JPH05258771A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH05258771A
JPH05258771A JP4055585A JP5558592A JPH05258771A JP H05258771 A JPH05258771 A JP H05258771A JP 4055585 A JP4055585 A JP 4055585A JP 5558592 A JP5558592 A JP 5558592A JP H05258771 A JPH05258771 A JP H05258771A
Authority
JP
Japan
Prior art keywords
lithium
battery
cobalt complex
electrolyte
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4055585A
Other languages
Japanese (ja)
Other versions
JP3043175B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
義久 日野
Yoshiro Harada
吉郎 原田
Hideaki Nagura
秀哲 名倉
Takashi Suzuki
貴志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP4055585A priority Critical patent/JP3043175B2/en
Publication of JPH05258771A publication Critical patent/JPH05258771A/en
Application granted granted Critical
Publication of JP3043175B2 publication Critical patent/JP3043175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent a battery from firing and rupture by adding cobalt complex to an electrolyte in a certain mix proportion, and thereby precluding electro- eduction of metal lithium onto the surfaces of a positive and a negative elec trode due to over-charging and over-discharging and also decomposing reactions of the electrolyte. CONSTITUTION:To an electrolyte, cobalt complex expressed by a general formula Co(Olefin)(PR3)3 is added in a mix proportion of 0.01-0.1mol, where Olefin is ethylene or propylene and R is methyl group or ethyl group. The cobalt complex in the electrolyte reacts reversibly with lithium metal and works as a sort of chemical shuttle at the time of over-charging to suppress growth of electro-educed lithium on the negative electrode 2 and to suppress decomposing reactions of the electrolyte by supplying lithium to the positive electrode 1. Therefore, the battery can be precluded from internal shortcircuiting and firing or rupture resulting therefrom at the time of over-charging and over- discharging, which enhances the safety of the lithium secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、過充電および過放電に
よる弊害を防止したリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery which prevents harmful effects due to overcharge and overdischarge.

【0002】[0002]

【従来の技術】リチウム二次電池の負極活物質として用
いられる炭素質材料は、充放電サイクル中での劣化が少
なく秀れた耐久性を示すことで注目されている。
2. Description of the Related Art Carbonaceous materials used as negative electrode active materials for lithium secondary batteries have been attracting attention because they show excellent durability with little deterioration during charge and discharge cycles.

【0003】この炭素質材料を用いた電池の負極電位
は、通常放電を行うとリチウムイオンが放出されて貴な
方向に移行し、充電を行うとリチウムイオンが吸蔵され
卑な方向に移行する。なおこの場合、負極電位はリチウ
ム金属電位に達することはないが、この種の電池にあっ
ても過充電あるいは過放電により、以下の問題が生ず
る。
The negative electrode potential of a battery using this carbonaceous material shifts to a noble direction by discharging lithium ions when normally discharged, and shifts to a noble direction by storing lithium ions when charging. In this case, the negative electrode potential does not reach the lithium metal potential, but even in this type of battery, the following problems occur due to overcharge or overdischarge.

【0004】[0004]

【発明が解決しようとする課題】 過充電による問題:電池を充電する際に充電器の突然
の故障により電池へ一時的に大電流が流れたり、電池が
充電終止電圧に達してもなお通電状態が続く場合があ
る。
[Problems to be Solved by the Invention] Problems due to overcharge: When charging a battery, a large current is temporarily passed to the battery due to a sudden failure of the charger, or the battery is still energized even when the battery reaches the end-of-charge voltage. May continue.

【0005】このような過充電状態にある電池の負極電
位が金属リチウム電位よりも卑に達すると、金属リチウ
ムが負極であるリチウム吸蔵体上に析出する。この時正
極にインターカレートされていたリチウムが全て放出さ
れた場合、正極では電解液の分解が起り、この反応が気
体発生を伴うため、電解液が劣化し、電池の内圧が上昇
して破裂、発火に至る可能性があり、非常に危険であ
る。
When the negative electrode potential of the battery in such an overcharged state becomes baser than the metallic lithium potential, metallic lithium is deposited on the lithium occlusion body which is the negative electrode. At this time, if all of the lithium that was intercalated in the positive electrode is released, the electrolytic solution decomposes in the positive electrode, and this reaction involves the generation of gas, so the electrolytic solution deteriorates, the internal pressure of the battery rises, and the battery bursts. , Can lead to ignition and is very dangerous.

