JP2001250536A - Method of producing negative electrode plate for nonaqueous electrolyte secondary battery - Google Patents

Method of producing negative electrode plate for nonaqueous electrolyte secondary battery

Info

Publication number
JP2001250536A
JP2001250536A JP2000056797A JP2000056797A JP2001250536A JP 2001250536 A JP2001250536 A JP 2001250536A JP 2000056797 A JP2000056797 A JP 2000056797A JP 2000056797 A JP2000056797 A JP 2000056797A JP 2001250536 A JP2001250536 A JP 2001250536A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
secondary battery
electrolyte secondary
thickener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000056797A
Other languages
Japanese (ja)
Inventor
Riichi Nakamura
利一 中村
Yorito Oohana
頼人 大花
Yasuhiro Arataki
安弘 荒瀧
Kenichi Hotehama
健一 保手浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000056797A priority Critical patent/JP2001250536A/en
Publication of JP2001250536A publication Critical patent/JP2001250536A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the high load discharge characteristics of a nonaqueous electrolyte secondary battery. SOLUTION: After a negative electrode mixture is applied to a collector and dried, heat treatment of 110 deg.C or higher and 300 deg.C or lower is given to a negative electrode plate to be rolled and molded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の、とくにその負極板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a method for producing a negative electrode plate thereof.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型・軽
量でエネルギー密度が高く、さらに繰り返し充放電が可
能な二次電池の開発が要望されている。このような電池
として非水電解液二次電池、特に、正極にコバルト酸リ
チウムなどのリチウム含有複合酸化物、負極に炭素材料
などを用いたリチウム二次電池の研究、開発が活発に行
われている。しかし、この種の電池は非水電解液を使う
ため、水溶液系の電池に比べてイオン伝導度が低いとい
う問題がある。このため、電流特性の観点から正負極板
をシート状極板として渦巻状に巻回し、電極面積を大き
くして極板群を構成する構造が多く提案されている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery which is small and lightweight, has a high energy density, and can be repeatedly charged and discharged. Research and development of such nonaqueous electrolyte secondary batteries, especially lithium secondary batteries using lithium-containing composite oxides such as lithium cobalt oxide for the positive electrode and carbon materials for the negative electrode, have been actively conducted. I have. However, since this type of battery uses a non-aqueous electrolyte, there is a problem that the ion conductivity is lower than that of an aqueous solution type battery. For this reason, from the viewpoint of current characteristics, many structures have been proposed in which a positive / negative electrode plate is spirally wound as a sheet-like electrode plate to increase the electrode area to form an electrode group.

【0003】一般的に、この様なシート状極板は集電体
に合剤を塗着して作製されるが、合剤を集電体に薄く均
一に塗着する必要があるため、合剤は溶媒に活物質、導
電剤、結着剤とともに増粘剤を加えてペースト状にし、
集電体に塗着する方法が用いられている。また、場合に
よっては活物質の充填量を多くするために塗着した後圧
延する方法も検討されている。
[0003] Generally, such a sheet-like electrode plate is produced by applying a mixture to a current collector. However, since it is necessary to apply the mixture to the current collector thinly and uniformly, a mixture is required. The agent is a paste by adding a thickener together with an active material, a conductive agent and a binder to a solvent,
A method of coating the current collector is used. Further, in some cases, a method of rolling after coating, in order to increase the filling amount of the active material, has been studied.

【0004】[0004]

【発明が解決しようとする課題】増粘剤および結着剤を
含有する合剤では、活物質の周りを増粘剤や結着剤が一
部覆っている状態であり、この合剤を集電体に塗着した
後圧延した極板では、この増粘剤が集電体と活物質の間
に膜として介在することになる。この為、塗着後圧延成
型して作製した極板を組み込んだ電池は高負荷放電特性
が悪くなるという問題点があった。そこで、負極板を種
々の条件下で乾燥した後群構成する製造法により高負荷
放電特性に優れた非水電解液二次電池を提供することが
考案されている。
In a mixture containing a thickener and a binder, the active material is partially covered with the thickener and the binder. In the electrode plate rolled after being applied to the current collector, the thickener intervenes as a film between the current collector and the active material. For this reason, there is a problem that a battery incorporating an electrode plate produced by rolling after application is deteriorated in high-load discharge characteristics. Therefore, it has been devised to provide a non-aqueous electrolyte secondary battery having excellent high-load discharge characteristics by a manufacturing method in which a negative electrode plate is dried under various conditions and then formed into a group.

