JP4217290B2 - Nonaqueous electrolyte battery using aluminum as negative electrode - Google Patents

Nonaqueous electrolyte battery using aluminum as negative electrode Download PDF

Info

Publication number
JP4217290B2
JP4217290B2 JP03780798A JP3780798A JP4217290B2 JP 4217290 B2 JP4217290 B2 JP 4217290B2 JP 03780798 A JP03780798 A JP 03780798A JP 3780798 A JP3780798 A JP 3780798A JP 4217290 B2 JP4217290 B2 JP 4217290B2
Authority
JP
Japan
Prior art keywords
aluminum
battery
negative electrode
positive electrode
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03780798A
Other languages
Japanese (ja)
Other versions
JPH11233109A (en
Inventor
秀哲 名倉
知也 村田
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP03780798A priority Critical patent/JP4217290B2/en
Publication of JPH11233109A publication Critical patent/JPH11233109A/en
Application granted granted Critical
Publication of JP4217290B2 publication Critical patent/JP4217290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負極にアルミニウム又はアルミニウム化合物を用いた非水電解液電池に関するものである。
【0002】
【従来の技術】
アルミニウムの単位体積当たりの理論エネルギー密度は8050Ah/lであり、リチウムの約4倍に相当する。従って、アルミニウムを電池の負極に用いることができれば、高エネルギー密度の電池を低いコストで実現できることになる。このアルミニウムを負極に用いる電池、いわゆるアルミニウム電池は、単位体積当たりの電流容量が最も大きく、重量当たりの電流容量も大きく、非常に魅力的である。
【0003】
このアルミニウム電池の実現には電解液の開発が必要不可欠であるが、次のような課題がある。即ち、アルミニウムは熱力学的に水素よりも著しく還元されにくいために、水溶液系の電解液を使用してアルミニウムを電気化学的に且つ可逆的に電析させることは非常に困難である。また、アルミニウムは酸素原子と強い親和性を有するために、その表面には絶縁性が高く、強固で緻密な酸化皮膜が存在する。従って、放電時にアルミニウムの均一な溶出が極めて困難となり放電特性が低下する。
【0004】
このような状況下で、従来、アルミニウムを負極とする一次電池や二次電池の電解液として、例えば、リチウム電池に用いられているような有機溶媒系の非水電解液や、エーテル系又は高温溶融塩系の非水電解液を使用することが提案されている。また、近年では、アルミニウムハロゲン化物/N−アルキルピリジニウムハロゲン化物又はアルミニウムハロゲン化物/アルキルイミダゾリウムハロゲン化物からなる常温溶融塩系の非水電解液を使用することも提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、アルミニウムを負極に用いたいわゆるアルミニウム電池は未だに実用化されていない。これは次の理由による。
【0006】
上記のように、アルミニウム電池は単位体積当たりの電流容量が最も大きく、重量当たりの電流容量も大きく電池材料として魅力的であるが、水溶液電池の場合、保存中の腐蝕に起因する自己放電が大きく、作動の信頼性に問題がある。
【0007】
一方、非水電解液では、アルミニウムイオンを良く溶解する塩がなく、大きな電流密度での放電ができないため、アルミニウム電池の実現を困難にしている。また塩化物の場合、電池の缶が腐蝕するという問題がある。
【0008】
そこで、本発明の目的は、上記課題を解決し、負極にアルミニウム又はアルミニウム化合物を用いた非水電解液電池における電解液の電解質塩として、アルミニウムイオンを良く溶解する塩を用いることにより、一次電池としての放電特性又は二次電池としての充放電特性の良好な非水電解液電池の実現を可能とすることにある。
【0009】
【課題を解決するための手段】
本発明者等は、パーフルオロメチルスルフォニルイミド塩(−N(CF3 SO2 2 )が電解液中に多く溶解し良好なイオン導電性を示すことを見い出し、アルミニウム電池の溶質に最適であるとして本発明を完成するに至った。
【0010】
即ち、本発明は、負極にアルミニウムを用い、電解質塩としてパーフルオロメチルスルフォニルイミドのアルミニウム塩を用いたことを特徴とするものである。
【0011】
負極にアルミニウム又はアルミニウム化合物を用いた非水電解液電池においては、放電時、負極であるアルミニウム金属あるいはアルミニウム化合物から電解液中にアルミニウムイオンが放出され、正極側へ移動する。一方、正極側ではアルミニウムイオンが正極と反応してアルミニウム化合物を生成する。充電時はこれと逆方向の反応が起こり、アルミニウムイオンも逆側に移動する。これらの反応がスムーズに行われるためには電解液中に移動するアルミニウムイオンが豊富にあることが重要である。
【0012】
本発明に従い、非水溶媒に対する溶質としてパーフルオロメチルスルフォニルイミドのアルミニウム塩を用いると、非水電解液でのアルミニウムイオンの生成量を多くすることができ、充電または放電の際のアルミニウムイオンの移動が速やかに行われ、電池特性が向上する。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を実施例を中心に説明する。
【0014】
図1に、試作したコイン形2025サイズの非水電解液電池の概要を示す。この電池は次にように構成してある。即ち、円形の電池缶(正極缶)1の中心にチタン製ネット2を溶接し、その上に正極3を加圧圧着する。この正極3の上にセパレータとしてのポリプロピレン製不織布4を重ねる。電解液を滴下し充分正極3およびセパレータに含ませる。一方、内面にステンレス製ネット6を溶接した負極端子7を用意し、そのステンレス製ネット6の下面にアルミ板5を加圧圧着する。この負極端子7を、ポリプロピレン製不織布4の上から被せ、両者間にアルミ板5を位置させる。負極端子7の周囲にはポリプロピレン製ガスケット8を嵌め込んでおき、正極缶1の周囲を内側にクリンプして封口する。
【0015】
(実施例1)
上記の正極3として、フッ化銅(CuF2;試薬)を80重量部、導電剤としてアセチレンブラックを5重量部、バインダとして4フッ化エチレン粉末10重量部を、乾燥空気中で充分混合した後、ロールプレスを行い、厚さおよそ0.3mmのシート状物を得た。その後、これを直径15mmの円形状の正極3として打ち抜き、厚さ2.5mm、直径20mmの電池缶の中心に溶接された直径15mmのチタン製ネット2上に加圧圧着した。
【0016】
直径15mm、厚さ1mmの純度99.9%のアルミ板5を用意し、負極端子7内面に溶接された直径14mmのステンレス製ネット6上に加圧圧着を行った。
【0017】
この実施例1では、電解液として、PC(プロピレンカーボネート)およびDME(ジメトキシエタン)の容積比1:1の混合溶媒に、パーフルオロメチルスルフォニルイミドのアルミニウム塩(Al(N[CF3 SO2 ]2 )3 )を1モル(M/1)溶解したものを用いた。
【0018】
正極3上に直径17mmのポリプロピレン製不織布4を重ねた後、電解液を滴下し、充分正極3およびセパレータに含ませた後、周囲にポリプロピレン製ガスケット8を嵌め込んだ負極端子7を被せ、正極缶1の周囲を金型を用いて内側にクリンプして封口を行った。できた電池はコイン形2025サイズとなった。
【0019】
この電池を4mAの定電流で放電を行ったところ、表1及び図2に示すように、1.85Vで10.3時間の放電が可能であった。
【0020】
【表1】