【0006】また、負極では前述のように電解液中の電
解質が還元され、金属リチウムが析出することになる
が、この析出形態がデンドライト状であるため、電析リ
チウムがセパレータを貫通して内部短絡を起こし、その
後電池として作動不能となるほか、破裂,発火に至る可
能性もある。
Further, at the negative electrode, the electrolyte in the electrolytic solution is reduced as described above, and metallic lithium is deposited, but since this deposition form is dendrite-like, the electrodeposited lithium penetrates the separator and the internal A short circuit will occur, which will make the battery inoperable after that, and it may also explode or ignite.

【0007】過放電による問題:このタイプの電池を
直列に複数個接続して用いるとき、放電可能容量の異な
る電池が混在している場合を考えると、放電可能容量の
少ない電池は放電容量の大きい電池によって強制放電さ
れる。
Problem due to over-discharge: When a plurality of batteries of this type are connected in series and the batteries having different dischargeable capacities are mixed, a battery having a small dischargeable capacity has a large discharge capacity. It is forcibly discharged by the battery.

【0008】強制放電されている電池は、この状態が続
くと正負極が転極するに至り、正極上に金属リチウムが
析出する。前述したように電析リチウムはデンドライト
状に成長し、これがセパレータを貫通して内部短絡を起
こし、破裂,発火に至る可能性もある。また、この時負
極に吸蔵されていたリチウムが全て放出されると、負極
では電解液の分解が起り、この反応が気体発生を伴うた
め、電解液が劣化し、電池の内圧が上昇して破裂、発火
に至る可能性があり、非常に危険である。
In a battery that is forcibly discharged, if this state continues, the positive and negative electrodes will be inverted, and metallic lithium will be deposited on the positive electrode. As described above, the electrodeposited lithium grows in the form of dendrite, which penetrates the separator to cause an internal short circuit, which may lead to rupture and ignition. At this time, if all the lithium stored in the negative electrode is released, the electrolytic solution decomposes in the negative electrode, and this reaction involves gas evolution, which deteriorates the electrolytic solution and increases the internal pressure of the battery, causing rupture. , Can lead to ignition and is very dangerous.

【0009】本発明は以上の過充電および過放電による
問題を解決するものであって、その目的は、過充電およ
び過放電による正負極表面上への金属リチウムの電析を
防止するとともに電解液の分解反応を防止し、これによ
り電池の発火,破裂を未然に防止したリチウム二次電池
を提供することにある。
The present invention is intended to solve the above problems caused by overcharge and overdischarge, and its object is to prevent the electrodeposition of metallic lithium on the surface of the positive and negative electrodes due to overcharge and overdischarge and to prevent the electrolytic solution. Another object of the present invention is to provide a lithium secondary battery which prevents the decomposition reaction of the battery and thereby prevents the battery from catching fire and bursting.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、リチウムのドープ,脱ドープが可能な正
極および炭素質材料からなる負極および非水電解液を備
えたリチウム二次電池において、前記電解液中に一般
式:[Co(Olefin )(PR3 3 ](但しOlefinはエ
チレンまたはプロピレン、Rはメチル基またはエチル
基)で示されるコバルト錯体を0.01〜0.1mol の
配合比で添加するものである。
To achieve the above object, the present invention provides a lithium secondary battery comprising a positive electrode capable of lithium doping and dedoping, a negative electrode made of a carbonaceous material, and a non-aqueous electrolyte. In the electrolytic solution, 0.01 to 0.1 mol of a cobalt complex represented by the general formula: [Co (Olefin) (PR 3 ) 3 ] (where Olefin is ethylene or propylene, and R is a methyl group or an ethyl group) is added. It is added at a compounding ratio.

【0011】このコバルト錯体は、グラファイトにカリ
ウム,ナトリウム,リチウム等のアルカリ金属を溶媒中
でインターカレートさせる場合に使用され、種々の特性
が見出だされている。
This cobalt complex is used when graphite is intercalated with an alkali metal such as potassium, sodium or lithium in a solvent, and various properties have been found.

