JP2007207690A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2007207690A
JP2007207690A JP2006027876A JP2006027876A JP2007207690A JP 2007207690 A JP2007207690 A JP 2007207690A JP 2006027876 A JP2006027876 A JP 2006027876A JP 2006027876 A JP2006027876 A JP 2006027876A JP 2007207690 A JP2007207690 A JP 2007207690A
Authority
JP
Japan
Prior art keywords
group
binder
positive electrode
separator
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027876A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ishii
義行 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006027876A priority Critical patent/JP2007207690A/en
Publication of JP2007207690A publication Critical patent/JP2007207690A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an initial malfunction in a battery, and enable the battery to drive itself stably for a long time. <P>SOLUTION: This is a lithium ion secondary battery in which on the surface of a binder that binds a positive electrode and a negative electrode and/or a separator that separates the positive electrode and the negative electrode, a group that forms a chelate bond with copper is chemically bonded in the lithium ion secondary battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年の電子技術の発展に伴い、移動体通信機器やポータブルコンピュータが広く普及してきている。これら携帯機器の電源として高エネルギー密度の二次電池が有望されてきており、特に、非水電解質二次電池であるリチウムイオン二次電池は高電圧が期待できることから、機器の小型化、軽量化が期待できる。さらには、この非水電解質二次電池は、近年環境問題対策で注目を集めているハイブリット自動車用電池としても有望であり、開発が加速されている。
リチウムイオン二次電池は、リチウムを吸蔵、放出可能な活物質を主体として構成された正極と負極とがセパレータを介して配されており、前記正極は、正極活物質としてのLiCoO、LiNiO、LiMn等に導電剤としてのカーボンブラックや黒鉛、バインダーとしてのポリフッ化ビニリデンや、ラテックス、ゴム等を混合した正極合剤がアルミニウム等からなる正極集電体上に被覆されてなり、負極は、負極活物質としてのコークスや黒鉛等にバインダーとしてのポリフッ化ビニリデンや、ラテックス、ゴム等を混合した負極合剤が銅等からなる負極集電体上に被覆されてなり、セパレータは、多孔性ポリエチレンや、多孔性ポリプロピレン等からなり、厚みは数μから数百μと非常に薄い。
With the recent development of electronic technology, mobile communication devices and portable computers have become widespread. Secondary batteries with high energy density have been promising as power sources for these portable devices. In particular, lithium ion secondary batteries, which are non-aqueous electrolyte secondary batteries, can be expected to have a high voltage. Can be expected. Furthermore, this non-aqueous electrolyte secondary battery is also promising as a hybrid automobile battery that has been attracting attention in recent years as a countermeasure for environmental problems, and its development is accelerated.
In the lithium ion secondary battery, a positive electrode and a negative electrode mainly composed of an active material capable of occluding and releasing lithium are arranged via a separator, and the positive electrode is composed of LiCoO 2 and LiNiO 2 as positive electrode active materials. In addition, a positive electrode mixture obtained by mixing carbon black or graphite as a conductive agent with LiMn 2 O 4 or the like, polyvinylidene fluoride as a binder, latex, rubber, or the like is coated on a positive electrode current collector made of aluminum or the like, The negative electrode is formed by coating a negative electrode current collector made of copper or the like with a negative electrode mixture obtained by mixing polyvinylidene fluoride as a binder with coke or graphite as a negative electrode active material, latex, rubber, etc. It consists of porous polyethylene, porous polypropylene, etc., and its thickness is very thin, from several μ to several hundred μ.

そして、前記正極、負極、セパレータにはヘキサフルオロリン酸リチウムのようなリチウム塩をプロピレンカーボネート、エチレンカーボネートのような非プロトン性溶媒やポリエチレンオキシドのようなポリマーに溶解させた電解液が含浸されてなる。
このようなリチウムイオン電池においては、特許文献1に記載されているようにマイクロショートと呼ばれる短絡が発生する場合がある。この短絡の原因としては、製造工程で微小量の金属不純物、特に銅の混入が原因となる場合と、正極や、集電体からの金属イオンの溶出、その後の析出によるマイクロショートがある。
また、正極の劣化が除々に進行し、コバルト、ニッケル、マンガン等の重金属イオンが電池内に溶出してしまい、充放電を繰り返すと電極上に析出する事によるマイクロショートがある。
The positive electrode, negative electrode, and separator are impregnated with an electrolyte solution in which a lithium salt such as lithium hexafluorophosphate is dissolved in an aprotic solvent such as propylene carbonate or ethylene carbonate or a polymer such as polyethylene oxide. Become.
In such a lithium ion battery, a short circuit called a micro short circuit may occur as described in Patent Document 1. Causes of this short circuit include a case where a minute amount of metal impurities, particularly copper, are mixed in the manufacturing process, and a short circuit due to elution of metal ions from the positive electrode and current collector and subsequent precipitation.
In addition, the deterioration of the positive electrode gradually proceeds, and heavy metal ions such as cobalt, nickel, and manganese are eluted in the battery, and there is a micro-short due to precipitation on the electrode when charging and discharging are repeated.