Figure 0004217290
【0021】
(実施例2〜4)
表1に示すように、実施例2では溶媒としてAN(アセトニトリル)を、実施例3では溶媒としてTHF(テトラヒドロフラン)を、実施例4では溶媒として、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の1:1の混合溶媒を用い、他はそれぞれ上記実施例1と全く同じにして非水電解液電池を製作した。
これらの電池の特性評価として、4mAの定電流で放電を行ったところ、表1に示すように1.85Vでそれぞれ9.8時間、9.5時間、9.3時間の放電が可能であった。
【0022】
(比較例1)
比較例1として、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の1:0.2の混合溶媒を用い、これに溶質としてAl(BF4 )3 を含ませた電解液を作成し、他は上記実施例1と全く同じにして非水電解液電池を製作した。この電池を4mAの定電流で放電を行ったところ、表1に示すように1.85Vでそれぞれ0.1時間と短時間の放電しかできなかった。
【0023】
(比較例2)
また、比較例2として、溶媒としてTHF(テトラヒドロフラン)を用い、これにAlCl3 (塩化アルミニウム)(0.2モル)とLiCl(0.8モル)を含ませた電解液を作成し、他は上記実施例1と全く同じにして非水電解液電池を製作した。この電池を4mAの定電流で放電を行ったところ、表1に示すように1.85Vでそれぞれ3. 2時間と短時間の放電しかできなかった。また、正極缶の腐食が発生した。
【0024】
上記から、パーフルオロメチルスルフォニルイミド塩は電解液中に多く溶解し良好なイオン導電性を示し、アルミニウム電池の溶質に最適であることが分かる。また、このパーフルオロメチルスルフォニルイミド塩をアルミニウム電池の溶質として用いることにより、単位体積当たりの電流容量が最も大きく、重量当たりの電流容量も大きい非水電解液電池を実現できることが分かる。しかも、比較例に用いた塩化物の場合は、正極缶の腐蝕を生じさせたのに対し、本実施例のイミド塩の場合には正極缶の腐蝕の発生はなく、二次電池への適用も可能である。
【0025】
なお、上記実施形態では負極にアルミニウムを用いる場合について説明したが、本発明は負極にアルミニウム化合物を用いる形態においても適用することができる。
【0026】
【発明の効果】
以上説明したように本発明によれば、アルミニウム電池の非水電解液の溶質として、アルミニウムイオンを良く溶解するパーフルオロメチルスルフォニルイミド塩を用いたので、単位体積当たりの電流容量が大きいアルミニウムを負極に用いることが可能となり、一次電池としての放電特性又は二次電池としての充放電特性の良好な非水電解液電池を実現することができる。また、これにより活物質の利用率も大きくなる。更に、缶の腐蝕という問題も発生しない。
【図面の簡単な説明】
【図1】本発明の負極にアルミニウムを用いた非水電解液電池の構成図である。
【図2】電池電圧と放電持続時間との関係を示すグラフである。
【符号の説明】
1 電池缶
2 チタン製ネット
3 正極
4 ポリプロピレン製不織布
5 アルミ板
6 ステンレス製ネット
7 負極端子
8 ポリプロピレン製ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery using aluminum or an aluminum compound as a negative electrode.
[0002]
[Prior art]
The theoretical energy density per unit volume of aluminum is 8050 Ah / l, corresponding to about 4 times that of lithium. Therefore, if aluminum can be used for the negative electrode of the battery, a battery having a high energy density can be realized at a low cost. A battery using aluminum as a negative electrode, a so-called aluminum battery, has the largest current capacity per unit volume and a large current capacity per weight, and is very attractive.
[0003]
Development of an electrolytic solution is indispensable for realizing the aluminum battery, but there are the following problems. That is, since aluminum is much less thermodynamically reduced than hydrogen, it is very difficult to electrochemically and reversibly deposit aluminum using an aqueous electrolyte. Further, since aluminum has a strong affinity for oxygen atoms, its surface has a high insulating property and a strong and dense oxide film exists. Accordingly, uniform elution of aluminum during discharge becomes extremely difficult and discharge characteristics are deteriorated.
[0004]
Under such circumstances, conventionally, as an electrolytic solution of a primary battery or a secondary battery using aluminum as a negative electrode, for example, an organic solvent-based nonaqueous electrolytic solution used in a lithium battery, an ether-based or a high temperature It has been proposed to use a molten salt-based non-aqueous electrolyte. In recent years, it has been proposed to use a room temperature molten salt non-aqueous electrolyte composed of an aluminum halide / N-alkylpyridinium halide or an aluminum halide / alkylimidazolium halide.
[0005]
[Problems to be solved by the invention]
However, so-called aluminum batteries using aluminum as the negative electrode have not yet been put into practical use. This is due to the following reason.
[0006]
As described above, an aluminum battery has the largest current capacity per unit volume and a large current capacity per weight, and is attractive as a battery material. However, in the case of an aqueous battery, self-discharge due to corrosion during storage is large. There is a problem with the reliability of operation.
[0007]
On the other hand, the non-aqueous electrolyte does not have a salt that dissolves aluminum ions well and cannot discharge at a large current density, making it difficult to realize an aluminum battery. In the case of chloride, there is a problem that the battery can is corroded.
[0008]