【0005】特開平11−120996号公報では合剤
を集電体に塗着後、非酸化性雰囲気下150℃〜350
℃で熱処理した負極を用いた非水電解液二次電池の記述
があるが、塗着後のどの工程であるかの詳細ついては不
明確であった。
In Japanese Patent Application Laid-Open No. 11-120996, after a mixture is applied to a current collector, the mixture is heated to 150 ° C. to 350 ° C. in a non-oxidizing atmosphere.
Although there is a description of a non-aqueous electrolyte secondary battery using a negative electrode that has been heat-treated at a temperature of ° C., the details of which step after coating is unclear.

【0006】さらに非酸化性雰囲気での乾燥条件を量産
スケールで実施するに至っては所定の雰囲気仕様の設備
にすることでのコスト課題や同雰囲気を得るまでに要す
る時間など生産性に関わる課題が発生する。
[0006] Further, when the drying conditions in a non-oxidizing atmosphere are carried out on a mass production scale, there are problems related to productivity such as a cost problem by using equipment having a predetermined atmosphere specification and a time required to obtain the atmosphere. appear.

【0007】よってコストや生産性低下の課題をできる
だけ小さく抑えつつ高負荷放電特性を改善する方法が望
まれていた。
Therefore, there has been a demand for a method of improving high-load discharge characteristics while minimizing problems of cost and productivity reduction as much as possible.

【0008】本発明は上記の課題を解決するものであ
り、工程コストや生産性低下の課題をできるだけ小さく
抑えつつ高負荷放電特性の改善を実現する非水電解液二
次電池を提供するものである。
The present invention has been made to solve the above problems, and provides a non-aqueous electrolyte secondary battery capable of improving high load discharge characteristics while minimizing the problems of process cost and productivity reduction. is there.

【0009】[0009]

【発明の実施の形態】上記の課題を解決するために、本
発明の非水電解液二次電池用負極板の製造法は、リチウ
ムイオンを吸蔵、放出可能な炭素材料と増粘剤及び結着
剤を含む負極合剤層を有する負極板の製造法であって、
前記負極合剤を集電体に塗着、乾燥した後、110℃以
上300℃以下で熱処理し、これを圧延成型するもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above-mentioned problems, a method of manufacturing a negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention comprises a carbon material capable of occluding and releasing lithium ions, a thickener, and a binder. A method for producing a negative electrode plate having a negative electrode mixture layer containing a binder,
The negative electrode mixture is applied to a current collector, dried, heat-treated at 110 ° C. or more and 300 ° C. or less, and roll-formed.

【0010】[0010]

【実施例】以下に、本発明の実施例を図面に基いて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の円筒型電池の縦断面図であ
る。図1において、正極板1は活物質にコバルト酸リチ
ウム、導電剤としてアセチレンブラックの炭素粉末、結
着剤としてポリテトラフルオロエチレン(PTFE)樹
脂デイスパージョンを混合し、さらに増粘剤としてカル
ボキシメチルセルロースナトリウム塩水溶液を混練し、
ペースト状にしたものを集電体である金属箔上に塗着、
乾燥した後、250℃で10時間熱処理を行い、その後
圧延して所定の寸法に切断した。これには正極リード2
をスポット溶接してとりつけてある。群構成前に250
℃、10時間の極板乾燥を行った。
FIG. 1 is a longitudinal sectional view of a cylindrical battery according to the present invention. In FIG. 1, a positive electrode plate 1 is made by mixing lithium cobaltate as an active material, carbon powder of acetylene black as a conductive agent, polytetrafluoroethylene (PTFE) resin dispersion as a binder, and carboxymethyl cellulose as a thickener. Knead the aqueous sodium salt solution,
The paste is applied on a metal foil as a current collector,
After drying, heat treatment was performed at 250 ° C. for 10 hours, followed by rolling and cutting to predetermined dimensions. This includes the positive lead 2
Is spot welded. 250 before group composition
The electrode was dried at 10 ° C. for 10 hours.