【0012】リチウムの場合を例にとると、粉末状のリ
チウム金属とグラファイトとを一般式:[Co(Olefin
)(PR3 3 ](但しOlefinはエチレンまたはプロ
ピレン、Rはメチル基またはエチル基)を含む有機溶媒
中で撹拌すると、このコバルト錯体は図1のように作用
し、リチウムキャリアとしてのグラファイトにリチウム
をインターカレートさせることが知られている。図1
は、まず最初に[Co(Olefin )(PR3 3 ]がリチ
ウム金属粉末と接触,反応してLi[Co(Olefin)
(PR3 3 ]を生成し、Li[Co(Olefin )(PR
3 3 ]がグラファイトにリチウムをインターカレート
させると再び[Co(Olefin )(PR3 3 ]に戻る過
程を示している。
Taking the case of lithium as an example, powdery lithium metal and graphite are prepared by the general formula: [Co (Olefin
) (PR 3 ) 3 ] (where Olefin is ethylene or propylene and R is a methyl group or an ethyl group), the cobalt complex acts as shown in FIG. 1 on graphite as a lithium carrier when stirred. It is known to intercalate lithium. Figure 1
First, [Co (Olefin) (PR 3 ) 3 ] contacts and reacts with lithium metal powder, and Li [Co (Olefin)
(PR 3 ) 3 ] to generate Li [Co (Olefin) (PR
3 ) 3 ] shows the process of returning lithium to [Co (Olefin) (PR 3 ) 3 ] when lithium is intercalated into graphite.

【0013】このとき、図1中のLi[Co(Olefin )
(PR3 3 ]がグラファイトにリチウムをインターカ
レートさせるのは、Li[Co(Olefin )(P
3 3 ]がリチウム金属電位よりも貴であるが、リチ
ウム−グラファイト−インターカレーション化合物より
も卑な電位を持つためであると説明されている。
At this time, Li [Co (Olefin) in FIG.
(PR 3 ) 3 ] intercalates lithium into graphite because Li [Co (Olefin) (P
R 3) 3] While it is nobler than a lithium metal potential, the lithium - Graphite - are explained to be due to having a lower potential than the intercalation compound.

【0014】なお、本発明のコバルト錯体の添加量は、
少なすぎると後述するケミカルシャトルとしての効果が
十分に得られず、また多すぎると内部抵抗が増加し放電
終止電圧に達するまでの連続放電時間が短くなるので、
前記添加量範囲に限定される。
The addition amount of the cobalt complex of the present invention is
If it is too small, the effect as the chemical shuttle described later cannot be sufficiently obtained, and if it is too large, the internal resistance increases and the continuous discharge time until reaching the discharge cutoff voltage is shortened.
It is limited to the above addition amount range.

【0015】[0015]

【作用】以上の構成によれば、電解液中に添加したコバ
ルト錯体は、過充電時および過放電時において以下の図
2,図3のように反応する。
With the above structure, the cobalt complex added to the electrolytic solution reacts during overcharge and overdischarge as shown in FIGS. 2 and 3 below.

【0016】(1)過充電時(図2参照):過充電によ
り、負極表面上に金属リチウムが少しでも析出すると、
この電析リチウムと容易に反応し、矢印(a)に示すよ
うにLi[Co(Olefin )(PR33 ]を形成する。
(1) At the time of overcharging (see FIG. 2): If metallic lithium deposits on the surface of the negative electrode even a little due to overcharging,
The electrodeposited readily reacts with lithium to form Li as shown by arrow (a) [Co (Olefin) (PR 3) 3].

【0017】このLi[Co(Olefin )(PR3 3
は過充電状態の負極にこれ以上リチウムが吸蔵不可能な
状態になっていること、また前述したように正極電位は
負極電位よりも明らかに貴であり、この時正極がカソー
ディックに分極していることから正極と容易に電気化学
反応を起こし(一種の短絡反応)、リチウムは矢印
(b)に示すように正極にインターカレートすることに
なる。
This Li [Co (Olefin) (PR 3 ) 3 ]
Indicates that the overcharged negative electrode is in a state in which lithium can no longer be occluded, and the positive electrode potential is obviously nobler than the negative electrode potential, and at this time the positive electrode is cathodic polarized. Therefore, an electrochemical reaction easily occurs with the positive electrode (a kind of short-circuit reaction), and lithium intercalates with the positive electrode as shown by the arrow (b).

【0018】一方、正極は過充電状態であるため、イン
ターカレートされたリチウムは速やかにデインターカレ
ートすることになり、矢印(c)に示すように再び負極
で金属リチウムが電析する。
On the other hand, since the positive electrode is in an overcharged state, the intercalated lithium is promptly deintercalated, and metallic lithium is electrodeposited again at the negative electrode as shown by arrow (c).