例えば、特許文献3では、正極から溶出するマンガン成分を捕捉する手段として、正極中に燐酸リチウム、タングステン酸リチウム、珪酸リチウム、アルミナイト、ホウ酸リチウム、モリブテン酸リチウム、陽イオン交換樹脂の群から選ばれる捕捉剤を添加する方法が開示されている。また、特許文献6では、不織布からなるセパレータの表面に水酸基、カルボン酸基、スルホン酸基、またはこれらの塩からなる官能基を表面に付与する方法が開示されている。さらには、特許文献7ではマンガン系正極から溶出するマンガンを捕捉させることを目的として、セパレータ表面にカルボン酸や、スルホン酸等の陽イオン交換樹脂で修飾させる方法が開示されている。しかしながら、電解液中には大量のリチウムイオンが存在し、しかもリチウムは非常に低い電気陰性度を有しているので、例え、上述のような陽イオン交換基があっても、微量に溶出した銅等の重金属を効率よく捕捉する事は困難である。   For example, in Patent Document 3, as a means for capturing a manganese component eluted from the positive electrode, the positive electrode includes lithium phosphate, lithium tungstate, lithium silicate, aluminite, lithium borate, lithium molybdate, and a cation exchange resin. A method of adding a selected scavenger is disclosed. Patent Document 6 discloses a method in which a functional group comprising a hydroxyl group, a carboxylic acid group, a sulfonic acid group, or a salt thereof is imparted to the surface of a separator made of nonwoven fabric. Further, Patent Document 7 discloses a method in which the separator surface is modified with a cation exchange resin such as carboxylic acid or sulfonic acid for the purpose of capturing manganese eluted from the manganese-based positive electrode. However, a large amount of lithium ions are present in the electrolyte, and lithium has a very low electronegativity, so even if there is a cation exchange group as described above, it is eluted in a trace amount. It is difficult to efficiently capture heavy metals such as copper.

一方、重金属を選択的に捕捉する方法として、重金属イオンを配位的に束縛するキレート官能基を用いる方法が検討されている。例えば、特許文献2には正極・負極・セパレータの少なくとも1つにキレート高分子を含有させる方法が開示されている。また、特許文献4ではエチレンジアミン四酢酸のようなキレート剤を電池内に添加する方法が検討されている。さらには、特許文献5ではマンガン系正極を用いた二次電池において正極または、負極にキレート剤、キレート樹脂を添加する方法が記載されている。一方、特許文献8ではバインダー、セパレータ、電解質にキレート剤を添加する方法が開示されている。しかしながら、キレート剤のような低分子化合物を添加しても、電池内で容易に拡散が起こってしまい、活性な電極上ではせっかくキレート化させた重金属イオンが還元され、結果としてマイクロショートが起こってしまう。また、バインダーは、一般的にポリフッ化ビニリデン(PVdF)、スチレンブタジエンコポリマー等の高分子から構成され、一方、セパレータは、ポリエチレン、ポリプロピレン等のポリオレフィンから構成される。この様なバインダーやセパレータを構成する高分子は、キレート基のような極性基を持つ高分子との密着性が非常に悪く、また、相溶性も非常に悪いため、均一に混合させる事はできず、界面からの剥離や、バインダーやセパレータの強度低下を伴う。
上述してきたマイクロショートについては、集電体から来る銅と、正極から来る重金属が考えられるが、特に銅によるマイクロショートが初期製造工程におけるトラブルの原因となり、検査方法による対策はとられているものの、その検査負荷は大きい。
On the other hand, as a method for selectively capturing heavy metals, a method using a chelate functional group that coordinately binds heavy metal ions has been studied. For example, Patent Document 2 discloses a method of containing a chelate polymer in at least one of a positive electrode, a negative electrode, and a separator. Patent Document 4 discusses a method of adding a chelating agent such as ethylenediaminetetraacetic acid into the battery. Furthermore, Patent Document 5 describes a method of adding a chelating agent or a chelating resin to a positive electrode or a negative electrode in a secondary battery using a manganese-based positive electrode. On the other hand, Patent Document 8 discloses a method of adding a chelating agent to a binder, a separator, and an electrolyte. However, even if a low molecular weight compound such as a chelating agent is added, diffusion easily occurs in the battery, and the chelated heavy metal ion is reduced on the active electrode, resulting in a micro short circuit. End up. The binder is generally composed of a polymer such as polyvinylidene fluoride (PVdF) or a styrene butadiene copolymer, while the separator is composed of a polyolefin such as polyethylene or polypropylene. The polymers that make up such binders and separators have very poor adhesion to polymers with polar groups such as chelate groups, and are also very poor in compatibility, so they can be mixed uniformly. It is accompanied by peeling from the interface and a decrease in strength of the binder and separator.
For the micro-shorts described above, copper coming from the current collector and heavy metals coming from the positive electrode can be considered, but micro-shorts caused by copper in particular cause troubles in the initial manufacturing process, although measures are taken by inspection methods. The inspection load is large.

