JP2014207192A - Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate - Google Patents

Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate Download PDF

Info

Publication number
JP2014207192A
JP2014207192A JP2013085247A JP2013085247A JP2014207192A JP 2014207192 A JP2014207192 A JP 2014207192A JP 2013085247 A JP2013085247 A JP 2013085247A JP 2013085247 A JP2013085247 A JP 2013085247A JP 2014207192 A JP2014207192 A JP 2014207192A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
slurry
polar solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013085247A
Other languages
Japanese (ja)
Inventor
匡宣 平田
Tadanobu Hirata
匡宣 平田
克彰 蔵田
Katsuaki Kurata
克彰 蔵田
小林 信幸
Nobuyuki Kobayashi
信幸 小林
敏章 平本
Toshiaki Hiramoto
敏章 平本
秀典 斉藤
Shusuke Saito
秀典 斉藤
亮尚 梶山
Akihisa Kajiyama
亮尚 梶山
竜太 正木
Ryuta Masaki
竜太 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2013085247A priority Critical patent/JP2014207192A/en
Publication of JP2014207192A publication Critical patent/JP2014207192A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of recovering a positive electrode active material from a positive electrode waste at low cost and low environmental load and reusing it in a state where high battery performance is maintained.SOLUTION: By rolling and stirring a positive electrode waste in a polar solvent, peeling an active material, a conductive material, and a binder from a substrate, removing the substrate, obtaining a positive electrode active material powder or a positive electrode active material slurry containing the active material, the conductive material, and the binder, and using it for a positive electrode plate, it becomes possible to reuse a positive electrode active material at low cost that maintains high performance.

Description

本発明はリチウムイオン二次電池の正極廃材から正極活物質を回収し再利用する、正極活物質スラリー及び正極活物質粉末の製造方法、並びに前記正極活物質を使用する正極板の製造方法に関する。   The present invention relates to a positive electrode active material slurry and a positive electrode active material powder manufacturing method for recovering and reusing a positive electrode active material from a positive electrode waste material of a lithium ion secondary battery, and a positive electrode plate manufacturing method using the positive electrode active material.

近年、地球環境問題の一つである、地球温暖化防止策としてCO低減が迫られている中、解決手段の一つとして電気自動車の本格的な活躍が期待されている。その電気自動車のバッテリーには二次電池が搭載されており、主として、リチウムイオン二次電池(以下LIB)が搭載されている。更にLIBは携帯電話、スマートフォン、ノートパソコンをはじめとするモバイル電気機器及び電力貯蔵用二次電池へも搭載され、LIBの需要は今後急速に拡大していくと考えられる。 Recently, one of the global environmental issues, in the CO 2 reduction is urged as global warming prevention measures, serious active electric vehicle is expected to be one of the solutions. A secondary battery is mounted on a battery of the electric vehicle, and a lithium ion secondary battery (hereinafter referred to as LIB) is mainly mounted. Furthermore, LIB will be installed in mobile electric devices such as mobile phones, smartphones, notebook computers, and secondary batteries for power storage, and it is expected that the demand for LIB will increase rapidly in the future.

LIBの正極活物質には主にコバルト、ニッケル、リチウムなどの金属が使用されており、これら金属はLIBの正極板に必要不可欠な素材である。しかしながら、これら金属の偏在性による安定供給の懸念や価格高騰のリスクが問題となっている。   Metals such as cobalt, nickel, and lithium are mainly used for the positive electrode active material of LIB, and these metals are indispensable materials for the positive electrode plate of LIB. However, there are concerns about the stable supply due to the uneven distribution of these metals and the risk of price increases.

そうした中、増え続けるであろうLIB市場を維持しながら地球環境問題及び供給リスク等を解決するために、LIBの正極板に使用されている有価金属を含む活物質の回収・再生方法の検討がなされている。なかでも正極活物質を効率よく低コストに回収できる手法として正極板の基板から活物質を剥離し、活物質に付着した結着剤や導電材を除去するために高温で熱エネルギーを加えて分解処理を行う手法が提案されている(特許文献1)。   Under such circumstances, in order to solve global environmental problems and supply risks while maintaining the LIB market, which will continue to increase, studies on methods for recovering and recycling active materials containing valuable metals used in LIB cathode plates Has been made. In particular, as a method for recovering the positive electrode active material efficiently and at low cost, the active material is peeled off from the substrate of the positive electrode plate, and decomposed by applying thermal energy at a high temperature to remove the binder and conductive material adhering to the active material. A method of performing processing has been proposed (Patent Document 1).