Accordingly, an object of the present invention is to solve the above-mentioned problems and to use a salt that well dissolves aluminum ions as an electrolyte salt of an electrolyte in a non-aqueous electrolyte battery using aluminum or an aluminum compound as a negative electrode. It is possible to realize a non-aqueous electrolyte battery having good discharge characteristics as a secondary battery or charge / discharge characteristics as a secondary battery.
[0009]
[Means for Solving the Problems]
The present inventors have found that perfluoromethylsulfonylimide salt (—N (CF 3 SO 2 ) 2 ) is dissolved in the electrolyte and exhibits good ionic conductivity, and is optimal for the solute of aluminum batteries. As a result, the present invention has been completed.
[0010]
That is, the present invention uses the aluminum in the negative electrode, is characterized in that an aluminum salt of perfluoro methylsulfonyl Louis bromide as an electrolyte salt.
[0011]
In a nonaqueous electrolyte battery using aluminum or an aluminum compound for the negative electrode, during discharge, aluminum ions are released from the aluminum metal or aluminum compound as the negative electrode into the electrolyte and move to the positive electrode side. On the other hand, on the positive electrode side, aluminum ions react with the positive electrode to produce an aluminum compound. During charging, a reaction in the opposite direction occurs, and aluminum ions also move to the opposite side. In order for these reactions to be performed smoothly, it is important that there are abundant aluminum ions that move into the electrolyte.
[0012]
According to the present invention, when an aluminum salt of perfluoromethylsulfonylimide is used as a solute for a non-aqueous solvent, the amount of aluminum ions generated in the non-aqueous electrolyte can be increased, and the movement of aluminum ions during charging or discharging Is performed promptly, and the battery characteristics are improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described mainly with reference to examples.
[0014]
FIG. 1 shows an outline of a prototype non-aqueous electrolyte battery of coin-shaped 2025 size. This battery is configured as follows. That is, a titanium net 2 is welded to the center of a circular battery can (positive electrode can) 1 and a positive electrode 3 is pressure-bonded thereon. A polypropylene nonwoven fabric 4 as a separator is stacked on the positive electrode 3. Electrolyte solution is dripped and fully contained in the positive electrode 3 and the separator. On the other hand, a negative electrode terminal 7 having a stainless steel net 6 welded to the inner surface is prepared, and an aluminum plate 5 is pressure-bonded to the lower surface of the stainless steel net 6. This negative electrode terminal 7 is covered from above the nonwoven fabric 4 made of polypropylene, and the aluminum plate 5 is positioned between the two. A polypropylene gasket 8 is fitted around the negative electrode terminal 7, and the periphery of the positive electrode can 1 is crimped and sealed inside.
[0015]
Example 1
As the positive electrode 3, 80 parts by weight of copper fluoride (CuF2; reagent), 5 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of tetrafluoroethylene powder as a binder were sufficiently mixed in dry air. Roll pressing was performed to obtain a sheet-like material having a thickness of approximately 0.3 mm. Thereafter, this was punched out as a circular positive electrode 3 having a diameter of 15 mm, and pressure-bonded onto a titanium net 2 having a diameter of 15 mm welded to the center of a battery can having a thickness of 2.5 mm and a diameter of 20 mm.
[0016]
An aluminum plate 5 having a diameter of 15 mm and a thickness of 1 mm and having a purity of 99.9% was prepared, and pressure bonding was performed on a stainless steel net 6 having a diameter of 14 mm welded to the inner surface of the negative electrode terminal 7.
[0017]
In this Example 1, as an electrolytic solution, a mixed solvent of PC (propylene carbonate) and DME (dimethoxyethane) in a volume ratio of 1: 1 was mixed with an aluminum salt of perfluoromethylsulfonylimide (Al (N [CF3 SO2] 2). 3) 1 mol (M / 1) dissolved was used.
[0018]