特開2005−209528号公報JP 2005-209528 A 特開平11−121012号公報Japanese Patent Application Laid-Open No. 11-121021 特開2000−011996号公報Japanese Patent Laid-Open No. 2000-011996 特開2000−077103号公報JP 2000-077103 A 特開2000−195553号公報JP 2000-195553 A 特開2000−268799号公報JP 2000-268799 A 特開2002−025527号公報JP 2002-025527 A 特開2004−063123号公報JP 2004-063123 A

本発明は強度を低下させることなく、銅イオンを選択的に補足できる高分子基材を用いる事により、電池の初期不良を低減し、かつ、電池運転を長時間安定に行わせる事を可能にする電池を提供する。   The present invention makes it possible to reduce the initial failure of the battery and to stably operate the battery for a long time by using a polymer base material that can selectively supplement copper ions without reducing the strength. A battery is provided.

本発明者は上記課題を解決すべく、鋭意検討した結果、正極や負極を結着するバインダー及び/または正極と負極を分離するセパレータの表面に、銅イオンとキレート結合を形成する官能基を化学結合させれば、電池の初期不良を低減し、かつ電池運転を長時間安定に行わせる事が可能である事を見出し本発明に至った。
すなわち本発明は、リチウムイオン二次電池において、正極や負極を結着するバインダー及び/または正極と負極を分離するセパレータの表面に、銅イオンとキレート結合を形成する官能基が化学結合しているリチウムイオン二次電池である。
As a result of intensive investigations to solve the above-mentioned problems, the present inventor has chemically formed a functional group that forms a chelate bond with a copper ion on the surface of the binder that binds the positive electrode and the negative electrode and / or the separator that separates the positive electrode and the negative electrode. As a result, it was found that the initial failure of the battery can be reduced and the battery operation can be performed stably for a long period of time.
That is, according to the present invention, in a lithium ion secondary battery, a functional group that forms a chelate bond with a copper ion is chemically bonded to the surface of a binder that binds the positive electrode and the negative electrode and / or a separator that separates the positive electrode and the negative electrode. It is a lithium ion secondary battery.

本発明の強度を低下させることなく、銅イオンを選択的に補足できる高分子基材を用いる事により、電池の初期不良が低減され、かつ、電池運転を長時間安定に行わせる事が可能となった。   By using a polymer base material that can selectively supplement copper ions without reducing the strength of the present invention, it is possible to reduce the initial failure of the battery and to stably operate the battery for a long time. became.

以下に本発明のリチウムイオン二次電池をより詳細に説明する。
本発明で用いられるバインダーは、一般にリチウムイオン二次電池で用いられる正極や負極用バインダーであり、特に限定はされないが、具体的には、PTFE(ポリテトラフルオロエチレン)、PVdF(ポリフッ化ビニリデン)等のフッ素系高分子、スチレン−ブタジエンコポリマーラテックス、ジエン系ゴムラテックス、アクリレート系ゴムラテックス、セルロース、ポリイミド等の耐熱性高分子等が挙げられる。このようなバインダーは、通常、水や、プロピレンカーボネート、エチレンカーボネート、有機溶媒等に分散した形として用いられる。
また、本発明で用いられるセパレータは、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が用いられる。
The lithium ion secondary battery of the present invention will be described in detail below.
The binder used in the present invention is a positive electrode or negative electrode binder generally used in lithium ion secondary batteries, and is not particularly limited. Specifically, PTFE (polytetrafluoroethylene), PVdF (polyvinylidene fluoride) And heat-resistant polymers such as styrene-butadiene copolymer latex, diene rubber latex, acrylate rubber latex, cellulose, and polyimide. Such a binder is usually used in a form dispersed in water, propylene carbonate, ethylene carbonate, an organic solvent or the like.
The separator used in the present invention is a microporous film made of polyolefin such as polyethylene or polypropylene.