しかしながら、正極活物質へ高温領域の熱エネルギーを加えた場合には、活物質と混合されている導電材が活物質中の酸素を引き抜く還元反応が起こると考えられる。また、LIBの正極板においては、電池内の反応が理想的な組み合わせとなるよう複数の種類の活物質を混合させる場合があるが、この複数の種類の活物質が混合された正極板から回収された正極活物質に高温領域での熱エネルギーを加えると、一方の活物質から他方の活物質へとLiが選択的に奪われる反応や各々の分解反応が進行し、結果的に分解・劣化(=電極として失活)の一途を辿ることが懸念される。   However, when thermal energy in a high temperature region is applied to the positive electrode active material, it is considered that a reduction reaction occurs in which the conductive material mixed with the active material extracts oxygen in the active material. Also, in the LIB positive electrode plate, there are cases where a plurality of types of active materials are mixed so that the reaction in the battery becomes an ideal combination, but the recovery is performed from the mixed positive electrode plate. When heat energy in the high temperature region is applied to the positive electrode active material, a reaction in which Li is selectively deprived from one active material to the other active material and each decomposition reaction proceed, resulting in decomposition / degradation. There is a concern that (= deactivation as an electrode) will continue.

更に、熱エネルギーを用いて正極板に含まれていた結着剤や導電材の分解を行うことで塗布工程において新たにこれらの材料を追加で添加しなければならず、塗布工程まで含めた正極板の製造コストが増加することが考えられる。またこの処理方法では高温領域での熱エネルギーを必要とするためCOの排出など地球環境への負荷の増大にも繋がりかねない。 Furthermore, these materials must be newly added in the coating process by decomposing the binder and conductive material contained in the positive electrode plate using thermal energy. It is conceivable that the manufacturing cost of the plate increases. Moreover, since this processing method requires thermal energy in a high temperature region, it may lead to an increase in the load on the global environment such as CO 2 emission.

また、特許文献2には、正極活物質を含む正極合材が塗布された正極板を粉砕し、有機溶媒と混合して正極粉砕物塗料とする技術が示されている。しかしながら、この方法では正極板を基板ごと粉砕するために基板を粒径や比重の差によって分離しており、基板から剥離されなかった正極活物質は回収できず、正極粉砕物への基板の混入も避けられないという課題があった。   Patent Document 2 discloses a technique in which a positive electrode plate coated with a positive electrode mixture containing a positive electrode active material is pulverized and mixed with an organic solvent to obtain a pulverized positive electrode paint. However, in this method, since the positive electrode plate is pulverized together with the substrate, the substrate is separated by the difference in particle size and specific gravity, and the positive electrode active material that has not been peeled off from the substrate cannot be recovered, and the substrate is mixed into the pulverized positive electrode However, there was a problem that was inevitable.

特開2010−34021号公報JP 2010-34021 A 特開平10−92417号公報Japanese Patent Laid-Open No. 10-92417

そこで本発明では活物質回収工程において過度の熱エネルギーを加えず、活物質の回収から塗布(再利用)までの工程において必要な材料(導電材、結着剤および極性溶剤)の使用を最小限に留めることができる、低コスト、低環境負荷でありながら、高い電池特性を示す正極活物質のスラリー又は粉末の製造方法及びそれを用いた正極板の製造方法を提案する。   Therefore, in the present invention, excessive heat energy is not applied in the active material recovery process, and the use of necessary materials (conductive material, binder and polar solvent) in the process from recovery of active material to application (reuse) is minimized. The manufacturing method of the slurry or powder of the positive electrode active material which shows high battery characteristics while being low-cost and low environmental load, and the manufacturing method of a positive electrode plate using the same are proposed.

すなわち、本発明は、極性溶媒中で正極廃材を圧延及び攪拌して基板から活物質、導電材及び結着剤を剥離し、基板を取り除いて、活物質、導電材及び結着剤を含む極性溶媒スラリーを得る正極活物質スラリーの製造方法である(本発明1)。   That is, the present invention rolls and stirs the positive electrode waste material in a polar solvent to peel off the active material, the conductive material and the binder from the substrate, removes the substrate, and polarizes the active material, the conductive material and the binder. It is a manufacturing method of the positive electrode active material slurry which obtains a solvent slurry (this invention 1).