After a polypropylene non-woven fabric 4 having a diameter of 17 mm is stacked on the positive electrode 3, the electrolytic solution is dripped sufficiently into the positive electrode 3 and the separator, and then covered with a negative electrode terminal 7 fitted with a polypropylene gasket 8 around the positive electrode 3. The periphery of the can 1 was crimped inward using a mold and sealed. The resulting battery was a coin-shaped 2025 size.
[0019]
When this battery was discharged at a constant current of 4 mA, it was possible to discharge at 10.85 V for 10.3 hours as shown in Table 1 and FIG.
[0020]
[Table 1]
Figure 0004217290
[0021]
(Examples 2 to 4)
As shown in Table 1, AN (acetonitrile) as a solvent in Example 2, THF (tetrahydrofuran) as a solvent in Example 3, EC (ethylene carbonate) and EMC (ethyl methyl carbonate) as solvents in Example 4 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that a 1: 1 mixed solvent was used.
As characteristics evaluation of these batteries, discharge was performed at a constant current of 4 mA. As shown in Table 1, discharges of 9.8 hours, 9.5 hours, and 9.3 hours were possible at 1.85 V, respectively. It was.
[0022]
(Comparative Example 1)
As Comparative Example 1, a 1: 0.2 mixed solvent of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was used, and an electrolytic solution containing Al (BF4) 3 as a solute was prepared. A nonaqueous electrolyte battery was manufactured in exactly the same manner as in Example 1 above. When this battery was discharged at a constant current of 4 mA, as shown in Table 1, it was possible to discharge only for a short time of 0.1 hour at 1.85 V, respectively.
[0023]
(Comparative Example 2)
Moreover, as Comparative Example 2, an electrolytic solution was prepared by using THF (tetrahydrofuran) as a solvent and containing AlCl3 (aluminum chloride) (0.2 mol) and LiCl (0.8 mol). A nonaqueous electrolyte battery was manufactured in exactly the same manner as in Example 1. When this battery was discharged at a constant current of 4 mA, as shown in Table 1, it was possible to discharge only 3.2 hours at 1.85 V, respectively. Moreover, corrosion of the positive electrode can occurred.
[0024]
From the above, it can be seen that perfluoromethylsulfonylimide salt is highly dissolved in the electrolyte and exhibits good ionic conductivity, and is optimal for the solute of aluminum batteries. It can also be seen that by using this perfluoromethylsulfonylimide salt as the solute of an aluminum battery, a non-aqueous electrolyte battery having the largest current capacity per unit volume and a large current capacity per weight can be realized. Moreover, in the case of the chloride used in the comparative example, the positive electrode can was corroded, whereas in the case of the imide salt of this example, the positive electrode can was not corroded and applied to the secondary battery. Is also possible.
[0025]
In addition, although the said embodiment demonstrated the case where aluminum was used for a negative electrode, this invention is applicable also in the form which uses an aluminum compound for a negative electrode.
[0026]
【The invention's effect】
As described above, according to the present invention, since the perfluoromethylsulfonylimide salt that dissolves aluminum ions well is used as the solute of the non-aqueous electrolyte of the aluminum battery, aluminum having a large current capacity per unit volume is used as the negative electrode. Therefore, a non-aqueous electrolyte battery having good discharge characteristics as a primary battery or charge / discharge characteristics as a secondary battery can be realized. This also increases the utilization factor of the active material. Furthermore, the problem of can corrosion does not occur.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a non-aqueous electrolyte battery using aluminum as a negative electrode of the present invention.
FIG. 2 is a graph showing the relationship between battery voltage and discharge duration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery can 2 Titanium net 3 Positive electrode 4 Polypropylene nonwoven fabric 5 Aluminum plate 6 Stainless steel net 7 Negative electrode terminal 8 Polypropylene gasket