【0012】負極板3はリチウムを吸蔵、放出可能な鱗
片状黒鉛、結着剤としてスチレンブタジエンラバーの水
溶性デイスパージョン、増粘剤としてカルボキシメチル
セルロースナトリウム塩水溶液を混練し、ペースト状に
したものを集電体である金属箔上に塗着、乾燥した後、
180℃で6時間熱処理を行い、その後圧延して所定の
寸法に切断した。これには負極リード4をスポット溶接
してとりつけてある。さらに群構成前に110℃、6時
間の極板乾燥を行った。
The negative electrode plate 3 is formed by kneading flaky graphite capable of absorbing and releasing lithium, a water-soluble dispersion of styrene butadiene rubber as a binder, and an aqueous solution of sodium carboxymethyl cellulose as a thickener to form a paste. After coating on a metal foil as a current collector and drying,
Heat treatment was performed at 180 ° C. for 6 hours, followed by rolling and cutting to predetermined dimensions. In this case, the negative electrode lead 4 is attached by spot welding. Further, the electrode plate was dried at 110 ° C. for 6 hours before forming the group.

【0013】これら正、負極板の間にポリプロピレン製
セパレータ5を配し、渦巻状に巻回し極板群を構成し
た。
A separator 5 made of polypropylene was arranged between the positive and negative electrode plates and spirally wound to form an electrode plate group.

【0014】この極板群の上下それぞれに上部絶縁板
6、下部絶縁板7を配して電池ケース8に挿入後、所定
量の電解液を注入し、ポリプロピレン製のガスケット9
を介して電池ケース8で封口板10を密封して完成電池
とした。なお、電解液には、エチレンカーボネート、エ
チルメチルカーボネートの混合溶媒中に、1.3モルの
ヘキサフルオロリン酸リチウムを電解質として溶かした
ものを用いた。電池サイズは円筒18650型である。
An upper insulating plate 6 and a lower insulating plate 7 are arranged above and below the electrode group, respectively, and inserted into the battery case 8. Then, a predetermined amount of electrolyte is injected into the battery case 8, and a polypropylene gasket 9 is formed.
The sealing plate 10 was sealed with a battery case 8 through the above to obtain a completed battery. As the electrolytic solution, a solution prepared by dissolving 1.3 mol of lithium hexafluorophosphate as an electrolyte in a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used. The battery size is a cylinder 18650 type.

【0015】このようにして組み立てた電池を本発明電
池とした。
The battery assembled in this manner was used as the battery of the present invention.

【0016】次に負極板を作製する際に塗着、乾燥後、
熱処理することなく圧延した以外は上記と同様の電池作
製を行い、これを従来例電池とした。
Next, after coating and drying when producing a negative electrode plate,
A battery was fabricated in the same manner as described above except that rolling was performed without heat treatment, and this was used as a conventional battery.

【0017】これら作製した電池の保存後の放電特性評
価を行った。電池保存条件は充電状態下60℃20日行
った。試験条件は、充電電流0.2C、終止電圧4.2
Vの定電流定電圧充電、放電電流0.2C、1.0C、
2.0C、終止電圧3.0Vの定電流放電とし、20℃
で充放電を繰り返し行った。
The discharge characteristics of these batteries after storage were evaluated. The battery was stored at 60 ° C. for 20 days under a charged condition. The test conditions were a charging current of 0.2 C and a final voltage of 4.2.
V constant current constant voltage charge, discharge current 0.2C, 1.0C,
2.0C, constant voltage discharge with a final voltage of 3.0V, 20 ° C
And repeated charging and discharging.

【0018】(表1)に従来例電池及び本発明電池につ
いて保存後の放電特性を示す。
Table 1 shows the discharge characteristics of the conventional battery and the battery of the present invention after storage.