また、本発明は、液温が80℃以下の極性溶媒中で基板から活物質、導電材及び結着剤を剥離する本発明1に記載の正極活物質スラリーの製造方法である(本発明2)。   Further, the present invention is a method for producing a positive electrode active material slurry according to the first aspect of the present invention, wherein the active material, the conductive material and the binder are peeled from the substrate in a polar solvent having a liquid temperature of 80 ° C. or less (the second aspect of the present invention). ).

また、本発明は、極性溶媒がN−メチル−2−ピロリドンである本発明1又は2に記載の正極活物質スラリーの製造方法である(本発明3)。   Moreover, this invention is a manufacturing method of the positive electrode active material slurry of this invention 1 or 2 whose polar solvent is N-methyl-2-pyrrolidone (this invention 3).

また、本発明は、極性溶媒スラリーを乾燥する工程を含まない、本発明1〜3のいずれかに記載の正極活物質スラリーの製造方法である(本発明4)。   Moreover, this invention is a manufacturing method of the positive electrode active material slurry in any one of this invention 1-3 which does not include the process of drying polar solvent slurry (this invention 4).

また、本発明は、本発明1〜3のいずれかに記載の正極活物質スラリーの製造方法によって得られた、活物質、導電材及び結着剤を含む極性溶媒スラリーを全量乾燥する正極活物質粉末の製造方法である(本発明5)。   Moreover, this invention is a positive electrode active material which dries the polar solvent slurry containing the active material, the electrically conductive material, and the binder obtained by the manufacturing method of the positive electrode active material slurry in any one of this invention 1-3. This is a method for producing a powder (Invention 5).

また、本発明は、乾燥温度が100℃以下である本発明5に記載の正極活物質粉末の製造方法である(本発明6)。   Moreover, this invention is a manufacturing method of the positive electrode active material powder of this invention 5 whose drying temperature is 100 degrees C or less (this invention 6).

また、本発明は、本発明1〜4のいずれかに記載の製造方法によって得られた正極活物質スラリー又は本発明5、6に記載の正極活物質粉末のいずれかを含む正極合材を基板に塗布し乾燥する正極板の製造方法である(本発明7)。   In addition, the present invention provides a positive electrode mixture containing either the positive electrode active material slurry obtained by the production method according to any of the first to fourth aspects of the present invention or the positive electrode active material powder according to the fifth or sixth aspects of the present invention. It is the manufacturing method of the positive electrode plate which apply | coats and dries (this invention 7).

本発明によれば、正極廃材の基板上の正極合材成分が全量回収されるため、新しい基板への塗布工程において、導電材、結着剤、活物質の低減を図ることができ、正極板の製造コストを低く抑えることができる。   According to the present invention, since the entire amount of the positive electrode mixture component on the substrate of the positive electrode waste material is recovered, the conductive material, the binder, and the active material can be reduced in the application process to the new substrate. The manufacturing cost can be kept low.

また、本発明によれば、基板から正極活物質等を剥離する際に用いた極性溶媒を正極合材の溶媒として利用することも可能であり、正極板の製造コストを低く抑えることができる。   Further, according to the present invention, the polar solvent used when the positive electrode active material or the like is peeled from the substrate can be used as the solvent for the positive electrode mixture, and the manufacturing cost of the positive electrode plate can be kept low.

また、本発明によれば、正極廃材から正極活物質を回収する工程において一貫して高温領域での熱エネルギーを加えないため、高い性能を維持したまま正極板への再利用が可能となる。   Further, according to the present invention, heat energy in the high temperature region is not applied consistently in the process of recovering the positive electrode active material from the positive electrode waste material, so that it can be reused for the positive electrode plate while maintaining high performance.

リチウムイオン二次電池の正極廃材再生プロセスRecycling process of cathode waste materials for lithium ion secondary batteries 熱処理された回収正極活物質の粉末X線回折図Powder X-ray diffraction pattern of heat-treated recovered positive electrode active material

本発明の構成は詳しく説明すれば次のとおりである。   The configuration of the present invention will be described in detail as follows.

本発明は、極性溶媒中で正極廃材を圧延及び攪拌して基板から活物質、導電材及び結着剤を剥離し、基板を取り除いて、活物質、導電材及び結着剤を含む極性溶媒スラリーを得るものである。   The present invention provides a polar solvent slurry containing an active material, a conductive material and a binder by rolling and stirring the positive electrode waste material in a polar solvent to peel off the active material, the conductive material and the binder from the substrate, and removing the substrate. Is what you get.