Claims (1)

負極にアルミニウムを用い、電解質塩としてパーフルオロメチルスルフォニルイミドのアルミニウム塩を用いたことを特徴とする非水電解液電池。 Using aluminum in a negative electrode, a nonaqueous electrolyte battery characterized by using an aluminum salt of perfluoro methylsulfonyl Louis bromide as an electrolyte salt.
JP03780798A 1998-02-19 1998-02-19 Nonaqueous electrolyte battery using aluminum as negative electrode Expired - Lifetime JP4217290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03780798A JP4217290B2 (en) 1998-02-19 1998-02-19 Nonaqueous electrolyte battery using aluminum as negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03780798A JP4217290B2 (en) 1998-02-19 1998-02-19 Nonaqueous electrolyte battery using aluminum as negative electrode

Publications (2)

Publication Number Publication Date
JPH11233109A JPH11233109A (en) 1999-08-27
JP4217290B2 true JP4217290B2 (en) 2009-01-28

Family

ID=12507792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03780798A Expired - Lifetime JP4217290B2 (en) 1998-02-19 1998-02-19 Nonaqueous electrolyte battery using aluminum as negative electrode

Country Status (1)

Country Link
JP (1) JP4217290B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056346A (en) 1999-08-19 2001-02-27 Fujitsu Ltd Probe card and method for testing wafer on which a plurality of semiconductor device are formed
JP5162822B2 (en) * 2005-12-02 2013-03-13 ソニー株式会社 Electrochemical devices
CN107394260B (en) 2016-05-17 2020-06-09 财团法人工业技术研究院 Metal ion battery
TWI611618B (en) 2016-12-16 2018-01-11 財團法人工業技術研究院 Metal-ion battery

Also Published As

Publication number Publication date
JPH11233109A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
JP3737729B2 (en) Non-aqueous electrolyte battery and non-aqueous electrolyte
JP4380201B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2001503906A (en) Compound polymer gel electrode
JP2006269374A (en) Nonaqueous electrolyte battery
JP3336998B2 (en) Non-aqueous electrolyte secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JPH11121012A (en) Nonaqueous electrolytic battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JP4217290B2 (en) Nonaqueous electrolyte battery using aluminum as negative electrode
JP3223051B2 (en) Lithium secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH1167273A (en) Lithium secondary battery
JPH06196170A (en) Nonaqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JP2001143749A (en) Electrochemical element including non-aqueous electrolyte
JPH1154122A (en) Lithium ion secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JPH0945328A (en) Lithium secondary battery
JPH0359963A (en) Lithium secondary battery
JP2002093463A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080627

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term