとよい。あるいは、1μm以下に分級した珪素含有原料を使用するとよい。   The silicon-containing raw material is preferably in powder form. Since the silicon-containing raw material is dissolved and finely dispersed in the molten salt, the particle size is not particularly limited, but a powder having an average particle size of 0.5 to 50 μm may be used. Alternatively, a silicon-containing raw material classified to 1 μm or less may be used.

リチウム水酸化物および珪素含有原料は、リチウム水酸化物に含まれるLiと珪素含有原料に含まれるSiとがモル比で1:1程度となるように調製するのが好適である。しかし、本発明の製造方法では、リチウム水酸化物の割合を多くしても、所望の組成を有する活物質が得られる。具体的には、珪素含有原料に含まれるSiに対するリチウム水酸化物に含まれるLiの割合(Li/Si)が、モル比で0.3〜10さらには0.4〜5となるようにリチウム水酸化物および珪素含有原料を調製するとよい。Li/Siが0.3以上であれば、リチウムドープによる不可逆容量の低減効果が得られやすい。しかし、リチウム水酸化物の使用量が過剰であると、反応性が高すぎて、充放電に関与するSi微粒子が十分に残存しない反応生成物しか得られない場合がある。そのため、Li/Siを10以下とするのが望ましい。ただし、Li/Siが10を越えても、アルカリ金属硝酸塩の使用量を増加させることにより、反応を抑制することが可能である。   The lithium hydroxide and the silicon-containing raw material are preferably prepared so that Li contained in the lithium hydroxide and Si contained in the silicon-containing raw material have a molar ratio of about 1: 1. However, in the production method of the present invention, an active material having a desired composition can be obtained even if the proportion of lithium hydroxide is increased. Specifically, the lithium (Li / Si) contained in the lithium hydroxide with respect to Si contained in the silicon-containing raw material has a molar ratio of 0.3 to 10, and more preferably 0.4 to 5. A hydroxide and silicon-containing raw material may be prepared. If Li / Si is 0.3 or more, the effect of reducing the irreversible capacity by lithium doping is easily obtained. However, if the amount of lithium hydroxide used is excessive, the reactivity may be too high, and only a reaction product in which Si fine particles involved in charge / discharge do not remain sufficiently may be obtained. Therefore, it is desirable that Li / Si is 10 or less. However, even if Li / Si exceeds 10, it is possible to suppress the reaction by increasing the amount of alkali metal nitrate used.

合成する目的の活物質に、LiおよびSiの他の元素を添加したい場合には、珪素含有原料およびリチウム水酸化物を必須とし、さらに添加元素を含む添加元素含有材料を使用してもよい。添加元素含有材料としては、アルカリ金属水酸化物、有機アルカリ塩、アルコキシド塩、金属窒化物などが挙げられる。あるいは、珪素とともに添加元素を含む珪素含有原料を使用してもよい。これらのうちの一種以上を目的の活物質の組成に応じて使用するとよい。このような原料は、Siを含む少なくとも二種の金属元素を含む水溶液をアルカリ性にすることで、沈殿物として得られる。   In the case where it is desired to add other elements of Li and Si to the active material to be synthesized, an additive element-containing material containing an additive element and a silicon-containing raw material and lithium hydroxide may be used. Examples of the additive element-containing material include alkali metal hydroxides, organic alkali salts, alkoxide salts, and metal nitrides. Alternatively, a silicon-containing raw material containing an additive element together with silicon may be used. One or more of these may be used depending on the composition of the target active material. Such a raw material is obtained as a precipitate by making an aqueous solution containing at least two metal elements containing Si alkaline.

アルカリ金属硝酸塩は、溶融塩法による合成において、珪素含有原料およびリチウム水酸化物を分散させる溶媒としての役割を果たす。アルカリ金属硝酸塩としては、リチウム水酸化物よりも融点が低い硝酸塩が望ましく、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸ルビジウムおよび硝酸セシウムのうちの一種以上を使用するとよい。特に望ましくは、アルカリ金属硝酸塩のうち最も融点が低い、硝酸リチウム(融点は261℃)である。硝酸リチウムの溶融塩は、リチウム水酸化物が溶融状態で混合することで、混合溶融塩の融点は低下し約250℃となる。そのため、300℃以下の低温で、活物質を合成することも可能となる。   The alkali metal nitrate serves as a solvent for dispersing the silicon-containing raw material and lithium hydroxide in the synthesis by the molten salt method. The alkali metal nitrate is preferably a nitrate having a melting point lower than that of lithium hydroxide, and one or more of lithium nitrate, sodium nitrate, potassium nitrate, rubidium nitrate, and cesium nitrate may be used. Particularly desirable is lithium nitrate (melting point: 261 ° C.), which has the lowest melting point among alkali metal nitrates. When the lithium nitrate molten salt is mixed in the molten state, the melting point of the mixed molten salt is lowered to about 250 ° C. Therefore, the active material can be synthesized at a low temperature of 300 ° C. or lower.

溶融塩は、珪素含有原料およびリチウム水酸化物を分散させるとともにリチウム水酸化物を溶融状態で混合する役割を果たす。アルカリ金属硝酸塩は、その溶融塩中に珪素含有原料およびリチウム水酸化物を分散させることができれば、その量に特に限定はない。しかし、アルカリ金属硝酸塩が過少であると、反応性が高すぎて、充放電に関与するSi微粒子が少ない反応生成物しか得られない場合がある。そのため、リチウム水酸化物に対するアルカリ金属硝酸塩の割合(アルカリ金属硝酸塩/リチウム水酸化物)は、モル比で5以上、5〜50さらには5〜20であるのが望ましい。アルカリ金属硝酸塩/リチウム水酸化物のモル比が50を越えると、使用する溶融塩の量に対する珪素含有原料およびリチウム水酸化物の量が少なくなるため、製造効率の面で望ましくない。   The molten salt serves to disperse the silicon-containing raw material and lithium hydroxide and to mix the lithium hydroxide in a molten state. The amount of the alkali metal nitrate is not particularly limited as long as the silicon-containing raw material and the lithium hydroxide can be dispersed in the molten salt. However, if the amount of alkali metal nitrate is too small, the reactivity may be too high and only a reaction product with few Si fine particles involved in charge / discharge may be obtained. Therefore, the ratio of alkali metal nitrate to lithium hydroxide (alkali metal nitrate / lithium hydroxide) is preferably 5 or more, 5 to 50, or 5 to 20 in terms of molar ratio. When the alkali metal nitrate / lithium hydroxide molar ratio exceeds 50, the amount of silicon-containing raw material and lithium hydroxide with respect to the amount of molten salt to be used is decreased, which is not desirable in terms of production efficiency.

溶融反応工程での反応温度は、溶融塩の温度に相当し、溶融塩が溶融状態で存在できる温度以上であればよい。基本的には、溶融状態で存在できる温度以上で反応を行えばよく、反応温度が高いほど所望の活物質を効率よく生成させられる。しかし、反応温度が高すぎると、反応性が高すぎて充放電に関与するSi微粒子が減少する場合がある。また、反応温度が高すぎると、アルカリ金属硝酸塩が分解しやすくなる。そのため、反応温度は、溶融塩が溶融状態で存在できる温度以上450℃以下、250〜400℃さらには260〜300℃が望ましい。上記の反応温度で、60分以上望ましくは3〜8時間反応させることで、所望の組成および構造を有する活物質が得られる。   The reaction temperature in the melting reaction step corresponds to the temperature of the molten salt, and may be higher than the temperature at which the molten salt can exist in the molten state. Basically, the reaction may be performed at a temperature higher than the temperature at which it can exist in a molten state, and the higher the reaction temperature, the more efficiently the desired active material can be generated. However, if the reaction temperature is too high, the reactivity is too high and the Si fine particles involved in charge / discharge may be reduced. Moreover, when reaction temperature is too high, it will become easy to decompose | disassemble alkali metal nitrate. For this reason, the reaction temperature is preferably not lower than the temperature at which the molten salt can exist in a molten state and not higher than 450 ° C., 250 to 400 ° C., and more preferably 260 to 300 ° C. By reacting at the above reaction temperature for 60 minutes or longer, desirably 3 to 8 hours, an active material having a desired composition and structure can be obtained.

また、溶融反応工程は、大気中で行ってもよいが、アルゴンガス中などの不活性雰囲気で行うとよい。   In addition, the melt reaction step may be performed in the air, but may be performed in an inert atmosphere such as in argon gas.

溶融反応工程に先立ち、珪素含有原料、リチウム水酸化物およびアルカリ金属硝酸塩のうちの少なくとも一部を乾燥させる乾燥工程を行うとよい。乾燥工程は、主に、水酸化リチウム一水和物を脱水することを目的とするが、無水水酸化リチウムを用いる場合であっても、他の原料として吸湿性の高い化合物を使用する場合には、有効である。溶融反応工程において水酸化リチウムを含む溶融塩中に存在する水は、非常にpHが高くなる。pHの高い水の存在下で溶融反応工程が行われると、その水が坩堝と接触することで、坩堝の種類によっては坩堝の成分が微量ではあるが溶融塩に溶出する可能性がある。乾燥工程では、原料から水分が除去されるため、坩堝の成分の溶出抑制につながる。また、乾燥工程において原料から水分を除去することで、溶融反応工程において水が沸騰して溶融塩が飛散するのを防止できる。乾燥工程は、真空乾燥器を用いるのであれば、80〜150℃で2〜24時間真空乾燥するとよい。   Prior to the melt reaction step, a drying step of drying at least a part of the silicon-containing raw material, lithium hydroxide, and alkali metal nitrate may be performed. The drying process is mainly intended to dehydrate lithium hydroxide monohydrate, but even when anhydrous lithium hydroxide is used, when using a highly hygroscopic compound as another raw material. Is valid. The water present in the molten salt containing lithium hydroxide in the melting reaction step has a very high pH. When the melt reaction step is performed in the presence of water having a high pH, the water may come into contact with the crucible, and depending on the type of the crucible, the amount of the crucible component may be eluted into the molten salt although the amount is small. In the drying process, moisture is removed from the raw material, which leads to suppression of elution of the crucible components. Further, by removing moisture from the raw material in the drying step, it is possible to prevent water from boiling in the melting reaction step and the molten salt from being scattered. If a vacuum dryer is used for a drying process, it is good to vacuum-dry at 80-150 degreeC for 2 to 24 hours.