本発明において、正極廃材とは、正極活物質粉末が導電材、結着剤等とともにバインダーに混合された正極合材を基板に塗布して作製されるリチウムイオン二次電池用の正極板である。正極廃材は、正極板製造時の塗工不良品や、電池製造時に発生する歩留まり品でもよく、使用済み電池を解体して取り出した正極板でもよい。特に、電池として使用されることなく廃棄された正極板であって、常温常湿の雰囲気に曝されて性能が劣化した正極板の再生において、本発明は高い効果を示す。また、正極廃材には正極板製造時に発生する正極合材の廃棄分も含む。   In the present invention, the positive electrode waste material is a positive electrode plate for a lithium ion secondary battery prepared by applying a positive electrode mixture in which a positive electrode active material powder is mixed with a binder together with a conductive material, a binder, and the like to a substrate. . The positive electrode waste material may be a defective coating product at the time of manufacturing the positive electrode plate, a yield product generated at the time of manufacturing the battery, or a positive electrode plate taken out by disassembling the used battery. In particular, the present invention shows a high effect in the regeneration of a positive electrode plate that has been discarded without being used as a battery and whose performance has been deteriorated by exposure to an atmosphere of normal temperature and humidity. Further, the positive electrode waste material includes the waste of the positive electrode mixture generated at the time of manufacturing the positive electrode plate.

正極廃材である正極板は、極性溶媒中での剥離工程より前に、5〜10mm角程度に裁断しておくことが好ましい。剥離工程での正極板の大きさが大きすぎると剥離効率が低下し、小さすぎると剥離工程後に基板を分離する際にスラリーに基板が混入してしまう恐れがある。   The positive electrode plate which is a positive electrode waste material is preferably cut to about 5 to 10 mm square before the peeling step in a polar solvent. If the size of the positive electrode plate in the peeling step is too large, the peeling efficiency is lowered. If it is too small, the substrate may be mixed into the slurry when the substrate is separated after the peeling step.

正極廃材に含まれる正極活物質としては、一般に、リチウム金属酸化物が用いられ、コバルト酸リチウム、ニッケル酸リチウムや、複数の金属種を含有するリチウム複合酸化物などが挙げられる。また、電池内の反応が理想的な組み合わせとなるよう複数の種類の正極活物質が混合されている場合がある。   As the positive electrode active material contained in the positive electrode waste material, lithium metal oxide is generally used, and examples thereof include lithium cobalt oxide, lithium nickelate, and lithium composite oxide containing a plurality of metal species. In addition, a plurality of types of positive electrode active materials may be mixed so that the reaction in the battery is an ideal combination.

正極廃材に含まれる基板としては、通常、帯状のアルミニウム箔等が用いられている。   As the substrate contained in the positive electrode waste material, a band-shaped aluminum foil or the like is usually used.

本発明においては、極性溶媒中で正極廃材を圧延及び攪拌することにより、基板から活物質、導電材及び結着剤を剥離することができる。極性溶媒中で正極廃材を圧延及び攪拌するための装置としては、ボールミル、ビーズミル、スタンプミル、アトライタ等が挙げられる。ボールミルを用いる際は、基板の破損やコンタミがなく且つ圧延の効果をもたらすために、ボールの材質はフッ素樹脂、ナイロン、ポリエチレン等の樹脂球、もしくは無垢のアルミナ、ジルコニア等のセラミック球、あるいはフッ素樹脂、ナイロン、ポリエチレン等で被覆されたセラミック球や金属球などであることが好ましい。ボールの球径は、5〜20mmとすることが好ましい。小さすぎると剥離工程後に基板を分離する際にスラリーにボールが混入してしまう恐れがある。また、ボールミル反応器へのボールの充填率は30〜50体積%とすることが好ましい。   In the present invention, the active material, the conductive material and the binder can be peeled from the substrate by rolling and stirring the positive electrode waste material in a polar solvent. Examples of the apparatus for rolling and stirring the positive electrode waste material in the polar solvent include a ball mill, a bead mill, a stamp mill, and an attritor. When using a ball mill, the ball is made of resin balls such as fluororesin, nylon and polyethylene, ceramic balls such as solid alumina and zirconia, Ceramic spheres or metal spheres coated with resin, nylon, polyethylene or the like are preferable. The ball diameter is preferably 5 to 20 mm. If it is too small, balls may be mixed into the slurry when the substrate is separated after the peeling step. Moreover, it is preferable that the filling rate of the ball | bowl to a ball mill reactor shall be 30-50 volume%.