【0019】[0019]

【表1】 [Table 1]

【0020】(表1)の結果より、負極板を作製する際
に塗着、乾燥後、熱処理することなく圧延成型し作製し
た従来例電池と、熱処理を行った後圧延成型し作製した
本発明電池とでは、放電性能とりわけ高負荷放電特性に
おいて明確な差が見られた。
From the results shown in Table 1, the conventional battery prepared by rolling and forming without heat treatment after coating and drying when forming a negative electrode plate, and the present invention formed by rolling and forming after heat treatment were performed. A clear difference was observed between the battery and the battery in terms of discharge performance, especially in high-load discharge characteristics.

【0021】これは塗着後の熱処理により増粘剤および
結着剤の熱分解が効果的に行われ、過剰な増粘剤、結着
剤が除去されるためであると考えられる。
It is considered that this is because the thermal decomposition of the thickener and the binder is effectively performed by the heat treatment after the application, and the excess thickener and the binder are removed.

【0022】また、熱処理により銅箔が焼鈍軟化された
後に圧延するため、集電体と合剤との機械的な接着度が
向上し、集電効果が向上される要因も含まれると考えら
れる。
Further, since the copper foil is rolled after annealing and softening by the heat treatment, it is considered that the mechanical adhesion between the current collector and the mixture is improved and the current collecting effect is also improved. .

【0023】これは極板の断面写真によっても確認され
ている。図2に放電曲線の一例として従来例電池と本発
明電池のものを示した。
This is also confirmed by a cross-sectional photograph of the electrode plate. FIG. 2 shows an example of the discharge curves of the battery of the conventional example and the battery of the present invention.

【0024】次に熱処理条件に関する検討として、熱処
理温度及び処理時間と負極合剤の重量減少率を測定した
後、熱処理条件以外は上記実施例と同様の方法にて電池
作製を行い電池特性評価を行った。その結果を(表2)
に示す。なお、熱処理時間については、重量減少率の変
化量がほぼゼロになる時間として720分までの条件検
討を行った。
Next, as a study on the heat treatment conditions, after measuring the heat treatment temperature, the treatment time, and the weight reduction ratio of the negative electrode mixture, a battery was prepared in the same manner as in the above example except for the heat treatment conditions, and the battery characteristics were evaluated. went. (Table 2)
Shown in Regarding the heat treatment time, conditions were examined up to 720 minutes as the time when the amount of change in the weight loss rate became almost zero.

【0025】[0025]

【表2】 [Table 2]

【0026】熱処理温度が110℃以上300℃以下
(重量減少量が0.6±0.2%)の熱処理条件で従来
例に比べて放電特性が向上し、熱処理温度が110℃よ
り下あるいは300℃より上(重量減少率が0.8%以
上の領域または0.4%より下回る領域)の熱処理条件
では放電特性が悪くなる結果が得られた。
Under heat treatment conditions in which the heat treatment temperature is 110 ° C. or more and 300 ° C. or less (the weight loss is 0.6 ± 0.2%), the discharge characteristics are improved as compared with the conventional example, and the heat treatment temperature is lower than 110 ° C. or 300 ° C. Under the heat treatment conditions above ℃ (area where the weight loss rate is 0.8% or more or below 0.4%), the result that the discharge characteristics deteriorated was obtained.

【0027】熱処理温度が300℃より上の領域では銅
箔の酸化変色の度合いが大きく、銅箔表面で電解液の溶
媒和などによるリチウムイオンとの重合物生成によりリ
チウムイオンが負可逆形態で捕捉され、結果として放電
容量自体を下げる形に作用しているものと考えられる。
In the region where the heat treatment temperature is higher than 300 ° C., the degree of oxidative discoloration of the copper foil is large, and lithium ions are trapped in a negatively reversible form due to the formation of a polymer with lithium ions due to solvation of an electrolytic solution on the copper foil surface. As a result, it is considered that the discharge capacity itself is reduced.