【0019】電解液中のコバルト錯体は以上の(a)→
(b)→(c)の循環を繰返すことによって、過充電時
に一種のケミカルシャトルとして働き、負極上での電析
リチウムの成長を抑制するとともに、正極へのリチウム
の供給によって電解液分解反応も抑制する。
The cobalt complex in the electrolytic solution is (a) above →
By repeating the cycle of (b) → (c), it acts as a kind of chemical shuttle during overcharge, suppresses the growth of electrodeposited lithium on the negative electrode, and also supplies the lithium to the positive electrode to decompose the electrolytic solution. Suppress.

【0020】(2)過放電時(図3参照):過放電によ
り、正極上に金属リチウムが少しでも析出すると、その
電析リチウムと容易に反応し、矢印(d)に示すように
Li[Co(Olefin )(PR3 3]を形成する。
(2) During over-discharging (see FIG. 3): When even a small amount of metallic lithium is deposited on the positive electrode due to over-discharging, it reacts easily with the electrodeposited lithium, and as shown by the arrow (d), Li [ Co (Olefin) (PR 3 ) 3 ].

【0021】Li[Co(Olefin )(PR3 3 ]は、
過放電状態の正極にこれ以上リチウムが吸蔵不可能な状
態になっていること、過放電による転極によって負極電
位は正極電位よりも明らかに貴であり、この時負極がカ
ソーディックに分極していることから、負極と容易に電
気化学反応を起こし(一種の短絡反応)、リチウムは矢
印(e)に示すように負極にインターカレートすること
になる。
Li [Co (Olefin) (PR 3 ) 3 ] is
It is clear that the positive electrode in the over-discharged state can no longer store lithium, and the negative electrode potential is obviously nobler than the positive electrode potential due to the reversal due to over-discharging. Therefore, an electrochemical reaction easily occurs with the negative electrode (a kind of short-circuit reaction), and lithium intercalates with the negative electrode as shown by arrow (e).

【0022】実際Li[Co(Olefin )(PR3 3
は、前述したように、炭素質材料が分極状態でない場合
でも有機溶媒中でこれと反応し、リチウム−炭素質材料
の2元系層間化合物を形成することが知られている。し
かし、負極は過放電状態であるため、前述したようにカ
ソーディックに分極していることから、インターカレー
トされたリチウムは速やかにデインターカレートするこ
とになり、再び矢印(f)に示すように正極で金属リチ
ウムが電析することになる。
Actually Li [Co (Olefin) (PR 3 ) 3 ]
As described above, it is known that even when the carbonaceous material is not in a polarized state, it reacts with this in an organic solvent to form a binary intercalation compound of the lithium-carbonaceous material. However, since the negative electrode is in the over-discharged state and is polarized cathodically as described above, the intercalated lithium is promptly deintercalated, and again shown by the arrow (f). As described above, metallic lithium is electrodeposited on the positive electrode.

【0023】したがって、電解液中のコバルト錯体は以
上の(d)→(e)→(f)の循環を繰返すことによっ
て、過放電時に一種のケミカルシャトルとして働き、正
極上での電析リチウムの成長を抑制するとともに、負極
へのリチウムの供給によって電解液の分解反応を抑制す
る。
Therefore, the cobalt complex in the electrolytic solution acts as a kind of chemical shuttle at the time of overdischarge by repeating the above cycle of (d) → (e) → (f), so that the deposited lithium on the positive electrode The growth is suppressed and the decomposition reaction of the electrolytic solution is suppressed by supplying lithium to the negative electrode.