正極廃材を圧延することにより基板が伸展するため、基板からの活物質等の剥離が容易になる。また、基板の大きさが大きいまま活物質等が剥離するため、剥離工程後に容易に極性溶媒スラリーから基板のみを取り除くことができる。   Since the substrate extends by rolling the positive electrode waste material, the active material and the like can be easily separated from the substrate. Further, since the active material and the like are peeled off while the size of the substrate is large, only the substrate can be easily removed from the polar solvent slurry after the peeling step.

また、基板から剥離された正極活物質等は溶媒中で凝集することがあるが、本発明においては剥離と同時に強い攪拌がされるために、十分に解砕された分散性の良好なスラリーを得ることができる。   Further, the positive electrode active material and the like peeled off from the substrate may agglomerate in the solvent. In the present invention, since the agitation is performed simultaneously with the peeling, a sufficiently dispersible slurry having good dispersibility is used. Can be obtained.

本発明において用いられる極性溶媒は、正極活物質を溶解せず、結着剤を溶解できる溶媒であればよい。特に、正極合材の成分として用いることができる溶媒であることが好ましく、例えばN−メチル−2−ピロリドンであることが好ましい。   The polar solvent used in the present invention may be any solvent that does not dissolve the positive electrode active material and can dissolve the binder. In particular, a solvent that can be used as a component of the positive electrode mixture is preferable, and for example, N-methyl-2-pyrrolidone is preferable.

また、本発明は、剥離時の正極廃材濃度を5〜50重量%で行う事が好ましい。剥離時の正極廃材濃度を高くすることで極性溶媒の使用量が減り、製造コストを抑えることができるため正極廃材濃度を40〜50重量%で行うことがより好ましい。   Moreover, it is preferable to perform this invention by 5-50 weight% of positive electrode waste material density | concentration at the time of peeling. By increasing the concentration of the positive electrode waste material at the time of peeling, the amount of the polar solvent used can be reduced, and the production cost can be suppressed. Therefore, the positive electrode waste material concentration is more preferably 40 to 50% by weight.

また、本発明は、液温が80℃以下の極性溶媒中で基板から活物質、導電材及び結着剤を剥離することが好ましい。高温下で剥離を行うと、極性溶媒の蒸発によるロスや正極活物質及び極性溶媒スラリーの変質を招く可能性があり、好ましくない。より好ましくは、液温が40℃以下の極性溶媒中で基板から活物質、導電材及び結着剤を剥離する。40℃を超える液温で剥離を行うと、通常は剥離効率が高くなるが、本発明の方法によれば、40℃以下であっても十分な剥離効率が得られ、コスト、環境負荷を低減できる。   In the present invention, the active material, the conductive material, and the binder are preferably peeled from the substrate in a polar solvent having a liquid temperature of 80 ° C. or lower. If peeling is performed at a high temperature, loss due to evaporation of the polar solvent and alteration of the positive electrode active material and the polar solvent slurry may be caused, which is not preferable. More preferably, the active material, the conductive material, and the binder are peeled from the substrate in a polar solvent having a liquid temperature of 40 ° C. or lower. When peeling is performed at a liquid temperature exceeding 40 ° C., the peeling efficiency usually increases. However, according to the method of the present invention, sufficient peeling efficiency can be obtained even at 40 ° C. or lower, and the cost and environmental load are reduced. it can.

基板から活物質、導電材及び結着剤を剥離した後に、基板を取り除いて、活物質、導電材及び結着剤を含む極性溶媒スラリーを得る。   After peeling off the active material, conductive material and binder from the substrate, the substrate is removed to obtain a polar solvent slurry containing the active material, conductive material and binder.

基板を取り除く方法は、正極廃材に用いられていた正極合材に含まれる活物質、導電材及び結着剤等の成分を極性溶媒スラリーに残して基板のみを取り除くことができる方法であれば、通常行われるいかなる方法であってもよい。   The method for removing the substrate is a method that can remove only the substrate while leaving the components such as the active material, the conductive material and the binder contained in the positive electrode mixture used for the positive electrode waste material in the polar solvent slurry, Any method commonly used may be used.