【0028】また熱処理温度が110℃より下であれば
熱処理不十分で活物質上の過剰な増粘剤及び結着剤の熱
分解が促進されず放電阻害要素となり高負荷放電特性が
悪くなると考えられる。したがって極度な銅箔変色を生
じず合剤の熱処理を行える110℃以上300℃以下の
温度範囲が好ましい。
If the heat treatment temperature is lower than 110 ° C., it is considered that the heat treatment is insufficient and the thermal decomposition of the excessive thickener and binder on the active material is not promoted, and it becomes a discharge inhibiting element and the high-load discharge characteristics deteriorate. Can be Therefore, a temperature range of 110 ° C. or more and 300 ° C. or less at which heat treatment of the mixture can be performed without causing extreme discoloration of the copper foil is preferable.

【0029】また、高効率生産の観点から処理時間をで
きるだけ短くすることと、工程安定性の観点から熱処理
炉の温度バラツキによる熱処理バラツキへの影響を低減
することの二つの視点から、熱処理温度を150℃以上
300℃以下とすることがさらに好ましい。
From the two viewpoints of reducing the processing time as much as possible from the viewpoint of high-efficiency production and reducing the influence on the heat treatment variation due to the temperature variation of the heat treatment furnace from the viewpoint of process stability, the heat treatment temperature is determined as follows. More preferably, the temperature is set to 150 ° C. or more and 300 ° C. or less.

【0030】量産スケールにてこの熱処理を行うに当た
っては、バッチ炉より連続式炉の方が生産性が高く、所
定の吸排気が行える装置であれば熱処理ムラ等の問題も
なく、特殊雰囲気装置(真空や希ガスなど)の設備コスト
も不必要であるため、生産性とコストにおける課題は割
合小さく抑えることができる。
In performing this heat treatment on a mass-production scale, a continuous furnace has higher productivity than a batch furnace, and any apparatus capable of performing a predetermined intake and exhaust can be used without any problem such as uneven heat treatment. Since there is no need for equipment costs (e.g., vacuum or rare gas), problems in productivity and cost can be reduced to a relatively small extent.

【0031】本実施例では、ゴム系高分子として、スチ
レンーブタジエンゴムを用いたが、アクリロニトリルー
ブタジエンゴム、メタクリル酸メチルーブタジエンゴ
ム、メタクリル酸メチル−メタクリル酸ナトリウムゴ
ム、メタクリル酸メチル−メタクリル酸リチウムゴム、
メタクリル酸アンモニウム−メタクリル酸リチウムゴ
ム、メタクリル酸メチル−メタクリル酸リチウム−メタ
クリル酸アンモニウムゴムにおいても同様の結果を導き
だすことができた。
In the present embodiment, styrene butadiene rubber was used as the rubber polymer, but acrylonitrile butadiene rubber, methyl methacrylate butadiene rubber, methyl methacrylate-sodium methacrylate rubber, methyl methacrylate-methacrylic acid were used. Lithium rubber,
Similar results could be obtained for ammonium methacrylate-lithium methacrylate rubber and methyl methacrylate-lithium methacrylate-ammonium methacrylate rubber.

【0032】また、好ましくはスチレンーブタジエンゴ
ム、メタクリル酸メチルゴム、メタクリル酸メチルゴム
の全メチル基のうち一部をナトリウム塩、リチウム塩お
よびアンモニウム塩のいずれかあるいはその組み合わせ
によって置換されているゴムである。
Further, a rubber in which part of all methyl groups of styrene butadiene rubber, methyl methacrylate rubber, and methyl methacrylate rubber is substituted by any of sodium salt, lithium salt and ammonium salt or a combination thereof is preferable. .

【0033】さらに負極増粘剤として本実施例では、カ
ルボキシメチルセルロースナトリウム塩を用いたが、メ
チルセルロース、カルボキシメチルセルロースリチウム
塩、ポリビニルアルコール、ポリビニルピロリドン、ポ
リアクリル酸ナトリウム、ポリアクリル酸、ポリエチレ
ングリコール、ポリエチレンオキサイドのいずれかであ
っても同様の結果を導き出すことができた。
In this embodiment, sodium carboxymethylcellulose was used as the negative electrode thickener. However, methylcellulose, lithium carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, polyacrylic acid, polyethylene glycol, and polyethylene oxide were used. Similar results could be obtained with either of the above.