次に本発明で用いられる銅イオンとキレート結合を形成する官能基について説明する。銅イオンとキレート結合を形成する形成基は、具体的にはイミノジ酢酸基、イミノプロピオン酸基、アミノリン酸基、アミドキシム基、ピコリルアミン基、ポリアミン基、クラウンエーテル基、クリプタンド基、ポルフィリン基、フタロシアニン基等、銅イオンに対して複数の方向から配位することによって、高い銅捕捉能を示す基である。この中でも、特にイミノジ酢酸基が銅イオンを選択的に捕捉するので好ましい。
次に本発明で用いられる、表面に銅イオンとキレート結合を形成する基が化学結合しているバインダー及び/またはセパレータについて説明する。
バインダー及び/またはセパレータは、前述したように、高分子材料であるので、ここに何らかの手段でキレート結合を形成する基を化学的な方法で付与させればよく、具体的には、基材となる高分子に、放射線、電子線、紫外線、プラズマから選ばれた少なくとも一つの高エネルギー線を照射し、ラジカルを発生させたのちにグラフト反応で、銅イオンとキレート結合を形成する基を導入する方法が挙げられる。
Next, the functional group that forms a chelate bond with the copper ion used in the present invention will be described. Specific examples of the forming group that forms a chelate bond with copper ion include iminodiacetic acid group, iminopropionic acid group, aminophosphoric acid group, amidoxime group, picolylamine group, polyamine group, crown ether group, cryptand group, porphyrin group, phthalocyanine It is a group that exhibits high copper capturing ability by coordinating from a plurality of directions with respect to copper ions, such as a group. Among these, an iminodiacetic acid group is particularly preferable because it selectively captures copper ions.
Next, the binder and / or separator used in the present invention in which a group that forms a chelate bond with a copper ion is chemically bonded to the surface will be described.
Since the binder and / or separator is a polymer material as described above, a group that forms a chelate bond may be imparted thereto by a chemical method by any means. The polymer is irradiated with at least one high energy beam selected from radiation, electron beam, ultraviolet ray, and plasma, and after radicals are generated, a group that forms a chelate bond with a copper ion is introduced by a graft reaction. A method is mentioned.

特に、特許第2772010号公報や、特許第3312634号公報等のように電離放射線を照射し、高分子表面にラジカルを形成し、これを基点としてイミノジ酢酸を導入する方法は、効率よくイミノジ酢酸を高分子表面に導入する方法として知られ好ましい。
しかしながら、電離製放射線の取り扱いは、設備として大きくなる場合がある。より簡便な方法として、電子線や、紫外線を用いて高分子表面にラジカルを導入してもよい。紫外線の場合は、低圧水銀ランプ(紫外線波長:185nm及び254nm)、キセノンエキシマーランプ(紫外線波長174nm)等が好適に用いられる。プラズマ処理の場合は、使用されるガスとしては、酸素、4フッ化炭素ガス、水素ガス、アルゴンガス、窒素ガス、アンモニアガス、ヘリウムガスなどが好適に用いられる。処理モードとしては、HOT電極上に試料を設置するRIEモード、Ground電極上に試料を設置するPEモード、さらには、電極外部に試料を設置するリモート法などが好ましく用いられるが、特にロール状の製品形態であるセパレータに対しては、ロール品の処理が簡便である大気圧付近での圧力下でのプラズマ処理が好適に用いられる。
In particular, the method of irradiating ionizing radiation to form radicals on the polymer surface and introducing iminodiacetic acid based on this as described in Japanese Patent No. 2772010, Japanese Patent No. 3312634, etc. efficiently uses iminodiacetic acid. It is known and preferable as a method for introducing it onto the polymer surface.
However, the handling of ionizing radiation may be large as equipment. As a simpler method, radicals may be introduced onto the polymer surface using an electron beam or ultraviolet rays. In the case of ultraviolet rays, low-pressure mercury lamps (ultraviolet wavelengths: 185 nm and 254 nm), xenon excimer lamps (ultraviolet wavelength 174 nm) and the like are preferably used. In the case of plasma treatment, oxygen, carbon tetrafluoride gas, hydrogen gas, argon gas, nitrogen gas, ammonia gas, helium gas, etc. are suitably used as the gas used. As the processing mode, an RIE mode in which a sample is placed on a HOT electrode, a PE mode in which a sample is placed on a ground electrode, and a remote method in which a sample is placed outside the electrode are preferably used. For a separator in a product form, a plasma treatment under a pressure in the vicinity of atmospheric pressure, which facilitates the treatment of a roll product, is preferably used.