前述の方法で得られた極性溶媒スラリーは、乾燥する工程を含まず、正極活物質スラリーとして正極合材に用いられることが好ましい。   The polar solvent slurry obtained by the above method does not include a drying step, and is preferably used as a positive electrode active material slurry for a positive electrode mixture.

本発明における正極活物質スラリーは、正極廃材に用いられていた正極合材と同様に正極活物質、導電材及び結着剤を含有しており、特に極性溶媒が正極合材に用いることができるものである場合には、単独で正極合材として用いることができる。このとき、正極活物質スラリーの濃度は、剥離工程時から所望の濃度になるように極性溶媒の量を制御してもよいし、極性溶媒スラリーを得た後に、濃縮又は希釈して所望の濃度としてもよい。   The positive electrode active material slurry in the present invention contains a positive electrode active material, a conductive material, and a binder in the same manner as the positive electrode mixture used for the positive electrode waste material, and in particular, a polar solvent can be used for the positive electrode mixture. When it is a thing, it can be used independently as a positive electrode compound material. At this time, the concentration of the positive electrode active material slurry may be controlled so that the concentration of the polar solvent becomes a desired concentration from the peeling step, or after obtaining the polar solvent slurry, it is concentrated or diluted to obtain a desired concentration. It is good.

また、本発明における正極活物質スラリーは、新たに正極活物質や導電材、結着剤、極性溶媒を加えて正極合材としてもよい。本発明における正極活物質スラリーを用いることで、導電材や結着剤の添加量を低減することができ、また、正極活物質スラリーの製造のために要した極性溶媒をそのまま正極合材の溶媒として有効に活用できる。このとき、正極活物質スラリーの濃度は、作製する正極合材に合わせて所望の濃度に調整することができる。   Moreover, the positive electrode active material slurry in the present invention may be newly added with a positive electrode active material, a conductive material, a binder, and a polar solvent to form a positive electrode mixture. By using the positive electrode active material slurry in the present invention, the amount of conductive material and binder added can be reduced, and the polar solvent required for the production of the positive electrode active material slurry can be used as it is as the solvent for the positive electrode mixture. Can be used effectively as At this time, the density | concentration of a positive electrode active material slurry can be adjusted to a desired density | concentration according to the positive electrode compound material to produce.

また、前述の方法で得られた、活物質、導電材及び結着剤を含む極性溶媒スラリーを全量乾燥することで、正極活物質粉末を得ることができる。   Moreover, positive electrode active material powder can be obtained by drying the whole amount of the polar solvent slurry containing the active material, the conductive material and the binder obtained by the above-described method.

前記極性溶媒スラリーを固液分離することなく全量乾燥することで、得られる正極活物質粉末は正極廃材に用いられていた正極合材と同様に正極活物質、導電材及び結着剤を含有した粉末となる。従って、本発明によって製造された正極活物質粉末を用いた正極合材は、導電材や結着剤の添加量を低減することができる。   The positive electrode active material powder obtained by drying the whole amount of the polar solvent slurry without solid-liquid separation contained a positive electrode active material, a conductive material and a binder in the same manner as the positive electrode mixture used in the positive electrode waste material. It becomes powder. Therefore, the positive electrode mixture using the positive electrode active material powder produced by the present invention can reduce the amount of conductive material and binder added.

本発明において、極性溶媒スラリーを乾燥して正極活物質粉末を得るには、乾燥温度が100℃以下であることが好ましい。100℃を超える温度で乾燥を行うと、正極活物質の変質を招く可能性があり、好ましくない。また、高温下で乾燥を行うと、正極活物質粉末に含有されている導電材及び結着剤が分解する場合がある。   In the present invention, in order to obtain the positive electrode active material powder by drying the polar solvent slurry, the drying temperature is preferably 100 ° C. or lower. If drying is performed at a temperature exceeding 100 ° C., the positive electrode active material may be deteriorated, which is not preferable. Further, when drying is performed at a high temperature, the conductive material and the binder contained in the positive electrode active material powder may be decomposed.

正極活物質を回収するにあたり、正極廃材に用いられていた正極合材に含まれる導電材及び結着剤や、本発明において正極活物質を基板から剥離する際に用いた極性溶媒の残留が好ましくない場合には、前述の方法で得られた極性溶媒スラリーを乾燥した後に、更に脱脂処理を行って他の成分を除去した正極活物質粉末を得ることができる。   In recovering the positive electrode active material, it is preferable that the conductive material and the binder contained in the positive electrode mixture used in the positive electrode waste material and the residue of the polar solvent used when the positive electrode active material is peeled from the substrate in the present invention are preferable. If not, after the polar solvent slurry obtained by the above-mentioned method is dried, a positive electrode active material powder from which other components are removed by further degreasing treatment can be obtained.