【0024】[0024]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。図4は本発明による単3形リチウム二次電池
の構造を示す。このリチウム二次電池は基本的には従来
と同様に、正極1,負極2の間にポリプロピレン製多孔
質フィルムからなるセパレータ3を挟んでスパイラル状
に巻回して巻回要素を形成し、その上部に前記正極1側
に接続する正極リード板4を、下部に前記負極2側に接
続する負極リード板5を突出させた状態でPP絶縁板6
aを介して有底筒形のケース6内に収装し、負極リード
板5を有底筒形ケース6の内底面中心にスポット溶接に
より接続し、また安全弁付き正極端子板7の底部に正極
リード板4をスポット溶接し、その後非水電解液をケー
ス6内に注液し、正極端子板7を封口ガスケット8を介
してケース6の開口に嵌め付け、カシメによって完成す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 4 shows the structure of an AA lithium secondary battery according to the present invention. This lithium secondary battery is basically wound in the same manner as in the past with a separator 3 made of a polypropylene porous film sandwiched between a positive electrode 1 and a negative electrode 2 to be spirally wound to form a winding element. A positive electrode lead plate 4 connected to the positive electrode 1 side, and a negative electrode lead plate 5 connected to the negative electrode 2 side projected to the lower part of the PP insulating plate 6
It is housed in a bottomed cylindrical case 6 via a, the negative electrode lead plate 5 is connected by spot welding to the center of the inner bottom surface of the bottomed cylindrical case 6, and the positive electrode is attached to the bottom of the positive electrode terminal plate 7 with a safety valve. The lead plate 4 is spot-welded, then a non-aqueous electrolyte is poured into the case 6, and the positive electrode terminal plate 7 is fitted into the opening of the case 6 through the sealing gasket 8 and completed by caulking.

【0025】前記正極1は、正極活物質であるLiCo
2 と、導電材であるカーボン粉末とPTFEの水性デ
ィスパージョンとを重量比で100:10:10の割合
で混合し、水でペースト状に混練したものを集電体を構
成する厚さ30μm のアルミ箔の両面に塗着した後乾
燥,圧延して所定の大きさに切断した帯状のもので、前
記帯状の長手方向に直交して合剤の一部をかきとり、こ
こに正極リード板4をスポット溶接した。なお、以上の
混合比率のうちPTFEの水性ディスパージョンの割合
はそのうちの固形分の割合である。
The positive electrode 1 is made of LiCo which is a positive electrode active material.
O 2 and carbon powder as a conductive material and an aqueous dispersion of PTFE were mixed at a weight ratio of 100: 10: 10, and the mixture was kneaded into a paste with water to form a current collector having a thickness of 30 μm. The aluminum foil is applied on both sides, dried, rolled, and cut into a predetermined size, and a part of the mixture is scraped in a direction orthogonal to the longitudinal direction of the band, and the positive electrode lead plate 4 Was spot welded. The proportion of the PTFE aqueous dispersion in the above mixing ratio is the proportion of the solid content.

【0026】前記活物質であるLiCoO2 は、酸化コ
バルト(CoO)と、炭酸リチウム(LiCO3 )とを
モル比で2:1に混合し、空気中で900℃,9時間加
熱したものを用いた。以上の正極1の理論充填電気量は
500 mAhである。
The active material LiCoO 2 is prepared by mixing cobalt oxide (CoO) and lithium carbonate (LiCO 3 ) at a molar ratio of 2: 1 and heating in air at 900 ° C. for 9 hours. I was there. The theoretical charging electricity amount of the positive electrode 1 is 500 mAh.

【0027】前記負極2は、炭素質粉末とPTFEの水
性ディスパージョンとを重量比で100:3の割合とし
水で混練したものをニッケル製エキスパンドメタルに圧
入し、乾燥,切断して帯状に形成し、さらにこの長手方
向と直交して一部をかきとりここに負極リード板5をス
ポット溶接したものである。なお、PTFEの水性ディ
スパージョンの比率は前記と同様固形分の割合であり、
負極中の炭素粉末の重量は3.5g である。
The negative electrode 2 is formed into a strip shape by pressing carbonaceous powder and an aqueous dispersion of PTFE in a weight ratio of 100: 3 and kneading with water into a nickel expanded metal, drying and cutting. Further, a part of the negative electrode lead plate 5 is scraped off orthogonally to the longitudinal direction and spot-welded with the negative electrode lead plate 5. Incidentally, the ratio of the aqueous dispersion of PTFE is the ratio of the solid content as described above,
The weight of carbon powder in the negative electrode is 3.5 g.

【0028】また、この負極は対極を金属リチウムとし
た場合に、第1サイクルにおけるリチウムのドープ量
が、電流密度1 mA/cm2 の定電流で行った場合、両極間
電圧0.01Vまでで800 mAh、脱ドープ量が、電
流密度1 mA/cm2 の定電流で行った場合、500 mAh
である。
When the counter electrode of this negative electrode is metallic lithium and the lithium doping amount in the first cycle is a constant current with a current density of 1 mA / cm 2 , the voltage between the electrodes is up to 0.01 V. 500 mAh when the de-doping amount is 800 mAh and the current density is 1 mA / cm 2 at a constant current.
Is.