以下、本発明を実施例に基いて詳細に説明する。
(参考例1:イミノジ酢酸基が表面に化学結合しているセパレータ)
ポリエチレンからなるセパレータ(膜厚25μm、空孔率50%、孔径0.1μm〜1μm、引張強度 1000kg/cm)を使用して特許文献10記載の方法に従い、表面にイミノジ酢酸が化学結合をしているリチウムイオン二次電池用セパレータを作成した。具体的には、ポリエチレンからなるセパレータに20kGyのγ線を照射し、その後メタクリル酸グリシジル10%およびエチレングリコールジメタクリレート0.5%を含むエタノール溶液に浸漬し、グラフト共重合を行った。その後、イミノジ酢酸を10%溶存するジメチルスルホキシドと水の1対1溶液に浸漬し、キレート基を導入させた。得られたセパレータは、エタノールで洗浄後、乾燥した。キレート基の導入は、ATR−IR法によって脂肪族カルボン酸のC=O基に起因するピークである1710cm−1により確認した。またイミノジ酢酸基を導入した後のセパレータの引張強度は1000kg/cmのままであった。
Hereinafter, the present invention will be described in detail based on examples.
(Reference Example 1: Separator in which iminodiacetic acid groups are chemically bonded to the surface)
Using a separator made of polyethylene (film thickness 25 μm, porosity 50%, pore diameter 0.1 μm to 1 μm, tensile strength 1000 kg / cm 2 ), iminodiacetic acid chemically bonded to the surface according to the method described in Patent Document 10. A separator for a lithium ion secondary battery was prepared. Specifically, 20 kGy γ-rays were irradiated onto a separator made of polyethylene, and then immersed in an ethanol solution containing 10% glycidyl methacrylate and 0.5% ethylene glycol dimethacrylate to carry out graft copolymerization. Thereafter, the resultant was immersed in a one-to-one solution of dimethyl sulfoxide and water in which 10% of iminodiacetic acid was dissolved to introduce a chelate group. The obtained separator was washed with ethanol and then dried. The introduction of the chelate group was confirmed by ATR-IR method at 1710 cm −1 which is a peak due to the C═O group of the aliphatic carboxylic acid. Further, the tensile strength of the separator after introducing the iminodiacetic acid group remained at 1000 kg / cm 2 .

(参考例2:イミノジ酢酸基が表面に化学結合しているバインダー)
ジエン系ゴムからなるバインダー分散液を使用して特許文献10記載の方法に従い、表面にイミノジ酢酸が化学結合をしているリチウムイオン二次電池用バインダーを作成した。用いたバインダーのゴムは、ガラス転移温度:−5℃、乾燥時の粒径:130nmであり、分散媒は水、濃度は40wt%である。具体的には、バインダー分散液に20kGyのγ線を照射後、メタクリル酸グリシジル10%およびエチレングリコールジメタクリレート0.5%を含むエタノールをバインダー分散液に対し、重量比当量投入し室温で1日攪拌し、グラフト共重合を行った。その後、イミノジ酢酸を10%溶存するジメチルスルホキシドと水の1対1溶液をバインダー分散液に対し、重量比当量投入し室温で1日攪拌した。精製は、遠心分離でジエン系ゴムと上澄みを分離し、分離したジエン系ゴムを除去した上澄みと当量の水で希釈する事を10回行う事によって除去し、最終的に固形分が40wt%になるように調整し、キレート基が表面に化学結合しているジエン系バインダーを作成した。キレート基の導入は、ATR−IR法によって脂肪族カルボン酸のC=O基に起因するピークである1710cm−1により確認した。
正極作成、負極作成、電池組立方法は以下に示す通りである。
(Reference Example 2: Binder in which iminodiacetic acid groups are chemically bonded to the surface)
A binder for lithium ion secondary battery in which iminodiacetic acid was chemically bonded to the surface was prepared according to the method described in Patent Document 10 using a binder dispersion composed of a diene rubber. The binder rubber used has a glass transition temperature of −5 ° C., a particle size when dried: 130 nm, a dispersion medium of water, and a concentration of 40 wt%. Specifically, after irradiating the binder dispersion with 20 kGy of γ-rays, ethanol containing 10% glycidyl methacrylate and 0.5% ethylene glycol dimethacrylate is added to the binder dispersion in a weight ratio equivalent for one day at room temperature. The mixture was stirred and graft copolymerization was performed. Thereafter, a one-to-one solution of dimethyl sulfoxide and water in which 10% of iminodiacetic acid was dissolved was added to the binder dispersion in a weight ratio equivalent and stirred at room temperature for 1 day. In the purification, the diene rubber and the supernatant are separated by centrifugation, and the supernatant is removed by diluting the separated diene rubber and the supernatant with an equivalent amount of water 10 times, so that the solid content finally becomes 40 wt%. A diene binder having a chelate group chemically bonded to the surface was prepared. The introduction of the chelate group was confirmed by ATR-IR method at 1710 cm −1 which is a peak due to the C═O group of the aliphatic carboxylic acid.
The positive electrode preparation, negative electrode preparation, and battery assembly method are as follows.

(正極作成)
正極活物質として、平均粒径10μのリチウムマンガン酸(LiMn)、導電助剤としては平均粒径3μの炭素粉末、バインダーとしてポリフッ化ビニリデン(PVdF)を85:10:5の重量比で混合した。混合物にN−メチル−2−ピロリドンを投入混合して固形分60wt%になるようにスラリー状の溶液を作成した。このスラリーを厚み20μのアルミニウム両面に塗布し、溶剤を乾燥したのち、ロールプレスで圧延して、54mm幅で長さが450mmに切断し短細状の正極を作成した。
(Creating positive electrode)
A weight ratio of 85: 10: 5 of lithium manganic acid (LiMn 2 O 4 ) having an average particle diameter of 10 μ as a positive electrode active material, carbon powder having an average particle diameter of 3 μ as a conductive assistant, and polyvinylidene fluoride (PVdF) as a binder. Mixed. N-methyl-2-pyrrolidone was added to the mixture and mixed to prepare a slurry solution so that the solid content was 60 wt%. This slurry was applied to both sides of aluminum having a thickness of 20 μm, and after drying the solvent, it was rolled by a roll press and cut into a length of 54 mm and a length of 450 mm to produce a short positive electrode.