溶融反応工程では、主として、以下の式(1)および(2)あるいは式(3)および(3)’、で表される反応が進行すると推察される。   In the melt reaction step, it is presumed that the reaction represented by the following formulas (1) and (2) or formulas (3) and (3) 'proceeds mainly.

式(1)は、xが1である一酸化珪素の不均化反応を表す。不均化反応は、溶融反応工程に先立ち珪素含有原料に対して予め施される、あるいは溶融塩中に一酸化珪素が微分散する際に不均化と同等の反応が進行していると考えられる。いずれの場合も、溶融塩中では、式(2)で表されるように、SiOとLiOHとが優先的に反応して、LiSiOが生成すると推察される。したがって、不均化反応により生成されたSi微粒子を含むSi含有相は、アルカリ金属硝酸塩を含む溶融塩の反応抑制効果により、LiOHと反応せずに残存すると推察される。 Formula (1) represents a disproportionation reaction of silicon monoxide in which x is 1. The disproportionation reaction is preliminarily applied to the silicon-containing raw material prior to the melting reaction step, or it is considered that a reaction equivalent to the disproportionation proceeds when silicon monoxide is finely dispersed in the molten salt. It is done. In either case, in the molten salt, as represented by the formula (2), it is presumed that SiO 2 and LiOH preferentially react to produce Li 2 SiO 3 . Therefore, it is presumed that the Si-containing phase containing the Si fine particles generated by the disproportionation reaction remains without reacting with LiOH due to the reaction suppressing effect of the molten salt containing the alkali metal nitrate.

また、式(3)は、単体珪素と水酸化リチウムとの反応を表す。珪素含有原料が単体珪素であっても、アルカリ金属硝酸塩を含む溶融塩の反応抑制効果により、Si含有相が残存すると推察される。ただし、式(2)で表されるような酸素が過剰に存在するSiOの反応とは異なり、SiとLiOHとの反応では、LiSiOが生成される。そして、反応生成物は、単体珪素粒子が溶融塩中で一旦溶融してから生成したものであるため、Si含有相としてSi微粒子が分散状態で含まれると推察される。溶融塩法では、反応生成物を回収する際に水洗等を行う。そのため、式(3)’で示されるようにLiSiOが加水分解され、回収される生成物にはSiとLiSiOとが含まれる。 Formula (3) represents the reaction between elemental silicon and lithium hydroxide. Even if the silicon-containing raw material is simple silicon, it is presumed that the Si-containing phase remains due to the reaction suppression effect of the molten salt containing the alkali metal nitrate. However, unlike the reaction of SiO in which oxygen is excessively present as represented by the formula (2), Li 4 SiO 4 is generated in the reaction of Si and LiOH. And since a reaction product is what was produced | generated after the single-piece | unit silicon particle once melted in molten salt, it is guessed that Si microparticles | fine-particles are contained in a dispersed state as Si containing phase. In the molten salt method, washing of the reaction product is performed when recovering the reaction product. Therefore, Li 4 SiO 4 is hydrolyzed as represented by the formula (3) ′, and the recovered product contains Si and Li 2 SiO 3 .

ところで、式(4)は、アルカリ金属硝酸塩を含む溶融塩を用いず、SiO(Si+SiO)とLiOHとを固相法により高温下で反応させた場合を表す。既に述べた通り、反応性の高いLiOHと接触するSiOは、反応によりLiSiOを生成する。LiOHと接触しなかったSiOには、Si相とSiO相とが残存する。しかし、式(2)と式(4)とを比較すると、反応前後でSiの消費量に差が見られる。式(4)では、Si微粒子として残存し得るSiが半分に減少していることがわかる。したがって、固相法により得られる反応生成物では、充放電に関与するSi微粒子が少なくなる。また、Si微粒子は、未反応部分に偏在する。 By the way, Formula (4) represents the case where SiO (Si + SiO 2 ) and LiOH are reacted at a high temperature by a solid phase method without using a molten salt containing an alkali metal nitrate. As already described, SiO that comes into contact with highly reactive LiOH generates Li 4 SiO 4 by the reaction. In the SiO that has not contacted LiOH, the Si phase and the SiO 2 phase remain. However, when Equation (2) is compared with Equation (4), there is a difference in Si consumption before and after the reaction. In formula (4), it can be seen that Si that can remain as Si fine particles is reduced by half. Therefore, in the reaction product obtained by the solid phase method, Si fine particles involved in charge / discharge are reduced. Si fine particles are unevenly distributed in the unreacted portion.

回収工程は、溶融反応工程にて得られた反応生成物と溶融塩との混合物から、該反応生成物を回収する工程である。回収工程は、以下に説明する冷却工程および分離工程を含むとよい。   The recovery step is a step of recovering the reaction product from the mixture of the reaction product and molten salt obtained in the melt reaction step. The recovery step may include a cooling step and a separation step described below.

冷却工程は、溶融反応工程後の溶融塩を冷却する工程である。冷却工程では、反応終了後の高温の溶融塩を、加熱炉の中に放置して炉冷してもよいし、加熱炉から取り出して室温にて空冷してもよい。冷却により溶融塩は凝固するため、冷却工程後には、合成されたリチウム含有珪素系材料(反応生成物)と溶融塩との混合物が固形物で得られる。   The cooling step is a step of cooling the molten salt after the melting reaction step. In the cooling step, the high-temperature molten salt after completion of the reaction may be left in a heating furnace to be cooled, or may be taken out of the heating furnace and air-cooled at room temperature. Since the molten salt is solidified by cooling, a mixture of the synthesized lithium-containing silicon-based material (reaction product) and the molten salt is obtained as a solid after the cooling step.

分離工程は、冷却工程により凝固した溶融塩を極性プロトン性溶媒に溶解させて、溶融塩から反応生成物(リチウム含有珪素材料)を分離する工程である。なお、極性プロトン性溶媒は、凝固した溶融塩(つまり硝酸リチウムなどの溶融塩原料)を溶解することができるため本工程に採用されるが、プロトン供与性をもつ溶媒であるため、リチウム含有珪素系材料にLi欠損が生じやすい。しかし、プロトン性溶媒は、非プロトン性溶媒に比べてイオンを安定化させる効果があり、溶融塩であった硝酸リチウムを溶解するのに適しているため、本工程に好適である。具体的には、イオン交換水などの純水、エタノールなどのアルコール類、これらを含む混合溶媒等が挙げられる。固化した溶融塩は極性プロトン性溶媒に容易に溶解し、極性プロトン性溶媒に溶解しにくいリチウム含有珪素系材料は溶液中に溶け残る。そのため、溶融塩と反応生成物とは、容易に分離される。反応生成物の回収方法に特に限定はないが、溶液を遠心分離したり濾過したりして、回収可能である。回収後の反応生成物を乾燥させてもよい。   The separation step is a step of dissolving the molten salt solidified in the cooling step in a polar protic solvent and separating the reaction product (lithium-containing silicon material) from the molten salt. A polar protic solvent is used in this step because it can dissolve a solidified molten salt (that is, a molten salt raw material such as lithium nitrate). However, since it is a solvent having a proton donating property, lithium-containing silicon is used. Li deficiency tends to occur in the system material. However, a protic solvent has an effect of stabilizing ions as compared with an aprotic solvent, and is suitable for dissolving lithium nitrate, which is a molten salt, and thus is suitable for this step. Specific examples include pure water such as ion-exchanged water, alcohols such as ethanol, and mixed solvents containing these. The solidified molten salt is easily dissolved in the polar protic solvent, and the lithium-containing silicon-based material that is difficult to dissolve in the polar protic solvent remains undissolved in the solution. Therefore, the molten salt and the reaction product are easily separated. The method for collecting the reaction product is not particularly limited, but the solution can be collected by centrifugation or filtration. You may dry the reaction product after collection | recovery.

また、分離工程は、溶融反応工程後に凝固した溶融塩を少なくとも水を含む溶媒に溶解させて、溶融塩から反応生成物を分離する工程であるのが望ましい。水を含む溶媒を使用することで、反応生成物に含まれるLiSiOが加水分解(LiSiO+HO→LiMnO+2LiOH)され、LiMnOになる。したがって、単体珪素がリチウム水酸化物と反応して生成された不安定なLiSiOが安定なLiMnOとなる。加水分解の副生成物であるLiOHは、水と共に除去される。 The separation step is desirably a step of separating the reaction product from the molten salt by dissolving the molten salt solidified after the melting reaction step in a solvent containing at least water. By using a solvent containing water, Li 4 SiO 4 contained in the reaction product is hydrolyzed (Li 4 SiO 4 + H 2 O → Li 2 MnO 3 + 2LiOH) to become Li 2 MnO 3 . Therefore, unstable Li 4 SiO 4 produced by reacting single silicon with lithium hydroxide becomes stable Li 2 MnO 3 . LiOH, a by-product of hydrolysis, is removed along with water.

<二次電池>
上記した活物質を含む負極を有する本発明の二次電池は、該負極とともに、特に限定されない公知の正極、電解質およびセパレータを備える。正極は、リチウムイオン二次電池等の二次電池で使用可能なものであればよい。正極は、集電体と、正極活物質を含み集電体上に結着された正極活物質層と、を有する。正極活物質層は、正極活物質およびバインダー樹脂を含み、さらには導電助材を含んでもよい。正極活物質、導電助材およびバインダー樹脂は、特に限定はなく、二次電池で使用可能なものであればよい。
<Secondary battery>
The secondary battery of the present invention having the negative electrode containing the active material described above includes a known positive electrode, an electrolyte, and a separator that are not particularly limited, together with the negative electrode. The positive electrode only needs to be usable in a secondary battery such as a lithium ion secondary battery. The positive electrode includes a current collector and a positive electrode active material layer that includes the positive electrode active material and is bound on the current collector. The positive electrode active material layer includes a positive electrode active material and a binder resin, and may further include a conductive additive. The positive electrode active material, the conductive additive and the binder resin are not particularly limited as long as they can be used in the secondary battery.