脱脂処理とは、導電材、結着剤等を分解して除去するための熱処理である。脱脂処理の温度は、100℃以上400℃以下であることが好ましい。また、脱脂処理の処理時間は1時間以上10時間以下であることが好ましい。脱脂処理の温度が400℃を超えると、正極活物質の変質が起こるため電池特性が低下する。脱脂処理の温度は、150℃以上350℃以下であることがより好ましい。   The degreasing treatment is a heat treatment for decomposing and removing a conductive material, a binder and the like. The temperature of the degreasing treatment is preferably 100 ° C. or higher and 400 ° C. or lower. Moreover, it is preferable that the processing time of a degreasing process is 1 hour or more and 10 hours or less. If the temperature of the degreasing process exceeds 400 ° C., the positive electrode active material changes in quality, and the battery characteristics deteriorate. The temperature of the degreasing treatment is more preferably 150 ° C. or higher and 350 ° C. or lower.

本発明における正極活物質粉末は、新たな正極活物質や導電材及び結着剤を用いずに極性溶媒と混合して正極合材としてもよく、新たに正極活物質や導電材、結着剤、極性溶媒を加えて正極合材としてもよい。   The positive electrode active material powder in the present invention may be mixed with a polar solvent without using a new positive electrode active material, conductive material and binder, and may be used as a positive electrode mixture, or a new positive electrode active material, conductive material or binder. Alternatively, a positive solvent may be added to form a positive electrode mixture.

本発明に係る製造方法によって得られた正極活物質スラリー又は正極活物質粉末のいずれかを含む正極合材を基板に塗布し乾燥することで正極板を製造することができる。   A positive electrode plate can be manufactured by applying a positive electrode mixture containing either a positive electrode active material slurry or a positive electrode active material powder obtained by the manufacturing method according to the present invention to a substrate and drying it.

以下の実施例においては、正極廃材として、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウムが混合された正極活物質90重量%、導電材としてカーボン6重量%及び結着剤としてPVDF4重量%の組成となるように混合した正極合材をAl箔に塗布し乾燥した正極板であって、常温、常湿雰囲気に長期間保管されていたものを用いる。   In the following examples, the positive electrode waste material is composed of 90% by weight of a positive electrode active material mixed with lithium nickelate, lithium cobaltate, and lithium manganate, 6% by weight of carbon as a conductive material, and 4% by weight of PVDF as a binder. A positive electrode plate obtained by applying a mixed positive electrode mixture to an Al foil and drying it, which has been stored in a normal temperature and normal humidity atmosphere for a long time, is used.

正極活物質粉末の粉末X線回折測定は、Bruker AXS株式会社製のD8
ADVANCEを用いて行った。測定は、正極活物質粉末を専用の基盤に充填しCuKα線源を用いて回折角2θ=10〜90°の範囲にて行い粉末X線回折図を得た。
The powder X-ray diffraction measurement of the positive electrode active material powder was performed using D8 manufactured by Bruker AXS Co., Ltd.
This was done using ADVANCE. The measurement was performed by filling positive electrode active material powder in a dedicated substrate and using a CuKα ray source in a diffraction angle range of 2θ = 10 to 90 ° to obtain a powder X-ray diffraction diagram.

電池特性は、コインセルによるサイクル特性試験とレート特性試験を行った。   As for battery characteristics, a cycle characteristic test and a rate characteristic test using a coin cell were performed.

正極には実施例において得られた正極活物質スラリー又は正極活物質粉末を含む正極合材を用いて作製された正極板を用い、負極には金属リチウムを用い、各々を微孔性ポリプロピレンフィルムからなるセパレータを介して組み合わせた。電解液には、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)の1対1混合溶剤に六フッ化リン酸リチウム(LiPF6)1モルを溶解させて得られたものを用い、コイン型の非水系電解液二次電池を作製した。   A positive electrode plate produced using a positive electrode active material slurry or a positive electrode mixture containing a positive electrode active material powder obtained in Examples was used for the positive electrode, and metallic lithium was used for the negative electrode, each of which was formed from a microporous polypropylene film. Combined through a separator. The electrolyte was obtained by dissolving 1 mol of lithium hexafluorophosphate (LiPF6) in a 1: 1 mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC). An aqueous electrolyte secondary battery was prepared.