(負極作成)
負極活物質として、平均粒径20μの非晶質炭素粉末、バインダーとしてジエン系からなるバインダー(ガラス転移温度:−5℃、乾燥時の粒径:120nm、分散媒:水、固形分濃度40%)を負極活物質の固形分濃度が60wt%になるようにスラリー状の溶液を作成した。このスラリーを厚み10μの銅両面に塗布し、溶剤を乾燥したのち、ロールプレスで圧延して、54mmで長さが500mmに切断し短細状の負極を作成した。なお、実施例2では、ジエン系からなるバインダーの替わりに、キレート基が表面に化学結合しているジエン系バインダーを用いて電極を作成した。この電極のハンドリング性は、良好であり、バインダーの強度低下に伴う捲回時の割れ、集電体からの剥離等は認められなかった。
(Create negative electrode)
As the negative electrode active material, an amorphous carbon powder having an average particle size of 20 μm, a binder composed of a diene system as a binder (glass transition temperature: −5 ° C., particle size at drying: 120 nm, dispersion medium: water, solid content concentration: 40% A slurry-like solution was prepared so that the solid content concentration of the negative electrode active material was 60 wt%. This slurry was applied to both sides of copper having a thickness of 10 μm, and after drying the solvent, it was rolled with a roll press and cut into a length of 54 mm and a length of 500 mm to prepare a short negative electrode. In Example 2, an electrode was prepared using a diene binder in which a chelate group was chemically bonded to the surface instead of a diene binder. The handleability of this electrode was good, and no cracking at the time of winding, peeling from the current collector, or the like due to a decrease in binder strength was observed.

(電池組立)
上述した方法で作成した正極と負極とをポリエチレンからなるセパレータ(膜厚25μm、幅58mm、空孔率50%、孔径0.1μm〜1μm)を介して捲回した。これを電池缶に挿入し、電解液を5ml注入し、密閉して直径18mm高さ65mmの円筒型電池を作成した。電解液は、エチレンカーボネートとジメチルカーボネートを体積比で1:2に混合した溶液にLiPFを1mol/lの濃度で溶解させたものに、銅イオンとしてCu(BFを10ppm溶解させたものである。
(Battery assembly)
The positive electrode and negative electrode prepared by the above-described method were wound through a polyethylene separator (film thickness 25 μm, width 58 mm, porosity 50%, pore diameter 0.1 μm to 1 μm). This was inserted into a battery can, 5 ml of electrolyte was injected, sealed, and a cylindrical battery having a diameter of 18 mm and a height of 65 mm was produced. The electrolytic solution was obtained by dissolving 10 ppm of Cu (BF 4 ) 2 as a copper ion in a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2. Is.

(実施例1、2)
表1に示す構成でリチウムイオン電池を作成し、充放電サイクル試験を行った。充放電サイクル試験は、次の条件にて実施した。充電は、1Aの定電流で充電し、4.1Vに到達した後、4.1Vの低電圧で、合計3時間充電を行った。その後、1Aの定電流で放電し、2.7Vに到達した時点で再び、充電を繰り返した。周囲温度は、25℃とした。
なお、実施例1では、ポリエチレンからなるセパレータの替わりに、上記参考例1のキレート基が表面に化学結合しているセパレータを用い、実施例2では、ジエン系ゴムからなるバインダーの替わりに、上記参考例2のキレート基が表面に化学結合しているジエン系ゴムからなるバインダーを用いた。
(Examples 1 and 2)
Lithium ion batteries having the configurations shown in Table 1 were prepared and subjected to charge / discharge cycle tests. The charge / discharge cycle test was performed under the following conditions. Charging was performed at a constant current of 1 A, and after reaching 4.1 V, charging was performed at a low voltage of 4.1 V for a total of 3 hours. Thereafter, the battery was discharged at a constant current of 1 A, and charging was repeated again when it reached 2.7 V. The ambient temperature was 25 ° C.
In Example 1, instead of a separator made of polyethylene, a separator in which the chelate group of Reference Example 1 was chemically bonded to the surface was used. In Example 2, instead of a binder made of a diene rubber, the above-mentioned A binder made of a diene rubber having the chelate group of Reference Example 2 chemically bonded to the surface was used.