【0029】また、前記非水電解液は、過塩素酸リチウ
ム(LiCl O4 )をプロピレンカーボネートと1,2
−ジメトキシエタンとの混合溶媒中に1モル/lの割合
で溶解したもので、この電解液に対し、コバルト錯体と
して[Co( C2 2 )(PCH3 3 ]をそれぞれ0
mol ,0.001mol ,0.005mol ,0.01mol
,0.05mol ,0.1mol ないしそれ以上の各種濃
度で添加した。
The non-aqueous electrolytic solution contains lithium perchlorate (LiCl O 4 ) and propylene carbonate and 1,2.
- obtained by dissolving at a rate of 1 mol / l in a mixed solvent of dimethoxyethane, to the electrolytic solution, as the cobalt complex [Co (C 2 H 2) (PCH 3) 3] respectively 0
mol, 0.001mol, 0.005mol, 0.01mol
, 0.05 mol, 0.1 mol or higher.

【0030】次に、このコバルト錯体を各種濃度で添加
した電解液を注液して完成した電池の性能を比較調査し
た。
Next, the performance of the completed batteries was comparatively investigated by injecting an electrolytic solution containing various concentrations of this cobalt complex.

【0031】(1)過充電試験:上限電圧4.2V,下
限電圧3.0Vとして0.5Aの定電流で20サイクル
の充放電を行い、20サイクル目の放電容量を計測し、
図5に示す特性を得た。このグラフでは本発明範囲の上
限値である0.1mol を超えた場合には急速に放電容量
が低下するが、これは過剰量のコバルト錯体の添加によ
って電池の内部抵抗が増加することを示唆している。な
お、全般的にはコバルト錯体を添加したものは未添加の
ものに比べて放電容量は低下するものの、200mAh
程度までは容量低下の許容範囲である。
(1) Overcharge test: Charge and discharge were performed for 20 cycles at a constant current of 0.5 A with an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V, and the discharge capacity at the 20th cycle was measured.
The characteristics shown in FIG. 5 were obtained. In this graph, when the upper limit of 0.1 mol, which is the range of the present invention, is exceeded, the discharge capacity decreases rapidly, which suggests that the addition of an excessive amount of cobalt complex increases the internal resistance of the battery. ing. It should be noted that, generally, the discharge capacity of the one with the cobalt complex added is lower than that without the cobalt complex, but the discharge capacity is 200 mAh.
To the extent that it is within the allowable range of capacity reduction.

【0032】次いで20サイクル終了後これらの電池を
再び0.5Aの定電流で充電し続けて人為的に過充電状
態を作り、10Vに達する時間を計測した。この結果図
6に示すように本発明範囲の下限値を下回って添加され
たものはその添加量に応じて10V到達時間が長引く
が、本発明の下限値を上回る0.01mol 以上のコバル
ト錯体を添加した電池では10Vまでに達する時間が1
00時間以上であり、このグラフに掲載不能なまでの長
時間となることが確認された。なお、この過充電された
本発明の範囲を下回る添加量の場合にはいずれもデンド
ライトによりセパレータを突き破って内部短絡を引き起
こしており、電池として使用不能であることも確認され
ている。
Next, after 20 cycles, these batteries were continuously charged again with a constant current of 0.5 A to artificially make an overcharged state, and the time to reach 10 V was measured. As a result, as shown in FIG. 6, when the amount added was below the lower limit of the present invention, the time required for reaching 10 V was prolonged depending on the addition amount, but 0.01 mol or more of the cobalt complex exceeding the lower limit of the present invention was added. It takes 1 time to reach 10V with the added battery.
It was confirmed that the time was more than 00 hours, and that it was a long time before it could not be published in this graph. It should be noted that, in the case of the overcharged addition amount below the range of the present invention, the dendrite broke through the separator to cause an internal short circuit, and it was confirmed that the battery cannot be used.