【0034】また好ましくは、カルボキシメチルセルロ
ースナトリウム塩、カルボキシメチルセルロースリチウ
ム塩である。
Also preferred are sodium carboxymethylcellulose and lithium carboxymethylcellulose.

【0035】本実施例では、円筒型電池を用いたが当然
ながら角型、積層型の電池であってもよい。
In this embodiment, a cylindrical battery is used, but a prismatic or stacked battery may of course be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery of the present invention.

【図2】電池の放電特性を示す図FIG. 2 is a diagram showing discharge characteristics of a battery.

【符号の説明】[Explanation of symbols]

1 正極板 2 正極リード 3 負極板 4 負極リード 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 電池ケース 9 ガスケット 10 封口板 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode lead 3 Negative electrode plate 4 Negative electrode lead 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Battery case 9 Gasket 10 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒瀧 安弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 保手浜 健一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ03 AK03 AL07 AM03 AM05 AM07 BJ02 CJ02 CJ03 CJ22 DJ08 EJ12 HJ14 5H050 AA08 BA17 CA08 CB08 DA03 DA11 EA23 GA02 GA03 GA22 HA14  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiro Arataki 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Terms (reference) 5H029 AJ03 AK03 AL07 AM03 AM05 AM07 BJ02 CJ02 CJ03 CJ22 DJ08 EJ12 HJ14 5H050 AA08 BA17 CA08 CB08 DA03 DA11 EA23 GA02 GA03 GA22 HA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵、放出可能な炭素
材料と増粘剤及び結着剤を含む負極合剤層を集電体上に
形成した負極板の製造法であって、前記炭素材料と増粘
剤及び結着剤とを含有する負極合剤を集電体に塗着、乾
燥した後、これを110℃以上300℃以下で熱処理
し、ついで圧延成型する非水電解液二次電池用負極板の
製造法。
1. A method for producing a negative electrode plate, comprising: a negative electrode mixture layer containing a carbon material capable of occluding and releasing lithium ions, a thickener and a binder formed on a current collector, wherein the carbon material is For a non-aqueous electrolyte secondary battery, a negative electrode mixture containing a thickener and a binder is applied to a current collector, dried, and then heat-treated at 110 to 300 ° C., and then roll-molded. Manufacturing method of negative electrode plate.
【請求項2】 結着剤は、スチレンーブタジエンゴム、
アクリロニトリルーブタジエンゴム、メタクリル酸メチ
ルーブタジエンゴム、メタクリル酸メチルゴム、メタク
リル酸メチルゴムの全メチル基のうち一部をナトリウム
塩、リチウム塩およびアンモニウム塩のいずれかあるい
はその組み合わせによって置換したゴムの中から選ばれ
る少なくとも1種である請求項1記載の非水電解液二次
電池用負極板の製造法。
2. A binder comprising styrene butadiene rubber,
Acrylonitrile butadiene rubber, methyl methacrylate butadiene rubber, methyl methacrylate rubber, selected from rubbers in which some of the total methyl groups in the rubber of methyl methacrylate have been replaced by sodium salts, lithium salts and ammonium salts or any combination thereof The method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, which is at least one of the following:
【請求項3】 増粘剤は、メチルセルロース、カルボキ
シメチルセルロース、カルボキシメチルセルロースナト
リウム塩、カルボキシメチルセルロースリチウム塩、ポ
リビニルアルコール、ポリビニルピロリドン、ポリアク
リル酸ナトリウム、ポリアクリル酸、ポリエチレングリ
コール、ポリエチレンオキサイドのいずれかである請求
項1記載の非水電解液二次電池用負極板の製造法。
3. The thickener is any one of methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, lithium carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, polyacrylic acid, polyethylene glycol, and polyethylene oxide. A method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 1.
JP2000056797A 2000-03-02 2000-03-02 Method of producing negative electrode plate for nonaqueous electrolyte secondary battery Pending JP2001250536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056797A JP2001250536A (en) 2000-03-02 2000-03-02 Method of producing negative electrode plate for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056797A JP2001250536A (en) 2000-03-02 2000-03-02 Method of producing negative electrode plate for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001250536A true JP2001250536A (en) 2001-09-14