正極活物質としては、LiCoO、LiNiCoMn(0<p<1、0+p<q<1−p、0+(p+q)<r<1−(p+q))、LiMnO、LiMnO、LiNiMn(0<s<1、0+s<t<1−s)、LiFePO、LiFeSO、Liを基本組成とするリチウム含有金属酸化物あるいはそれぞれを1種または2種以上含む固溶体材料などが挙げられる。また、正極活物質として、充放電における電解質イオンとなるリチウム等の元素を含まない活物質、たとえば硫黄単体(S)、ポリアクリロニトリル(PAN)などの有機化合物にSを導入した硫黄変性化合物やTiSなどの金属硫化物、ポリアニリン、共役二酢酸系有機物などを用いることもできる。 As the positive electrode active material, LiCoO 2 , LiNi p Co q Mn r O 2 (0 <p <1, 0 + p <q <1-p, 0+ (p + q) <r <1- (p + q)), Li 2 MnO 2 , Li 2 MnO 3 , LiNi s Mn t O 2 (0 <s <1, 0 + s <t <1-s), LiFePO 4 , Li 2 FeSO 4 , lithium-containing metal oxide having a basic composition of Li, or Examples thereof include a solid solution material containing one or more kinds. Further, as a positive electrode active material, an active material not containing an element such as lithium that becomes an electrolyte ion in charge and discharge, for example, sulfur-modified compounds in which S is introduced into an organic compound such as simple sulfur (S), polyacrylonitrile (PAN), or TiS. Metal sulfides such as 2 , polyaniline, conjugated diacetate-based organic substances, and the like can also be used.

集電体は、金属製のメッシュ、箔または板などの形状を採用することができるが、目的に応じた形状であれば特に限定されない。集電体は、アルミニウム、ニッケル、ステンレス鋼など、二次電池の正極で一般的に使用されるものであればよい。バインダー樹脂および導電助材は上記の負極で記載したものと同様のものが使用できる。   The current collector can adopt a shape such as a metal mesh, foil, or plate, but is not particularly limited as long as it has a shape according to the purpose. The current collector is not particularly limited as long as it is generally used for the positive electrode of the secondary battery, such as aluminum, nickel, and stainless steel. As the binder resin and the conductive additive, the same materials as those described above for the negative electrode can be used.

なお、正極活物質、結着剤および導電助材の配合割合は、従来の二次電池に倣って設定すればよい。   In addition, what is necessary is just to set the mixing | blending ratio of a positive electrode active material, a binder, and a conductive support material according to the conventional secondary battery.

正極活物質層は、通常、正極活物質およびバインダー樹脂に、必要に応じて導電助材および適量の有機溶剤を加えて混合し、スラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダー樹脂を硬化させることによって作製することができる。なお、シート状の硫黄変性化合物であれば、そのまま正極活物質層として集電体に圧着してもよい。   The positive electrode active material layer is usually prepared by adding a conductive additive and an appropriate amount of an organic solvent to the positive electrode active material and a binder resin, and mixing them into a slurry, which is then rolled, dip coated, doctor blade It can be produced by coating on a current collector by a method such as a spray coating method or a curtain coating method, and curing the binder resin. In addition, as long as it is a sheet-like sulfur-modified compound, the positive electrode active material layer may be directly pressure-bonded to the current collector.

電解質は、有機溶媒に電解質であるリチウム金属塩を溶解させた電解液を用いるとよい。電解液は、特に限定されない。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、NaPF、NaBF、NaAsF、LiBOB、等の有機溶媒に可溶なアルカリ金属塩を用いることができる。電解質の濃度は、0.5〜1.7mol/L程度であればよい。 As the electrolyte, an electrolytic solution in which a lithium metal salt that is an electrolyte is dissolved in an organic solvent may be used. The electrolytic solution is not particularly limited. As the organic solvent, an aprotic organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) or the like is used. Can do. As the electrolytes dissolved, it can be used LiPF 6, LiBF 4, LiAsF 6 , LiI, NaPF 6, NaBF 4, NaAsF 6, LiBOB, soluble alkali metal salt in an organic solvent and the like. The concentration of the electrolyte may be about 0.5 to 1.7 mol / L.

セパレータは、正極と負極との間に配置され、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、PAN、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。   The separator is disposed between the positive electrode and the negative electrode, allows ions to move between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the secondary battery is a sealed type, the separator is also required to have a function of holding the electrolyte. As the separator, it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, PAN, aramid, polyimide, cellulose, glass or the like.

二次電池の形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。   The shape of the secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be employed. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with an electrolyte to form a battery.

以上説明した二次電池は、携帯電話、パソコン等の通信機器、情報関連機器の分野の他、自動車の分野においても好適に利用できる。たとえば、この二次電池を車両に搭載すれば、二次電池を電気自動車用の電源として使用できる。   The secondary battery described above can be suitably used not only in the field of communication devices such as mobile phones and personal computers and information-related devices, but also in the field of automobiles. For example, if this secondary battery is mounted on a vehicle, the secondary battery can be used as a power source for an electric vehicle.

以上、本発明の二次電池用活物質およびその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the active material for secondary batteries of this invention and its manufacturing method was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の二次電池用活物質およびその製造方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail by way of examples of the active material for secondary battery and the method for producing the same according to the present invention.

<実施例1>
一酸化珪素(平均粒径が50μmのSiO粉末:シグマ・アルドリッチ・ジャパン株式会社)、水酸化リチウム一水和物(LiOH・HO:株式会社高純度化学研究所)および硝酸リチウム(LiNO:株式会社高純度化学研究所)を準備した。SiO粉末に対しては、熱処理などの処理を施さなかった。
<Example 1>
Silicon monoxide (SiO powder having an average particle size of 50 μm: Sigma-Aldrich Japan Co., Ltd.), lithium hydroxide monohydrate (LiOH.H 2 O: High Purity Chemical Research Laboratory Co., Ltd.) and lithium nitrate (LiNO 3 : High Purity Chemical Research Laboratory Co., Ltd.). The SiO powder was not subjected to treatment such as heat treatment.

SiO粉末(2g)、LiOH・HO(2g)およびLiNO(15g)を秤量した。このとき、SiO粉末に含まれるSiに対するLiOH・HOに含まれるLiの割合(Li/Si)は、モル比で1であった。これらの粉末を坩堝にいれ、270℃の電気炉に移し、270℃で5時間の加熱を行った。電気炉内は、アルゴン雰囲気とした。このとき、坩堝の中の原料は融解して溶融塩となり、反応生成物が沈殿していた。 SiO powder (2 g), LiOH.H 2 O (2 g) and LiNO 3 (15 g) were weighed. At this time, the ratio (Li / Si) of Li contained in LiOH.H 2 O to Si contained in the SiO powder was 1 in molar ratio. These powders were put into a crucible, transferred to an electric furnace at 270 ° C., and heated at 270 ° C. for 5 hours. The inside of the electric furnace was an argon atmosphere. At this time, the raw material in the crucible melted into a molten salt, and the reaction product was precipitated.

次に、溶融塩の入った坩堝を電気炉から取り出して、室温にて冷却した。溶融塩が十分に冷却されて固体化した後、エタノールを加えて固体化した溶融塩を溶解した。反応生成物はエタノールに不溶性であるため、懸濁液が得られた。懸濁液を濾過および乾燥して、粉末状の反応生成物を得た。   Next, the crucible containing the molten salt was taken out of the electric furnace and cooled at room temperature. After the molten salt was sufficiently cooled and solidified, ethanol was added to dissolve the solidified molten salt. Since the reaction product is insoluble in ethanol, a suspension was obtained. The suspension was filtered and dried to obtain a powdery reaction product.

得られた粉末に対して誘導結合プラズマ(ICP)を用いた元素分析を行った結果、反応生成物100質量%に対してLiを8.7質量%含有することがわかった。   Elemental analysis using inductively coupled plasma (ICP) was performed on the obtained powder, and as a result, it was found that 8.7% by mass of Li was contained with respect to 100% by mass of the reaction product.

また、得られた粉末に対してCuKα線を用いたX線回折(XRD)測定を行った。結果を図1に示した。XRD測定によれば、結晶質LiSiO由来の回折ピーク(図1の▽で示す位置)と、Si微粒子由来のハロー(図1の◆で示す位置)が観測された。Si微粒子は、(111)面の回折ピークの半値幅からシェラーの式より算出される結晶粒径が4nmであった。その他の回折パターンは観測されず、Si微粒子が結晶性LiSiOと複合化していることが示唆された。すなわち、得られた粉末は、Si微粒子とLiSiO相との複合粒子を含むリチウム含有珪素系材料粉末であることがわかった。 Further, X-ray diffraction (XRD) measurement using CuKα rays was performed on the obtained powder. The results are shown in FIG. According to the XRD measurement, a diffraction peak derived from crystalline Li 2 SiO 3 (position indicated by ▽ in FIG. 1) and a halo derived from Si fine particles (position indicated by ◆ in FIG. 1) were observed. The Si fine particles had a crystal grain size of 4 nm calculated from Scherrer's equation from the half-value width of the diffraction peak on the (111) plane. Other diffraction patterns were not observed, suggesting that the Si fine particles were complexed with crystalline Li 2 SiO 3 . That is, it was found that the obtained powder was a lithium-containing silicon-based material powder containing composite particles of Si fine particles and Li 2 SiO 3 phase.