【0033】(2)過放電試験:20サイクル充放電の
終了後、再び4.2Vまで充電した電池5ケと充電を行
わない電池1ケとを直列に接続し、6ケの電池の電圧が
0Vになるまで0.5Aの定電流で強制的に放電させ
た。
(2) Over-discharge test: After 20 cycles of charging / discharging, 5 batteries charged to 4.2 V and 1 battery not charged again were connected in series, and the voltage of 6 batteries was changed. It was forcibly discharged at a constant current of 0.5 A until it reached 0V.

【0034】ここで、充電を行わない電池の電解液とし
ては、コバルト錯体が未添加のものおよび種々の濃度の
コバルト錯体を添加したものをそれぞれ試験し、短絡の
有無を確認した。この結果を以下の表に示す。
Here, as the electrolytic solution of the battery which is not charged, the one to which the cobalt complex was not added and the one to which various concentrations of the cobalt complex were added were tested to confirm the presence or absence of a short circuit. The results are shown in the table below.

【0035】[0035]

【表1】 この表に示す結果からも明らかなように、コバルト錯体
を0.005mol 以上添加した電解液を用いた二次電池
では過充電時の内部短絡がなく安全性が高い。但し、前
述の放電容量や過充電時の特性とも合わせコバルト錯体
の添加範囲は非水電解液に対して0.01〜0.1mol
までの範囲が好ましいものとなる。
[Table 1] As is clear from the results shown in this table, the secondary battery using the electrolytic solution containing 0.005 mol or more of the cobalt complex has high safety without internal short circuit during overcharge. However, the addition range of the cobalt complex is 0.01 to 0.1 mol with respect to the non-aqueous electrolyte in consideration of the discharge capacity and the characteristics at the time of overcharge.
Is preferable.

【0036】なお、本実施例ではコバルト錯体として
[Co( C2 2 )(PCH3 3 ]を用いているが、
一般式:[Co(Olefin )(PR3 3 ](但しOlefin
はエチレンまたはプロピレン、Rはメチル基またはエチ
ル基)で示されるコバルト錯体であれば、いずれもケミ
カルシャトルとしての効果が確認され採用可能である。
Although [Co (C 2 H 2 ) (PCH 3 ) 3 ] is used as the cobalt complex in this example,
General formula: [Co (Olefin) (PR 3) 3] ( where Olefin
Any of the cobalt complexes represented by ethylene or propylene and R is a methyl group or an ethyl group) can be used because their effects as a chemical shuttle have been confirmed.

【0037】また、本発明は前述したスパイラル形電池
のみならず、コイン形などの偏平形電池にも適用可能で
あることも勿論である。
Further, it is needless to say that the present invention can be applied not only to the spiral type battery described above, but also to a flat type battery such as a coin type.

【0038】[0038]

【発明の効果】以上実施例によって詳細に説明したよう
に、本発明に係るリチウム二次電池にあっては、電解液
中のコバルト錯体はリチウム金属と可逆的に反応して過
充電時に一種のケミカルシャトルとして働き、負極上で
の電析リチウムの成長を抑制するとともに、正極へのリ
チウムの供給によって電解液の分解反応を抑制し、また
このコバルト錯体は過放電時にも一種のケミカルシャト
ルとして働き、正極上での電析リチウムの成長を抑制す
るとともに、負極へのリチウムの供給によって電解液の
分解反応を抑制する。したがって、本発明では過充電時
および過放電時における電池の内部短絡やこれを原因と
する発火,破裂などの危険性を未然に回避でき、この種
の二次電池の安全性を向上できる。
As described above in detail with reference to the embodiments, in the lithium secondary battery according to the present invention, the cobalt complex in the electrolytic solution reversibly reacts with the lithium metal to cause a kind of overcharge. It functions as a chemical shuttle, suppresses the growth of electrodeposited lithium on the negative electrode, and suppresses the decomposition reaction of the electrolyte solution by supplying lithium to the positive electrode.This cobalt complex also functions as a kind of chemical shuttle during overdischarge. The growth of electrodeposited lithium on the positive electrode is suppressed, and the decomposition reaction of the electrolytic solution is suppressed by supplying lithium to the negative electrode. Therefore, according to the present invention, it is possible to avoid the risk of internal short circuit of the battery during overcharging and overdischarging, and ignition and rupture due to this, and improve the safety of this type of secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】コバルト錯体の機能を示す模式図である。FIG. 1 is a schematic view showing the function of a cobalt complex.