Family

ID=18577684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056797A Pending JP2001250536A (en) 2000-03-02 2000-03-02 Method of producing negative electrode plate for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001250536A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117839A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for non- aqueous electrolytic solution secondary battery
JP2007207697A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolyte solution secondary battery
JP2009193932A (en) * 2008-02-18 2009-08-27 Asahi Kasei E-Materials Corp Manufacturing method of electrode
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP2013080660A (en) * 2011-10-05 2013-05-02 Sumitomo Bakelite Co Ltd Method for manufacturing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014157417A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
WO2015076099A1 (en) * 2013-11-25 2015-05-28 日産自動車株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary batteries
JPWO2016121322A1 (en) * 2015-01-27 2017-11-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate
CN108110197A (en) * 2017-12-06 2018-06-01 成都新柯力化工科技有限公司 A kind of lithium battery selective membrane and preparation method thereof
WO2023082246A1 (en) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 Electrode and preparation method therefor, electrochemical device, and electronic device
WO2023082248A1 (en) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 Electrode and fabricating method therefor, electrochemical device, and electronic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117839A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for non- aqueous electrolytic solution secondary battery
JP2007207697A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolyte solution secondary battery
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP2009193932A (en) * 2008-02-18 2009-08-27 Asahi Kasei E-Materials Corp Manufacturing method of electrode
JP2013080660A (en) * 2011-10-05 2013-05-02 Sumitomo Bakelite Co Ltd Method for manufacturing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2980884A4 (en) * 2013-03-26 2016-11-16 Nissan Motor Non-aqueous electrolyte secondary battery
WO2014157417A1 (en) 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
KR20150126870A (en) 2013-03-26 2015-11-13 닛산 지도우샤 가부시키가이샤 Non-aqueous electrolyte secondary battery
WO2015076099A1 (en) * 2013-11-25 2015-05-28 日産自動車株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary batteries
JPWO2016121322A1 (en) * 2015-01-27 2017-11-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate
CN108110197A (en) * 2017-12-06 2018-06-01 成都新柯力化工科技有限公司 A kind of lithium battery selective membrane and preparation method thereof
CN108110197B (en) * 2017-12-06 2020-08-28 成都新柯力化工科技有限公司 Selective diaphragm for lithium battery and preparation method thereof
WO2023082246A1 (en) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 Electrode and preparation method therefor, electrochemical device, and electronic device
WO2023082248A1 (en) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 Electrode and fabricating method therefor, electrochemical device, and electronic device

Similar Documents

Publication Publication Date Title
KR102511721B1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery comprising the same
CN103682304A (en) Lithium-rich solid solution anode composite and preparation method thereof, lithium ion battery anode plate and lithium ion battery
JP2005063805A (en) Anode and lithium secondary battery using it
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP6232931B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
KR102111481B1 (en) Method for preparing electrode for lithium secondary battery
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
KR20190090723A (en) Method of manufacturing negative electrode for lithium secondary battery
CN112771690B (en) Negative electrode and secondary battery including the same
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP2003168427A (en) Nonaqueous electrolyte battery
JP6981344B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP2002025540A (en) Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JP2020177890A (en) Non-aqueous secondary battery
KR101777399B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery
JP2001135305A (en) Producing method of positive electrode plate for nonaqueous electrolytic solution secondary battery
KR20190110345A (en) Anode, Preparation Method Thereof and Lithium Secandary Battery Comprising Same
JP3276741B2 (en) Non-aqueous electrolyte secondary battery
KR20190110348A (en) Method for Preparing Anode and Anode Prepared Therefrom
EP4224547A1 (en) Negative electrode, method of manufacturing negative electrode, and secondary battery including negative electrode
JP2003077478A (en) Lithium ion secondary battery