また、得られた粉末の粒子断面をクロスセクションポリッシャー法を用いて表出させて、その断面を走査電子顕微鏡(SEM)により観察した。結果を図2に示した。図2に示したSEM像は、反射電子像であり、Li、SiおよびOを含む粒子であれば、リチウムを多く含む部分が他の部分よりも濃く観察される。しかし、図2に示したSEM像では、一粒子の断面において濃淡がなく一様であったことから、一粒子の組成も表面から中心部までほぼ均一であると言える。また、Si微粒子の偏在も見られなかった。SEM像より、得られた粉末の平均粒径は2.5μmであると算出された。   Moreover, the particle | grain cross section of the obtained powder was exposed using the cross section polisher method, and the cross section was observed with the scanning electron microscope (SEM). The results are shown in FIG. The SEM image shown in FIG. 2 is a reflected electron image. If the particles contain Li, Si, and O, the portion containing a large amount of lithium is observed darker than the other portions. However, in the SEM image shown in FIG. 2, since the cross section of one particle is uniform with no shading, it can be said that the composition of one particle is almost uniform from the surface to the center. Further, uneven distribution of Si fine particles was not observed. From the SEM image, the average particle size of the obtained powder was calculated to be 2.5 μm.

以上の結果から考えて、珪素含有原料として平均粒径が50μmのSiO粉末を用いたことから、SiOが溶融塩中で溶解して2.5μm程度の大きさの粒子になって微分散するとともに、SiO相と該SiO相に分散したSi微粒子とに不均化される。そして、不均化された微細なSiO粒子に含まれるSiO相とLiOHとが表面から中心部まで十分に反応して、図6の左下に示したような複合粒子を形成していると言える。 In view of the above results, SiO powder having an average particle diameter of 50 μm was used as the silicon-containing raw material, so that SiO was dissolved in the molten salt to form particles having a size of about 2.5 μm and finely dispersed. , And disproportionated into SiO 2 phase and Si fine particles dispersed in the SiO 2 phase. And it can be said that the SiO 2 phase contained in the disproportionated fine SiO particles and LiOH sufficiently react from the surface to the center to form composite particles as shown in the lower left of FIG. .

また、SEM像より、粒子の内部に空孔の存在が確認できた。空孔の存在により、Li吸蔵および放出の差異に発生するSiの体積膨張および収縮を緩和する働きも期待できる。   In addition, from the SEM image, the presence of vacancies inside the particles was confirmed. The presence of pores can also be expected to reduce the volume expansion and contraction of Si that occurs due to the difference between Li occlusion and release.

<比較例1>
上記のSiO粉末(2g)およびLiOH・HO(2g)を、ボールミルを用いて粉砕混合した。得られた粉砕混合物に対して300℃で3時間の焼成を行い、粉末状の焼成物を得た。
<Comparative Example 1>
The above-mentioned SiO powder (2 g) and LiOH.H 2 O (2 g) were pulverized and mixed using a ball mill. The obtained pulverized mixture was baked at 300 ° C. for 3 hours to obtain a powdered baked product.

得られた粉末に対してCuKα線を用いたXRD測定を行った。結果を図3に示した。XRD測定によれば、結晶質LiOH由来の回折ピーク(図3の×で示す位置)と、Si微粒子由来のハロー(図3の◆で示す位置)が観測された。本比較例の条件では、反応は進まなかった。つまり、300℃程度の低温条件下でのSiOとLiOHとの反応は、LiNO溶融塩を使用した溶融塩法でなければ進行しないことがわかった。 XRD measurement using CuKα rays was performed on the obtained powder. The results are shown in FIG. According to the XRD measurement, a diffraction peak derived from crystalline LiOH (position indicated by x in FIG. 3) and a halo derived from Si fine particles (position indicated by ◆ in FIG. 3) were observed. The reaction did not proceed under the conditions of this comparative example. That is, it was found that the reaction between SiO and LiOH under a low temperature condition of about 300 ° C. does not proceed unless the molten salt method using LiNO 3 molten salt is used.

<比較例2>
比較例1と同様の粉砕混合物に対して500℃で3時間の焼成を行い、粉末状の焼成物を得た。
<Comparative example 2>
The same pulverized mixture as in Comparative Example 1 was baked at 500 ° C. for 3 hours to obtain a powdered baked product.

得られた粉末に対してCuKα線を用いたXRD測定を行った。結果を図4に示した。XRD測定によれば、結晶質LiSiO由来の回折ピーク(図4の■で示す位置)と、Si微粒子由来のハロー(図1の◆で示す位置)が観測された。その他の回折パターンは観測されず、Si微粒子が結晶性LiSiOと複合化していることが示唆された。すなわち、得られた粉末は、Si微結晶とLiSiO相との複合粒子を含むリチウム含有珪素系材料粉末であることがわかった。 XRD measurement using CuKα rays was performed on the obtained powder. The results are shown in FIG. According to the XRD measurement, a diffraction peak derived from crystalline Li 4 SiO 4 (position indicated by ▪ in FIG. 4) and a halo derived from Si fine particles (position indicated by ◆ in FIG. 1) were observed. Other diffraction patterns were not observed, suggesting that the Si fine particles were complexed with crystalline Li 4 SiO 4 . That is, it was found that the obtained powder was a lithium-containing silicon-based material powder containing composite particles of Si microcrystal and Li 4 SiO 4 phase.

また、得られた粉末の粒子断面をクロスセクションポリッシャー法を用いて表出させて、その断面を走査電子顕微鏡(SEM)により観察した。結果を図5に示した。図5に示したSEM像は、反射電子像である。一粒子の断面のコントラストは、表層で濃く中心部で薄い。つまり、LiSiOが含まれるのは粒子の表層である。 Moreover, the particle | grain cross section of the obtained powder was exposed using the cross section polisher method, and the cross section was observed with the scanning electron microscope (SEM). The results are shown in FIG. The SEM image shown in FIG. 5 is a reflected electron image. The contrast of the cross section of one particle is dark at the surface layer and thin at the center. That is, it is the surface layer of the particles that contain Li 4 SiO 4 .

<リチウム含有珪素系材料粉末の一粒子の構造について>
以上の結果から推測される、実施例1のリチウム含有珪素系材料粉末と比較例2のリチウム含有珪素系材料粉末との差異を、図6を用いて説明する。図6は、リチウム含有珪素系材料粉末の一粒子の断面を示す模式図である。
<About the structure of one particle of lithium-containing silicon-based material powder>
Differences between the lithium-containing silicon-based material powder of Example 1 and the lithium-containing silicon-based material powder of Comparative Example 2 estimated from the above results will be described with reference to FIG. FIG. 6 is a schematic view showing a cross section of one particle of the lithium-containing silicon-based material powder.

実施例1は、LiNO溶融塩を用いた溶融塩法によるリチウム含有珪素系材料粉末の合成である。SiO粒子は、溶融塩中に微分散する際に不均化と同等の反応が進行し、Si微粒子とSiO相とに分離すると考えられる。溶融塩中では、数百nmオーダーで溶融塩中に微分散したSiO粒子のSiOとLiOHとが優先的に反応して、LiSiOが生成すると推察される。このとき、溶融塩中のSiO粒子は微細であるため、表面から中心部まで均一に反応する。一方、Si微粒子は、LiNO溶融塩の反応抑制効果により、LiOHと反応せずに残存すると推察される。 Example 1 is the synthesis of a lithium-containing silicon-based material powder by a molten salt method using LiNO 3 molten salt. When the SiO particles are finely dispersed in the molten salt, a reaction equivalent to disproportionation proceeds, and it is considered that the SiO particles are separated into Si fine particles and SiO 2 phase. In the molten salt, it is presumed that SiO 2 of SiO particles finely dispersed in the molten salt on the order of several hundred nm reacts preferentially with LiOH to produce Li 2 SiO 3 . At this time, since the SiO particles in the molten salt are fine, they react uniformly from the surface to the center. On the other hand, it is presumed that Si fine particles remain without reacting with LiOH due to the reaction suppressing effect of LiNO 3 molten salt.

比較例2は、固相法によるリチウム含有珪素系材料粉末の合成である。焼成の際の加熱により、SiO粒子はSi相とSiO相とに不均化されると考えられる。固相法においては、固体のままのSiO粒子の表面から反応が進行する。そのため、反応中SiO粒子の粒径はほとんど変化せず、LiOHと接触するSiO粒子の表層にLiSiOが生成する。数ミクロンオーダーのSiO粒子では、LiOHと接触していない粒子の中心部まで反応しない。そのため、Si相は分散せずに粒子内部に偏在する。 Comparative Example 2 is the synthesis of a lithium-containing silicon-based material powder by a solid phase method. It is considered that the SiO particles are disproportionated into an Si phase and an SiO 2 phase by heating during firing. In the solid phase method, the reaction proceeds from the surface of the solid SiO particles. Therefore, the particle size of the SiO particles hardly changes during the reaction, and Li 4 SiO 4 is generated on the surface layer of the SiO particles in contact with LiOH. In the case of SiO particles on the order of several microns, it does not react up to the center of the particles that are not in contact with LiOH. Therefore, the Si phase is unevenly distributed inside the particles without being dispersed.

<初期充放電効率の評価>
実施例1で得られたリチウム含有珪素系材料粉末、比較例2で得られたリチウム含有珪素系材料粉末および原料として用いたSiO粉末、をそれぞれ負極活物質として用いたリチウム二次電池を、以下の手順で作製した。
<Evaluation of initial charge / discharge efficiency>
A lithium secondary battery using the lithium-containing silicon-based material powder obtained in Example 1 and the lithium-containing silicon-based material powder obtained in Comparative Example 2 and the SiO powder used as a raw material as negative electrode active materials, respectively, It was produced by the procedure.

上記のいずれかの負極活物質を42質量部、グラファイトを40質量部、アセチレンブラックを3質量部、ポリアミドイミドを15質量部、秤量して適量の溶媒(N−メチルピロリドン)とともに混練して、スラリーとした。次いでバーコーターを用いて、このスラリーを厚さ20μmの銅箔上に塗布した。80℃で乾燥後、ロールプレスしてから打ち抜き、φ11mm厚さ40μmの電極とした。   42 parts by mass of any of the negative electrode active materials described above, 40 parts by mass of graphite, 3 parts by mass of acetylene black, 15 parts by mass of polyamideimide, and kneaded together with an appropriate amount of solvent (N-methylpyrrolidone) A slurry was obtained. Next, this slurry was applied onto a copper foil having a thickness of 20 μm using a bar coater. After drying at 80 ° C., roll pressing was performed and punched out to obtain an electrode having a diameter of 11 mm and a thickness of 40 μm.