【図2】過充電時におけるコバルト錯体の機能を示す模
式図である。
FIG. 2 is a schematic diagram showing the function of a cobalt complex during overcharge.

【図3】過放電時におけるコバルト錯体の機能を示す模
式図である。
FIG. 3 is a schematic diagram showing the function of a cobalt complex during overdischarge.

【図4】本発明の実施例によるスパイラル形リチウム二
次電池の断面図である。
FIG. 4 is a cross-sectional view of a spiral lithium secondary battery according to an embodiment of the present invention.

【図5】コバルト錯体の各添加量における充放電20サ
イクル目の放電容量を示すグラフである。
FIG. 5 is a graph showing discharge capacities at 20th charge / discharge cycles in each amount of cobalt complex added.

【図6】コバルト錯体の各添加量における10V過充電
まで到達する時間を示すグラフである。
FIG. 6 is a graph showing the time required to reach 10 V overcharge at each addition amount of cobalt complex.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極リード板 5 負極リード板 6 ケース 7 正極端子板 8 封口ガスケット 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead plate 5 Negative electrode lead plate 6 Case 7 Positive electrode terminal plate 8 Sealing gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 鈴木 貴志 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidenori Nagura, 5-3-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Takashi Suzuki 5-36-11, Shimbashi, Minato-ku, Tokyo Fuji Electrochemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムのドープ,脱ドープが可能な正
極および炭素質材料からなる負極および非水電解液を備
えたリチウム二次電池において、 前記電解液中に一般式:[Co(Olefin )(P
3 3 ](但しOlefinはエチレンまたはプロピレン、
Rはメチル基またはエチル基)で示されるコバルト錯体
を0.01〜0.1mol の配合比で添加する、 ことを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode capable of lithium doping and dedoping, a negative electrode made of a carbonaceous material, and a non-aqueous electrolytic solution, wherein a general formula: [Co (Olefin) ( P
R 3 ) 3 ] (where Olefin is ethylene or propylene,
The lithium secondary battery is characterized in that a cobalt complex represented by R is a methyl group or an ethyl group) is added at a compounding ratio of 0.01 to 0.1 mol.
JP4055585A 1992-03-13 1992-03-13 Lithium secondary battery Expired - Lifetime JP3043175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4055585A JP3043175B2 (en) 1992-03-13 1992-03-13 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4055585A JP3043175B2 (en) 1992-03-13 1992-03-13 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH05258771A true JPH05258771A (en) 1993-10-08
JP3043175B2 JP3043175B2 (en) 2000-05-22

Family

ID=13002826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055585A Expired - Lifetime JP3043175B2 (en) 1992-03-13 1992-03-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3043175B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648801B2 (en) 2004-04-01 2010-01-19 3M Innovative Properties Company Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
US7811710B2 (en) 2004-04-01 2010-10-12 3M Innovative Properties Company Redox shuttle for rechargeable lithium-ion cell
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648801B2 (en) 2004-04-01 2010-01-19 3M Innovative Properties Company Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
US7811710B2 (en) 2004-04-01 2010-10-12 3M Innovative Properties Company Redox shuttle for rechargeable lithium-ion cell
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives

Also Published As

Publication number Publication date
JP3043175B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US5424145A (en) High capacity rechargeable cell having manganese dioxide electrode
US9972864B2 (en) Rechargeable electrochemical battery cell
US20130040188A1 (en) Rechargeable electrochemical battery cell
JP4507284B2 (en) Non-aqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
US5015547A (en) Lithium secondary cell
WO2015136345A1 (en) Nonaqueous electrolyte secondary battery
JP3043175B2 (en) Lithium secondary battery
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JPH03108261A (en) Nonaqueous solvent secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
US11289745B2 (en) Elimination of gaseous reactants in lithium ion batteries
JPH1197059A (en) Nonaqueous electrolyte secondary battery
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JPH08138743A (en) Nonaqeuous electrolyte secondary battery
JP3402233B2 (en) Non-aqueous electrolyte secondary battery
JPH05144471A (en) Secondary battery with nonaqueous electrolyte
JPH09231976A (en) Nonaqueous electrolyte secondary battery
JP4088850B2 (en) Non-aqueous solvent secondary battery
JP3249668B2 (en) Lithium secondary battery
JP4752126B2 (en) Non-aqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH10125317A (en) Monaqueous electrolyte secondary battery
JP2004179005A (en) Lithium secondary battery