(比較例1)
表1に記載の構成で、実施例1、実施例2と同様な方法にて電池を組立てて、充放電サイクル試験を行った。ただし、表1に示されるように、セパレータとしては、負極のバインダーは、ジエン系からなるバインダーを用い、セパレータはポリエチレンからなるセパレータを用いた。電解質内部には実施例1、及び実施例2と同様に銅イオンとしてCu(PFを10ppm溶解させたものを用いた。
(Comparative Example 1)
With the configuration shown in Table 1, batteries were assembled by the same method as in Example 1 and Example 2, and a charge / discharge cycle test was performed. However, as shown in Table 1, as the separator, the binder of the negative electrode was a diene binder, and the separator was a polyethylene separator. In the electrolyte, 10 ppm of Cu (PF 6 ) 2 dissolved as copper ions was used as in Example 1 and Example 2.

(試験結果)
実施例1、実施例2では、100サイクルまで安定に充放電サイクル試験が可能であり、また、100サイクル経過時の容量維持率はどちらも90%であった。一方比較例1では、5サイクル経過後電圧を取り出すことが不可能となり、電池を分解したところ、デンドライド状の金属析出物がセパレータを突き破り正極と負極を短絡させていた。
(Test results)
In Example 1 and Example 2, the charge / discharge cycle test was possible stably up to 100 cycles, and the capacity retention rate after 100 cycles was 90% in both cases. On the other hand, in Comparative Example 1, it was impossible to take out the voltage after 5 cycles, and when the battery was disassembled, the dendritic metal deposits pierced the separator and short-circuited the positive electrode and the negative electrode.

Figure 2007207690
Figure 2007207690

本発明によれば、電解液中に銅イオンが溶解していても安定に作動するリチウムイオン二次電池を提供することが可能となる。   According to the present invention, it is possible to provide a lithium ion secondary battery that operates stably even if copper ions are dissolved in the electrolytic solution.

Claims (3)

リチウムイオン二次電池において、正極や負極を結着するバインダー及び/または正極と負極を分離するセパレータの表面に、銅イオンとキレート結合を形成する基が化学結合しているリチウムイオン二次電池。   In the lithium ion secondary battery, a lithium ion secondary battery in which a copper ion and a group that forms a chelate bond are chemically bonded to a binder that binds the positive electrode and the negative electrode and / or a separator that separates the positive electrode and the negative electrode. 上記銅イオンとキレート結合を形成する基が、イミノジ酢酸基であることを特徴とする請求項1記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the group that forms a chelate bond with the copper ion is an iminodiacetic acid group. 正極や負極を結着するバインダー及び/または正極と負極を分離するセパレータの基材となる高分子に、放射線、電子線、紫外線、プラズマから選ばれた少なくとも一つの高エネルギー線を照射し、ラジカルを発生させたのちにグラフト反応で、銅とキレート結合を形成する基を導入することにより、バインダー及び/またはセパレータの表面に、銅イオンとキレート結合を形成する基が化学結合しているリチウムイオン二次電池を製造する方法。
Radiant is irradiated with at least one high energy beam selected from radiation, electron beam, ultraviolet ray, and plasma to a binder that binds the positive electrode and the negative electrode and / or a polymer that is a base material of the separator that separates the positive electrode and the negative electrode. Lithium ions in which a group that forms a chelate bond with copper is chemically bonded to the surface of the binder and / or separator by introducing a group that forms a chelate bond with copper by the graft reaction after A method of manufacturing a secondary battery.
JP2006027876A 2006-02-06 2006-02-06 Lithium-ion secondary battery Pending JP2007207690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027876A JP2007207690A (en) 2006-02-06 2006-02-06 Lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027876A JP2007207690A (en) 2006-02-06 2006-02-06 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2007207690A true JP2007207690A (en) 2007-08-16

Family

ID=38486946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027876A Pending JP2007207690A (en) 2006-02-06 2006-02-06 Lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2007207690A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035132A1 (en) * 2007-09-13 2009-03-19 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
JP2009123687A (en) * 2007-10-26 2009-06-04 Nitto Denko Corp Separator for battery, and nonaqueous lithium-ion secondary battery
JP2011076748A (en) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The Separator for non-aqueous electrolyte secondary cell, method for manufacturing the same, and the non-aqueous electrolyte secondary cell
CN102163740A (en) * 2010-02-17 2011-08-24 三洋电机株式会社 Non-aqueous electrolyte secondary battery
JP2012089411A (en) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd Cathode composition for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2013084098A1 (en) * 2011-12-07 2013-06-13 Basf Se Electrochemical cells comprising chelate ligands
WO2015193982A1 (en) * 2014-06-18 2015-12-23 株式会社日立製作所 Lithium ion battery and method for manufacturing same
JP2016124925A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Monofunctional photopolymerizable monomer, photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187143A (en) * 1989-01-13 1990-07-23 Japan Atom Energy Res Inst Production of chelate resin adsorbent having iminodiacetate group
JPH06223800A (en) * 1993-01-26 1994-08-12 Japan Vilene Co Ltd Separator for alkaline battery and its manufacture and alkaline battery using separator
JPH0724314A (en) * 1993-07-08 1995-01-27 Asahi Chem Ind Co Ltd Chelate type ion adsorbing film and production thereof
JPH11121012A (en) * 1997-10-09 1999-04-30 Yuasa Corp Nonaqueous electrolytic battery
JP2001048923A (en) * 1999-06-04 2001-02-20 Reitekku:Kk Functional polytetrafluoroethylene resin and its production
JP2001254067A (en) * 2000-01-07 2001-09-18 Matsushita Electric Ind Co Ltd Electroconductive adhesive and connecting structure therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187143A (en) * 1989-01-13 1990-07-23 Japan Atom Energy Res Inst Production of chelate resin adsorbent having iminodiacetate group
JPH06223800A (en) * 1993-01-26 1994-08-12 Japan Vilene Co Ltd Separator for alkaline battery and its manufacture and alkaline battery using separator
JPH0724314A (en) * 1993-07-08 1995-01-27 Asahi Chem Ind Co Ltd Chelate type ion adsorbing film and production thereof
JPH11121012A (en) * 1997-10-09 1999-04-30 Yuasa Corp Nonaqueous electrolytic battery
JP2001048923A (en) * 1999-06-04 2001-02-20 Reitekku:Kk Functional polytetrafluoroethylene resin and its production
JP2001254067A (en) * 2000-01-07 2001-09-18 Matsushita Electric Ind Co Ltd Electroconductive adhesive and connecting structure therewith