作製した電極(評価極)と、金属リチウム箔(対極:φ11mm厚さ0.5μm)と、の間にセパレータ(ヘキストセラニーズ社製ガラスフィルターおよびcelgard2400)を挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。また、電池ケースには、エチレンカーボネートとエチルメチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1.0mol/Lの濃度で溶解した非水電解質を注入して、リチウム二次電池(コイン電池)を得た。 A separator (Hoechst Celanese glass filter and celgard 2400) was sandwiched between the produced electrode (evaluation electrode) and a metal lithium foil (counter electrode: φ11 mm, thickness 0.5 μm) to form an electrode body battery. This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). Further, a non-aqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1.0 mol / L is injected into a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at 1: 1 (volume ratio) into the battery case, and lithium A secondary battery (coin battery) was obtained.

作製した三種類のコイン電池を25℃の恒温槽に1時間保持し、その後、充放電試験を行った。試験は、放電の終止電圧をLi対極で0.01V、充電の終止電圧をLi対極で1.0Vとし、0.1mAの定電流で行った。初期充放電効率は、初回放電容量に対する初回充電容量の割合(つまり、(初回充電容量)/(初回放電容量)×100%)として算出した。結果を表1に示した。   The prepared three types of coin batteries were held in a thermostatic bath at 25 ° C. for 1 hour, and then a charge / discharge test was performed. The test was performed at a constant current of 0.1 mA with the discharge end voltage being 0.01 V at the Li counter electrode and the charge end voltage being 1.0 V at the Li counter electrode. The initial charge / discharge efficiency was calculated as a ratio of the initial charge capacity to the initial discharge capacity (that is, (initial charge capacity) / (initial discharge capacity) × 100%). The results are shown in Table 1.

実施例1の負極活物質の初期充放電効率は、68%であった。これは、リチウムを反応させる前の原料であるSiO粉末を負極活物質として用いた場合よりも高かった。つまり、実施例1の負極活物質は、珪素系材料にリチウムを反応させることで、不可逆容量を低減させることができた。   The initial charge / discharge efficiency of the negative electrode active material of Example 1 was 68%. This was higher than when SiO powder, which is a raw material before reacting with lithium, was used as the negative electrode active material. That is, the negative electrode active material of Example 1 was able to reduce irreversible capacity by reacting lithium with a silicon-based material.

一方、比較例2の負極活物質の初期充放電効率は、50%で不可逆容量が大きかった。これは、活物質粒子の表層のLiSiOの導電性が低いだけでなく、充放電に寄与するSi微粒子が活物質粒子の中心部に偏在しているため、放電の際のリチウムイオンの拡散が不十分となり、不可逆容量の増大、ひいては初期充放電効率が低下した。 On the other hand, the initial charge / discharge efficiency of the negative electrode active material of Comparative Example 2 was 50%, and the irreversible capacity was large. This is because not only the conductivity of Li 4 SiO 4 on the surface layer of the active material particles is low but also the Si fine particles contributing to charge and discharge are unevenly distributed in the center of the active material particles, so Diffusion became insufficient, irreversible capacity increased, and initial charge / discharge efficiency decreased.

<実施例2>
LiOH・HOの配合量を1gとした他は、実施例1と同様にして粉末状の反応生成物を得た。本実施例では、SiO粉末に含まれるSiに対するLiOH・HOに含まれるLiの割合(Li/Si)は、モル比で0.5であった。
<Example 2>
A powdery reaction product was obtained in the same manner as in Example 1 except that the amount of LiOH · H 2 O was changed to 1 g. In this example, the ratio (Li / Si) of Li contained in LiOH.H 2 O to Si contained in the SiO powder was 0.5.

<実施例3>
LiOH・HOを4g、LiNOを20gとした他は、実施例1と同様にして粉末状の反応生成物を得た。本実施例では、SiO粉末に含まれるSiに対するLiOH・HOに含まれるLiの割合(Li/Si)は、モル比で2であった。
<Example 3>
A powdery reaction product was obtained in the same manner as in Example 1 except that 4 g of LiOH.H 2 O and 20 g of LiNO 3 were used. In this example, the ratio (Li / Si) of Li contained in LiOH.H 2 O to Si contained in the SiO powder was 2.

<実施例4>
LiOH・HOを6g、LiNOを25gとした他は、実施例1と同様にして粉末状の反応生成物を得た。本実施例では、SiO粉末に含まれるSiに対するLiOH・HOに含まれるLiの割合(Li/Si)は、モル比で3であった。
<Example 4>
A powdery reaction product was obtained in the same manner as in Example 1 except that 6 g of LiOH.H 2 O and 25 g of LiNO 3 were used. In this example, the ratio (Li / Si) of Li contained in LiOH.H 2 O to Si contained in the SiO powder was 3 in molar ratio.

<実施例5>
LiOH・HOを8g、LiNOを30gとした他は、実施例1と同様にして粉末状の反応生成物を得た。本実施例では、SiO粉末に含まれるSiに対するLiOH・HOに含まれるLiの割合(Li/Si)は、モル比で4であった。
<Example 5>
A powdery reaction product was obtained in the same manner as in Example 1 except that 8 g of LiOH.H 2 O and 30 g of LiNO 3 were used. In this example, the ratio (Li / Si) of Li contained in LiOH.H 2 O to Si contained in the SiO powder was 4 in molar ratio.

<X線回折測定>
実施例2〜5で得られたそれぞれの粉末に対してCuKα線を用いたXRD測定を行った。結果を図7に示した。XRD測定によれば、いずれの粉末も、結晶質LiSiO由来の回折ピーク(図7の▽で示す位置)と、Si微粒子由来のハロー(図7の◆で示す位置)が観測された。Si微粒子は、(111)面の回折ピークの半値幅からシェラーの式より算出される結晶粒径が4〜6nmであった。その他の回折パターンは観測されず、Si微粒子が結晶性LiSiOと複合化していることが示唆された。すなわち、得られた粉末は、リチウム含有珪素系材料粉末であることがわかった。いずれの実施例の粉末からも、ほぼ同様の回折パターンが得られたことから、得られるリチウム含有珪素系材料粉末の組成および構造は、Li/Siの値によって大きく変化しないことがわかった。
<X-ray diffraction measurement>
XRD measurement using CuKα rays was performed on each of the powders obtained in Examples 2 to 5. The results are shown in FIG. According to the XRD measurement, a diffraction peak derived from crystalline Li 2 SiO 3 (position indicated by ▽ in FIG. 7) and a halo derived from Si fine particles (position indicated by ◆ in FIG. 7) were observed in all powders. . The Si fine particles had a crystal grain size of 4 to 6 nm calculated from Scherrer's equation from the half width of the diffraction peak on the (111) plane. Other diffraction patterns were not observed, suggesting that the Si fine particles were complexed with crystalline Li 2 SiO 3 . That is, it was found that the obtained powder was a lithium-containing silicon-based material powder. Since almost the same diffraction pattern was obtained from the powder of any of the examples, it was found that the composition and structure of the obtained lithium-containing silicon-based material powder did not vary greatly depending on the value of Li / Si.

<実施例6>
電気炉の温度を400℃に設定し、原料を400℃で5時間反応させた他は、実施例1と同様にして粉末状の反応生成物を得た。本実施例では、SiO粉末に含まれるSiに対するLiOH・HOに含まれるLiの割合(Li/Si)は、モル比で1であった。
<Example 6>
A powdery reaction product was obtained in the same manner as in Example 1 except that the temperature of the electric furnace was set to 400 ° C. and the raw materials were reacted at 400 ° C. for 5 hours. In this example, the ratio (Li / Si) of Li contained in LiOH.H 2 O to Si contained in the SiO powder was 1 in molar ratio.

実施例6で得られた粉末に対してCuKα線を用いたXRD測定を行った。結果を図8に示した。XRD測定によれば、結晶質LiSiO由来の回折ピーク(図8の▽で示す位置)と、Si微粒子由来のハロー(図8の◆で示す位置)が観測された。Si微粒子は、(111)面の回折ピークの半値幅からシェラーの式より算出される結晶粒径が5nmであった。その他の回折パターンは観測されず、Si微粒子が結晶性LiSiOと複合化していることが示唆された。 XRD measurement using CuKα rays was performed on the powder obtained in Example 6. The results are shown in FIG. According to the XRD measurement, a diffraction peak derived from crystalline Li 2 SiO 3 (position indicated by ▽ in FIG. 8) and a halo derived from Si fine particles (position indicated by ◆ in FIG. 8) were observed. The Si fine particles had a crystal grain size of 5 nm calculated from Scherrer's equation from the half-value width of the diffraction peak on the (111) plane. Other diffraction patterns were not observed, suggesting that the Si fine particles were complexed with crystalline Li 2 SiO 3 .

実施例1と実施例6とでは、反応温度が異なる。実施例1で得られた粉末のXRDパターン(図1)と実施例6で得られた粉末のXRDパターン(図8)とを比較すると、実施例6では、LiSiO由来の回折ピークの強度に対するSi微粒子由来のハローの強度の割合が、より小さくなった。実施例6のような400℃での反応は、実施例1のような270℃での反応に比べて反応性が高くなり、Si微粒子もLiOHと反応してLiSiOが生成されやすかったと推測される。 Example 1 and Example 6 have different reaction temperatures. Comparing the XRD pattern of the powder obtained in Example 1 (FIG. 1) and the XRD pattern of the powder obtained in Example 6 (FIG. 8), in Example 6, the diffraction peak derived from Li 2 SiO 3 was observed. The ratio of the intensity of the halo derived from the Si fine particles to the intensity became smaller. The reaction at 400 ° C. as in Example 6 is more reactive than the reaction at 270 ° C. as in Example 1, and the Si fine particles are also liable to react with LiOH to generate Li 2 SiO 3. Guessed.

また、図示しないが、上記と同様の方法で粒子断面を表出させて、その断面をSEMにより観察した。その結果、一粒子の断面には濃淡がなく一様であった。すなわち、一粒子の組成も表面から中心まで均一であると言える。また、SEM像より、得られた粉末の平均粒径は3μmであると算出された。   Moreover, although not shown in figure, the particle | grain cross section was exposed by the method similar to the above, and the cross section was observed by SEM. As a result, the cross section of one particle was uniform with no shading. That is, it can be said that the composition of one particle is uniform from the surface to the center. From the SEM image, the average particle size of the obtained powder was calculated to be 3 μm.

<比較例3>
電気炉の温度を500℃に設定し、原料を500℃で5時間反応させた他は、実施例5と同様にして粉末状の反応生成物を得た。本実施例では、SiO粉末に含まれるSiに対するLiOH・HOに含まれるLiの割合(Li/Si)は、モル比で4であった。
<Comparative Example 3>
A powdery reaction product was obtained in the same manner as in Example 5 except that the temperature of the electric furnace was set to 500 ° C and the raw materials were reacted at 500 ° C for 5 hours. In this example, the ratio (Li / Si) of Li contained in LiOH.H 2 O to Si contained in the SiO powder was 4 in molar ratio.

比較例3で得られた粉末に対してCuKα線を用いたXRD測定を行った。結果を図9に示した。XRD測定によれば、結晶質LiSiO由来の回折ピークが観測された。その他の回折パターンは観測されず、Si微粒子が存在しないことがわかった。 XRD measurement using CuKα rays was performed on the powder obtained in Comparative Example 3. The results are shown in FIG. According to the XRD measurement, a diffraction peak derived from crystalline Li 2 SiO 3 was observed. Other diffraction patterns were not observed, and it was found that no Si fine particles were present.

実施例5と比較例3とでは、反応温度が異なる。比較例3で得られた粉末のXRDパターン(図9)からSi微粒子のハローが消失したのは、500℃での高温条件下での反応は反応性が高く、Si微粒子もLiOHと反応してLiSiOが生成されたと推測される。 Example 5 and Comparative Example 3 have different reaction temperatures. From the XRD pattern of the powder obtained in Comparative Example 3 (FIG. 9), the halo of Si fine particles disappeared because the reaction under high temperature conditions at 500 ° C. was highly reactive, and the Si fine particles reacted with LiOH. It is estimated that Li 2 SiO 3 was produced.

<比較例4>
一酸化珪素(平均粒径が50μmのSiO粉末:シグマ・アルドリッチ・ジャパン株式会社)および硝酸リチウム(LiNO:株式会社高純度化学研究所)を準備した。SiO粉末に対しては、熱処理などの処理を施さなかった。
<Comparative example 4>
Silicon monoxide (SiO powder having an average particle diameter of 50 μm: Sigma-Aldrich Japan Co., Ltd.) and lithium nitrate (LiNO 3 : High-Purity Chemical Laboratory Co., Ltd.) were prepared. The SiO powder was not subjected to treatment such as heat treatment.

SiO粉末(2g)およびLiNO(20g)を秤量した。これらの粉末を坩堝にいれ、270℃の電気炉に移し、270℃で5時間の加熱を行った。電気炉内は、アルゴン雰囲気とした。このとき、坩堝の中の原料は融解して溶融塩となり、反応生成物が沈殿していた。 SiO powder (2 g) and LiNO 3 (20 g) were weighed. These powders were put into a crucible, transferred to an electric furnace at 270 ° C., and heated at 270 ° C. for 5 hours. The inside of the electric furnace was an argon atmosphere. At this time, the raw material in the crucible melted into a molten salt, and the reaction product was precipitated.

次に、溶融塩の入った坩堝を電気炉から取り出して、室温にて冷却した。溶融塩が十分に冷却されて固体化した後、エタノールを加えて固体化した溶融塩を溶解した。反応生成物はエタノールに不溶性であるため、懸濁液が得られた。懸濁液を濾過および乾燥して、粉末状の反応生成物を得た。   Next, the crucible containing the molten salt was taken out of the electric furnace and cooled at room temperature. After the molten salt was sufficiently cooled and solidified, ethanol was added to dissolve the solidified molten salt. Since the reaction product is insoluble in ethanol, a suspension was obtained. The suspension was filtered and dried to obtain a powdery reaction product.

比較例4で得られた粉末に対してCuKα線を用いたXRD測定を行った。結果を図10に示した。XRD測定によれば、原料として用いたSiOに含まれるSi微粒子および非晶質SiO由来のハローが観測された。その他の回折パターンは観測されなかった。 XRD measurement using CuKα rays was performed on the powder obtained in Comparative Example 4. The results are shown in FIG. According to the XRD measurement, Si fine particles contained in SiO used as a raw material and halo derived from amorphous SiO 2 were observed. Other diffraction patterns were not observed.

各実施例と比較例4とでは、LiOHの使用の有無で異なる。各実施例では、リチウム塩のうち最も塩基性が高いLiOHが反応に関与し、LiNOは単に、SiOとLiOHとを分散させる溶媒としての役割を果たしたと考えられる。 Each Example and Comparative Example 4 differ depending on whether or not LiOH is used. In each example, LiOH having the highest basicity among lithium salts was involved in the reaction, and LiNO 3 was considered to have simply played a role as a solvent for dispersing SiO and LiOH.

<リチウムドープ量の算出>
前述の通り、実施例1で得られたリチウム含有珪素系材料粉末には、該粉末100質量%に対してLiを8.7質量%含有した。これは、リチウムドープ量の実測値であり、理論値を算出すると以下の通りである。
<Calculation of lithium doping amount>
As described above, the lithium-containing silicon-based material powder obtained in Example 1 contained 8.7% by mass of Li with respect to 100% by mass of the powder. This is an actual measurement value of the lithium doping amount, and a theoretical value is calculated as follows.

原料として用いた酸化珪素および水酸化リチウムに含まれるSiに対するLiのモル比を1(Li/Si=1)とした実施例1の反応は、次のように表される。   The reaction of Example 1 in which the molar ratio of Li to Si contained in silicon oxide and lithium hydroxide used as raw materials was 1 (Li / Si = 1) is expressed as follows.

[Si+SiO]+2LiOH→Si+LiSiO(+HO)
つまり、実施例1で得られたリチウム含有珪素系材料粉末は、全体組成:LiSi(6.941×2+28.09×2+16.00×3=118.062g/mol)に対してリチウムを6.941×2=13.882g/mol含有する。したがって、リチウムドープ量は、13.882/118.062×100=11.758%と算出される。また、反応式より、反応前の単体Siは、反応後にも残存することがわかる。
[Si + SiO 2 ] + 2LiOH → Si + Li 2 SiO 3 (+ H 2 O)
That is, the lithium-containing silicon-based material powder obtained in Example 1 is based on the overall composition: Li 2 Si 2 O 3 (6.941 × 2 + 28.09 × 2 + 16.00 × 3 = 1118.062 g / mol). 6.941 × 2 = 13.882 g / mol of lithium is contained. Therefore, the lithium doping amount is calculated as 13.882 / 118.062 × 100 = 11.758%. Moreover, it turns out that simple substance Si before reaction remains after reaction from reaction formula.

Li/Si=0.5とした実施例2の反応は、次のように表される。   The reaction of Example 2 with Li / Si = 0.5 is expressed as follows.

2[Si+SiO]+2LiOH→Si+LiSiO+[Si+SiO](+HO)
つまり、実施例2で得られたリチウム含有珪素系材料粉末は、全体組成:LiSi(6.941×2+28.09×4+16.00×5=206.242g/mol)に対してリチウムを6.941×2=13.882g/mol含有する。したがって、リチウムドープ量は、6.731%と算出される。また、反応式より、反応前の単体Siは、反応後にも残存することがわかる。
2 [Si + SiO 2 ] + 2LiOH → Si + Li 2 SiO 3 + [Si + SiO 2 ] (+ H 2 O)
That is, the lithium-containing silicon-based material powder obtained in Example 2 is based on the overall composition: Li 2 Si 4 O 5 (6.941 × 2 + 28.09 × 4 + 16.00 × 5 = 206.242 g / mol). 6.941 × 2 = 13.882 g / mol of lithium is contained. Therefore, the lithium doping amount is calculated as 6.731%. Moreover, it turns out that simple substance Si before reaction remains after reaction from reaction formula.

Li/Si=2とした実施例3の反応は、次のように表される。   The reaction of Example 3 with Li / Si = 2 is expressed as follows.

2[Si+SiO]+8LiOH→2Si+2LiSiO+4LiOH(+2HO+H
2Si+2LiSiO+4LiOH→Si+2LiSiO+LiSiO(+2H
[Si+2LiSiO+LiSiO]+HO→Si+3LiSiO(+2LiOH)
つまり、実施例3で得られたリチウム含有珪素系材料粉末は、全体組成:LiSi(6.941×6+28.09×4+16.00×9=298.006g/mol)に対してリチウムを6.941×6=41.646g/mol含有する。したがって、リチウムドープ量は、13.975%と算出される。また、反応式より、反応前の単体Siの半分が、反応後に残存することがわかる。
2 [Si + SiO 2 ] + 8LiOH → 2Si + 2Li 2 SiO 3 + 4LiOH (+ 2H 2 O + H 2 )
2Si + 2Li 2 SiO 3 + 4LiOH → Si + 2Li 2 SiO 3 + Li 4 SiO 4 (+ 2H 2 )
[Si + 2Li 2 SiO 3 + Li 4 SiO 4 ] + H 2 O → Si + 3Li 2 SiO 3 (+ 2LiOH)
That is, the lithium-containing silicon-based material powder obtained in Example 3 is based on the overall composition: Li 6 Si 4 O 9 (6.941 × 6 + 28.09 × 4 + 16.00 × 9 = 298.006 g / mol). 6.941 × 6 = 41.646 g / mol of lithium is contained. Therefore, the lithium doping amount is calculated as 13.975%. Further, from the reaction formula, it can be seen that half of the single Si before the reaction remains after the reaction.