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349031B2 (en) * 2007-09-13 2013-01-08 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
EP2214226A4 (en) * 2007-09-13 2013-01-02 Nitto Denko Corp Battery separator and nonaqueous lithium ion secondary battery having the same
WO2009035132A1 (en) * 2007-09-13 2009-03-19 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
EP2214226A1 (en) * 2007-09-13 2010-08-04 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
US20100239900A1 (en) * 2007-09-13 2010-09-23 Hiroyoshi Take Battery separator and nonaqueous lithium ion secondary battery having the same
JP2009087929A (en) * 2007-09-13 2009-04-23 Nitto Denko Corp Battery separator and nonaqueous lithium-ion secondary battery using the same
JP2009123687A (en) * 2007-10-26 2009-06-04 Nitto Denko Corp Separator for battery, and nonaqueous lithium-ion secondary battery
JP2011076748A (en) * 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The Separator for non-aqueous electrolyte secondary cell, method for manufacturing the same, and the non-aqueous electrolyte secondary cell
CN102163740A (en) * 2010-02-17 2011-08-24 三洋电机株式会社 Non-aqueous electrolyte secondary battery
JP2012089411A (en) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd Cathode composition for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2013084098A1 (en) * 2011-12-07 2013-06-13 Basf Se Electrochemical cells comprising chelate ligands
WO2015193982A1 (en) * 2014-06-18 2015-12-23 株式会社日立製作所 Lithium ion battery and method for manufacturing same
JPWO2015193982A1 (en) * 2014-06-18 2017-04-20 株式会社日立製作所 Lithium ion battery and manufacturing method thereof
JP2016124925A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Monofunctional photopolymerizable monomer, photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6877130B2 (en) Separation membrane containing a porous adhesive layer and an electrochemical battery containing the separation membrane
KR101537138B1 (en) Binder composition for secondary battery electrode and method for producing same
CN106711456B (en) passivated metal lithium-carbon framework composite material, preparation method and application thereof
JP5694162B2 (en) Method for producing gel polymer electrolyte secondary battery
CN107706427B (en) Positive electrode for metal-air battery, metal-air battery including the same, and method of preparing positive electrode for metal-air battery
KR101747468B1 (en) Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
JP2007207690A (en) Lithium-ion secondary battery
CN109565050B (en) Conductive resin composition for electrode, electrode composition, and electrode and lithium ion battery using same
TWI705592B (en) Ion scavenger, electrolyte, diaphragm and lithium ion secondary battery for lithium ion secondary battery
TW201631161A (en) Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device and lithium ion secondary battery
JP4918733B2 (en) Secondary battery and manufacturing method thereof
CN111837286A (en) Solid polymer electrolyte composition and solid polymer electrolyte containing the same
CN111540868A (en) Preparation method and application of two-dimensional manganese dioxide modified polypropylene diaphragm
JP2002117854A (en) Secondary battery and its manufacturing method
TW201640724A (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
JP2005174655A (en) Lithium battery
US20210242514A1 (en) Systems and methods for recycling electrodes
JP2014207192A (en) Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate
JP2010199083A (en) Lithium secondary battery
JP2005050707A (en) Nonaqueous solvent-based secondary battery
CN116888807A (en) Method for regenerating positive electrode active material and regenerated positive electrode active material prepared by the method
CN110571500B (en) Lithium-sulfur semi-flow battery
JP2022544975A (en) Lithium-sulfur secondary battery capsule and lithium-sulfur secondary battery containing the same
JPH1131510A (en) Lithium secondary battery
JP2007273279A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403