Li/Si=3とした実施例4の反応は、次のように表される。   The reaction of Example 4 with Li / Si = 3 is expressed as follows.

Si+SiO+6LiOH→Si+LiSiO+4LiOH(+HO)
Si+LiSiO+4LiOH→LiSiO+LiSiO+(2H
LiSiO+LiSiO+HO→2LiSiO(+2LiOH)
つまり、実施例4で得られたリチウム含有珪素系材料粉末は、全体組成:LiSi(6.941×4+28.09×2+16.00×6=179.944g/mol)に対してリチウムを6.941×4=27.764g/mol含有する。したがって、リチウムドープ量は、15.429%と算出される。この条件では、反応前のSiの全てが、LiSiOに変化したことが、反応式よりわかる。
Si + SiO 2 + 6LiOH → Si + Li 2 SiO 3 + 4LiOH (+ H 2 O)
Si + Li 2 SiO 3 + 4LiOH → Li 2 SiO 3 + Li 4 SiO 4 + (2H 2 )
Li 2 SiO 3 + Li 4 SiO 4 + H 2 O → 2Li 2 SiO 3 (+ 2LiOH)
That is, the lithium-containing silicon-based material powder obtained in Example 4 is based on the total composition: Li 4 Si 2 O 6 (6.941 × 4 + 28.09 × 2 + 16.00 × 6 = 179.944 g / mol). 6.941 × 4 = 27.764 g / mol of lithium is contained. Therefore, the lithium doping amount is calculated as 15.429%. Under this condition, it can be seen from the reaction formula that all of the Si before the reaction has changed to Li 2 SiO 3 .

リチウムのドープ量(質量%)は、理論値よりも3割程度少なくなるが、使用する水酸化リチウムの量を増加させることで、リチウムドープ量が増加する。理論値からは、原料粉末に含まれるSiに対するLiのモル比が3以上になると、全てのSiがメタケイ酸リチウム化合物に変化する。しかし、実施例4および5で得られたリチウム含有珪素系材料粉末のXRDパターンにはSi微粒子の存在が確認された。これは、使用した硝酸リチウム量や反応温度などの他の反応条件の影響で、SiとLiOHとの反応が抑制されたものと考えられる。理論値から考えて、リチウムドープ量が1〜15質量%さらには5〜13質量%さらには7〜12質量%であれば、十分量のSi微粒子を含むリチウム含有珪素系材料粉末であると言える。   The doping amount (mass%) of lithium is about 30% less than the theoretical value, but the amount of lithium doping increases by increasing the amount of lithium hydroxide used. From the theoretical value, when the molar ratio of Li to Si contained in the raw material powder becomes 3 or more, all Si changes to a lithium metasilicate compound. However, the presence of Si fine particles was confirmed in the XRD patterns of the lithium-containing silicon-based material powders obtained in Examples 4 and 5. This is considered that the reaction between Si and LiOH was suppressed by the influence of other reaction conditions such as the amount of lithium nitrate used and the reaction temperature. Considering theoretical values, if the lithium doping amount is 1 to 15% by mass, further 5 to 13% by mass, and further 7 to 12% by mass, it can be said that the lithium-containing silicon-based material powder contains a sufficient amount of Si fine particles. .

Claims (16)

LiSiOを基本組成とするメタケイ酸リチウム系化合物を含む化合物相と、Si微粒子を含むSi含有相と、を含有し該Si微粒子が分散状態にあることを特徴とする二次電池用活物質。 An active for a secondary battery comprising a compound phase containing a lithium metasilicate compound having a basic composition of Li 2 SiO 3 and a Si-containing phase containing Si fine particles, wherein the Si fine particles are in a dispersed state. material. 前記化合物相中に前記Si微粒子が分散してなる複合粒子を含む請求項1に記載の二次電池用活物質。   The active material for a secondary battery according to claim 1, comprising composite particles in which the Si fine particles are dispersed in the compound phase. 前記Si含有相は、粉末X線回折法で得られる(111)面の回折ピークの半値幅からシェラーの式より算出される結晶粒径が20nm以下である請求項1または2に記載の二次電池用活物質。   The secondary particle according to claim 1 or 2, wherein the Si-containing phase has a crystal grain size of 20 nm or less calculated from Scherrer's equation from the half-value width of the diffraction peak of the (111) plane obtained by powder X-ray diffraction. Battery active material. 平均粒径が0.5μm以上50μm以下である前記複合粒子の粉末を含む請求項2または3に記載の二次電池用活物質。   4. The active material for a secondary battery according to claim 2, comprising a powder of the composite particles having an average particle size of 0.5 μm to 50 μm. 前記化合物相と前記Si含有相とを含み、珪素酸化物および/またはLiSiOを基本組成とするオルトケイ酸リチウム系化合物を実質的に含まない請求項1〜4のいずれかに記載の二次電池用活物質。 5. The lithium orthosilicate compound comprising the compound phase and the Si-containing phase and having a silicon oxide and / or Li 4 SiO 4 as a basic composition is substantially not contained. Secondary battery active material. 表面から中心部までLiを含む複合粒子を含む請求項2〜5のいずれかに記載の二次電池用活物質。   The active material for a secondary battery according to claim 2, comprising composite particles containing Li from the surface to the center. 前記化合物相は、前記複合粒子に偏在しない請求項2〜6のいずれかに記載の二次電池用活物質。   The active material for a secondary battery according to claim 2, wherein the compound phase is not unevenly distributed in the composite particles. 前記化合物相および前記Si含有相との合計を100質量%としたとき、Liを1〜15質量%含む請求項1〜7のいずれかに記載の二次電池用活物質。   The active material for a secondary battery according to any one of claims 1 to 7, comprising 1 to 15% by mass of Li when the total of the compound phase and the Si-containing phase is 100% by mass. 正極と、請求項1〜8のいずれかに記載の二次電池用活物質を含む負極と、非水電解質と、を備えることを特徴とする二次電池。   A secondary battery comprising: a positive electrode; a negative electrode including the active material for a secondary battery according to claim 1; and a nonaqueous electrolyte. 請求項9に記載の二次電池を搭載したことを特徴とする車両。   A vehicle comprising the secondary battery according to claim 9. 少なくともSiを含む珪素含有原料およびリチウム水酸化物を、アルカリ金属硝酸塩を含む450℃以下の溶融塩中で反応させる溶融反応工程と、
前記溶融反応工程にて得られた反応生成物と前記溶融塩との混合物から、該反応生成物を回収する回収工程と、
を含むことを特徴とする二次電池用活物質の製造方法。
A melt reaction step in which a silicon-containing raw material containing at least Si and lithium hydroxide are reacted in a molten salt of 450 ° C. or lower containing an alkali metal nitrate;
A recovery step of recovering the reaction product from a mixture of the reaction product obtained in the melting reaction step and the molten salt;
The manufacturing method of the active material for secondary batteries characterized by including.
前記溶融塩は、硝酸リチウムの溶融塩を含む請求項11に記載の二次電池用活物質の製造方法。   The method for producing an active material for a secondary battery according to claim 11, wherein the molten salt includes a molten salt of lithium nitrate. 前記リチウム水酸化物に対する前記アルカリ金属硝酸塩の割合(アルカリ金属硝酸塩/リチウム水酸化物)は、モル比で5以上である請求項11または12に記載の二次電池用活物質の製造方法。   The method for producing an active material for a secondary battery according to claim 11 or 12, wherein a ratio of the alkali metal nitrate to the lithium hydroxide (alkali metal nitrate / lithium hydroxide) is 5 or more in molar ratio. 前記珪素含有原料に含まれるSiに対する前記リチウム水酸化物に含まれるLiの割合(Li/Si)は、モル比で0.3以上10以下である請求項11〜13のいずれかに記載の二次電池用活物質の製造方法。   The ratio (Li / Si) of Li contained in the lithium hydroxide to Si contained in the silicon-containing raw material is 0.3 to 10 in terms of molar ratio. A method for producing an active material for a secondary battery. 前記回収工程は、前記溶融反応工程後に凝固した前記溶融塩を少なくとも水を含む溶媒に溶解させて、該溶融塩から前記反応生成物を分離する分離回収工程を含む請求項11〜14のいずれかに記載の二次電池用活物質の製造方法。   15. The recovery step includes a separation and recovery step of dissolving the molten salt solidified after the melting reaction step in a solvent containing at least water and separating the reaction product from the molten salt. The manufacturing method of the active material for secondary batteries as described in 2 .. 請求項11〜15に記載のいずれかの製造方法により得られる二次電池用活物質。   The active material for secondary batteries obtained by the manufacturing method in any one of Claims 11-15.
JP2012024113A 2012-02-07 2012-02-07 Secondary battery active material and method for producing the same Active JP5831268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024113A JP5831268B2 (en) 2012-02-07 2012-02-07 Secondary battery active material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024113A JP5831268B2 (en) 2012-02-07 2012-02-07 Secondary battery active material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013161705A true JP2013161705A (en) 2013-08-19
JP5831268B2 JP5831268B2 (en) 2015-12-09

Family

ID=49173788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024113A Active JP5831268B2 (en) 2012-02-07 2012-02-07 Secondary battery active material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5831268B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035290A1 (en) * 2014-09-03 2016-03-10 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20160044478A (en) * 2013-08-21 2016-04-25 신에쓰 가가꾸 고교 가부시끼가이샤 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
WO2016121325A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2016121321A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2016121323A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2016121326A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2016121324A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2016121320A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2016136180A1 (en) * 2015-02-23 2016-09-01 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
CN105981203A (en) * 2014-02-07 2016-09-28 信越化学工业株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
WO2017047030A1 (en) * 2015-09-16 2017-03-23 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP2017097952A (en) * 2015-11-18 2017-06-01 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, manufacturing method of negative electrode active material, and manufacturing method of lithium ion secondary battery
KR20170126480A (en) * 2015-03-02 2017-11-17 이오셀 리미티드 Silicon: Silicon-silicon oxide-lithium composite material having nanosilicon particles embedded in a silicon silicon silicate complex substrate and method of manufacturing the same
US20180013132A1 (en) * 2015-02-27 2018-01-11 Sanyo Electric Co., Ltd. Method for manufacturing nonaqueous electrolyte secondary battery
WO2019107032A1 (en) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Negative electrode active material for lithium ion battery, and lithium ion battery
WO2019189747A1 (en) * 2018-03-30 2019-10-03 株式会社大阪チタニウムテクノロジーズ Method for producing silicon oxide powder and negative electrode material
WO2019230077A1 (en) * 2018-06-01 2019-12-05 パナソニックIpマネジメント株式会社 Secondary battery
WO2020129652A1 (en) * 2018-12-21 2020-06-25 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
CN111668473A (en) * 2015-03-13 2020-09-15 三洋电机株式会社 Nonaqueous electrolyte secondary battery
EP3675247A4 (en) * 2017-10-19 2020-11-04 LG Chem, Ltd. Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
EP3716371A4 (en) * 2017-12-27 2021-01-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active substance for secondary battery, and secondary battery
EP3913707A1 (en) * 2020-05-21 2021-11-24 SK Innovation Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
US11923540B2 (en) 2020-07-29 2024-03-05 Sk On Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766143B2 (en) * 2016-05-30 2020-10-07 信越化学工業株式会社 Method for manufacturing negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and negative electrode active material for lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160044478A (en) * 2013-08-21 2016-04-25 신에쓰 가가꾸 고교 가부시끼가이샤 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
KR102171605B1 (en) * 2013-08-21 2020-10-29 신에쓰 가가꾸 고교 가부시끼가이샤 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
US10199678B2 (en) 2014-02-07 2019-02-05 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery and method of producing the same, and non-aqueous electrolyte secondary battery
EP3104439A4 (en) * 2014-02-07 2017-08-09 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
CN105981203A (en) * 2014-02-07 2016-09-28 信越化学工业株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
CN106575751A (en) * 2014-09-03 2017-04-19 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US11043665B2 (en) 2014-09-03 2021-06-22 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2020167176A (en) * 2014-09-03 2020-10-08 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN106575751B (en) * 2014-09-03 2020-03-31 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2016035290A1 (en) * 2014-09-03 2016-03-10 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2016035290A1 (en) * 2014-09-03 2017-06-22 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10312516B2 (en) 2015-01-28 2019-06-04 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10516153B2 (en) 2015-01-28 2019-12-24 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7004764B2 (en) 2015-01-28 2022-01-21 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2016121325A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
CN107112522B (en) * 2015-01-28 2021-06-01 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN107112534A (en) * 2015-01-28 2017-08-29 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and rechargeable nonaqueous electrolytic battery
CN107112521A (en) * 2015-01-28 2017-08-29 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and rechargeable nonaqueous electrolytic battery
CN107112522A (en) * 2015-01-28 2017-08-29 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and rechargeable nonaqueous electrolytic battery
CN107210442A (en) * 2015-01-28 2017-09-26 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and rechargeable nonaqueous electrolytic battery
CN107210436A (en) * 2015-01-28 2017-09-26 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and rechargeable nonaqueous electrolytic battery
CN107210435A (en) * 2015-01-28 2017-09-26 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and rechargeable nonaqueous electrolytic battery
JPWO2016121323A1 (en) * 2015-01-28 2017-11-02 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2016121324A1 (en) * 2015-01-28 2017-11-02 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2016121325A1 (en) * 2015-01-28 2017-11-09 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2016121326A1 (en) * 2015-01-28 2017-11-09 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2016121321A1 (en) * 2015-01-28 2017-11-09 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2016121320A1 (en) * 2015-01-28 2017-11-09 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10886534B2 (en) 2015-01-28 2021-01-05 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20170346066A1 (en) * 2015-01-28 2017-11-30 Sanyo Electric Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2016121321A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US20170352881A1 (en) * 2015-01-28 2017-12-07 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2016121323A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2020119908A (en) * 2015-01-28 2020-08-06 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107210436B (en) * 2015-01-28 2020-06-16 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2016121320A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2016121324A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US10312507B2 (en) 2015-01-28 2019-06-04 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN107210442B (en) * 2015-01-28 2020-06-16 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN107112521B (en) * 2015-01-28 2020-05-05 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2016121326A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10516158B2 (en) 2015-01-28 2019-12-24 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016136180A1 (en) * 2015-02-23 2016-09-01 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US10177403B2 (en) 2015-02-23 2019-01-08 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2016136180A1 (en) * 2015-02-23 2017-11-30 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20180013132A1 (en) * 2015-02-27 2018-01-11 Sanyo Electric Co., Ltd. Method for manufacturing nonaqueous electrolyte secondary battery
KR102592237B1 (en) 2015-03-02 2023-10-20 이오셀 리미티드 Silicon-silicon oxide-lithium composite material having nano-silicon particles embedded in a silicon:silicon lithium silicate composite matrix and method for manufacturing the same
KR20170126480A (en) * 2015-03-02 2017-11-17 이오셀 리미티드 Silicon: Silicon-silicon oxide-lithium composite material having nanosilicon particles embedded in a silicon silicon silicate complex substrate and method of manufacturing the same
CN111668473A (en) * 2015-03-13 2020-09-15 三洋电机株式会社 Nonaqueous electrolyte secondary battery
WO2017047030A1 (en) * 2015-09-16 2017-03-23 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP2017059410A (en) * 2015-09-16 2017-03-23 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
CN108292748B (en) * 2015-11-18 2021-05-18 信越化学工业株式会社 Negative electrode active material, lithium ion secondary battery and method for producing same, mixed negative electrode active material, negative electrode
JP2017097952A (en) * 2015-11-18 2017-06-01 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, manufacturing method of negative electrode active material, and manufacturing method of lithium ion secondary battery
US10686190B2 (en) 2015-11-18 2020-06-16 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and, production method of negative electrode active material
CN108292748A (en) * 2015-11-18 2018-07-17 信越化学工业株式会社 The manufacturing method of negative electrode active material, mixing negative electrode active material material, anode for nonaqueous electrolyte secondary battery, lithium rechargeable battery, the manufacturing method of negative electrode active material and lithium rechargeable battery
EP3675247A4 (en) * 2017-10-19 2020-11-04 LG Chem, Ltd. Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
JPWO2019107032A1 (en) * 2017-11-30 2020-12-10 パナソニックIpマネジメント株式会社 Negative electrode active material for lithium-ion batteries and lithium-ion batteries
US11670772B2 (en) 2017-11-30 2023-06-06 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for lithium ion battery, and lithium ion battery
WO2019107032A1 (en) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Negative electrode active material for lithium ion battery, and lithium ion battery
JP7203358B2 (en) 2017-11-30 2023-01-13 パナソニックIpマネジメント株式会社 Negative electrode active material for lithium ion battery and lithium ion battery
EP3716371A4 (en) * 2017-12-27 2021-01-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active substance for secondary battery, and secondary battery
JPWO2019189747A1 (en) * 2018-03-30 2021-04-01 株式会社大阪チタニウムテクノロジーズ Manufacturing method of silicon oxide powder and negative electrode material
WO2019189747A1 (en) * 2018-03-30 2019-10-03 株式会社大阪チタニウムテクノロジーズ Method for producing silicon oxide powder and negative electrode material
JP7030185B2 (en) 2018-03-30 2022-03-04 株式会社大阪チタニウムテクノロジーズ Manufacturing method of silicon oxide powder and negative electrode material
JP7182223B2 (en) 2018-06-01 2022-12-02 パナソニックIpマネジメント株式会社 secondary battery
JPWO2019230077A1 (en) * 2018-06-01 2021-06-10 パナソニックIpマネジメント株式会社 Secondary battery
WO2019230077A1 (en) * 2018-06-01 2019-12-05 パナソニックIpマネジメント株式会社 Secondary battery
US11894521B2 (en) 2018-06-01 2024-02-06 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
JPWO2020129652A1 (en) * 2018-12-21 2021-11-04 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
CN113195406A (en) * 2018-12-21 2021-07-30 松下知识产权经营株式会社 Negative electrode active material for secondary battery and secondary battery
WO2020129652A1 (en) * 2018-12-21 2020-06-25 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
CN113195406B (en) * 2018-12-21 2023-09-19 松下知识产权经营株式会社 Negative electrode active material for secondary battery, and secondary battery
EP3913707A1 (en) * 2020-05-21 2021-11-24 SK Innovation Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
US11958750B2 (en) 2020-05-21 2024-04-16 Sk On Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
US11923540B2 (en) 2020-07-29 2024-03-05 Sk On Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same

Also Published As

Publication number Publication date
JP5831268B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5831268B2 (en) Secondary battery active material and method for producing the same
JP5835107B2 (en) Nonaqueous electrolyte secondary battery
JP5298286B2 (en) Method for producing lithium silicate compound
JP5137414B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP2007115709A (en) Manufacturing method of lithium metal-containing material, product, composition and battery
JP2009170401A (en) Nonaqueous electrolyte secondary battery
KR20120092668A (en) Negative electrode active substance for nonaqueous secondary cell and method for producing the same
JP2011001256A (en) Method for producing nitrided lithium-transition metal compound oxide, nitrided lithium-transition metal compound oxide and lithium battery
WO2014104466A1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
JP2011001254A (en) METHOD FOR PRODUCING NITRIDED Li-Ti COMPOUND OXIDE, NITRIDED Li-Ti COMPOUND OXIDE AND LITHIUM BATTERY
WO2017183653A1 (en) Material for positive electrodes
KR20090012162A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JP2014051418A (en) Composite material, method for producing the same, cathode active material, cathode and nonaqueous electrolyte secondary battery
CN110431109A (en) Preparation includes the method for irreversible additive in anode materials for lithium secondary cells, the positive electrode comprising irreversible additive prepared therefrom and comprising the lithium secondary battery of the positive electrode
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5300370B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP2009193686A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5370501B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5472952B1 (en) Non-aqueous secondary battery
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R151 Written notification of patent or utility model registration

Ref document number: 5831268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151