サイクル特性は、前記コイン型電池を用いて、温度60℃で、終止電圧を3.0〜4.3V、Cレートを0.1Cとし、51サイクルまでの放電容量を測定した。サイクル特性の測定結果を表1に示す。   Cycle characteristics were measured using the coin type battery at a temperature of 60 ° C., a final voltage of 3.0 to 4.3 V, a C rate of 0.1 C, and a discharge capacity up to 51 cycles. Table 1 shows the measurement results of the cycle characteristics.

レート特性は、前記コイン型電池を用いて、温度25℃で、終止電圧を3.0〜4.3Vとし、Cレートをそれぞれ0.1C、1C、2C、5C、10Cとして2サイクル目の放電容量を測定した。レート特性の測定結果を表2に示す。   The rate characteristics are as follows. Using the coin-type battery, discharge at the second cycle with a temperature of 25 ° C., a final voltage of 3.0 to 4.3 V, and a C rate of 0.1 C, 1 C, 2 C, 5 C, and 10 C, respectively. The capacity was measured. Table 2 shows the measurement results of the rate characteristics.

比較例1
正極廃材を正極として用いてコイン型の非水系電解液二次電池を作製した。
Comparative Example 1
A coin-type non-aqueous electrolyte secondary battery was produced using the positive electrode waste as the positive electrode.

実施例1
10mm角に裁断した正極廃材250g、ボール529gを1Lのボールミル反応器に入れ、極性溶媒としてN−メチル−2−ピロリドンを0.3L加えて、液温30℃で3時間撹拌し、Al箔から活物質、導電材及び結着剤を剥離した。ボールミルのボールは、球径10mmのフッ素樹脂被覆された鉄製ボールを使用した。また、Al箔と活物質等に分離したスラリーを篩(目開き53μm)に通し、Al箔(篩上)と極性溶媒スラリーに分別した。極性溶媒スラリーを直接新しいAl箔へ塗布できるように50重量%まで濃縮して正極活物質スラリー(正極合材)とした。得られた正極合材をAl箔に塗布し乾燥させた後、ローラープレスで圧縮成型して帯状の正極板を得た。
Example 1
Place 250 g of positive electrode waste material cut to 10 mm square and 529 g of balls into a 1 L ball mill reactor, add 0.3 L of N-methyl-2-pyrrolidone as a polar solvent, and stir at a liquid temperature of 30 ° C. for 3 hours. The active material, conductive material and binder were peeled off. As the ball mill ball, an iron ball coated with a fluorine resin having a spherical diameter of 10 mm was used. In addition, the slurry separated into the Al foil and the active material was passed through a sieve (aperture 53 μm) and separated into an Al foil (on the sieve) and a polar solvent slurry. The polar solvent slurry was concentrated to 50% by weight so that it could be directly applied to a new Al foil to obtain a positive electrode active material slurry (positive electrode mixture). The obtained positive electrode mixture was applied to an Al foil and dried, followed by compression molding with a roller press to obtain a belt-like positive electrode plate.

実施例2
実施例1と同様にして極性溶媒スラリーを得た。得られた極性溶媒スラリーを80℃で全量乾燥して正極活物質粉末を得た。得られた正極活物質粉末に極性溶媒であるN−メチル−2−ピロリドンを加え50重量%の濃度の正極活物質スラリー(正極合材)を得た。得られた正極合材をAl箔に塗布し乾燥させた後、ローラープレスで圧縮成型して帯状の正極板を得た。
Example 2
A polar solvent slurry was obtained in the same manner as in Example 1. The whole amount of the obtained polar solvent slurry was dried at 80 ° C. to obtain a positive electrode active material powder. N-methyl-2-pyrrolidone as a polar solvent was added to the obtained positive electrode active material powder to obtain a positive electrode active material slurry (positive electrode mixture) having a concentration of 50% by weight. The obtained positive electrode mixture was applied to an Al foil and dried, followed by compression molding with a roller press to obtain a belt-like positive electrode plate.

実施例3〜10
実施例1と同様にして極性溶媒スラリーを得た。得られた極性溶媒スラリーを、表2に記載のとおり、80℃で全量乾燥した後、それぞれ200℃、300℃、400℃の温度で1h、5h、7hで脱脂処理を行って正極活物質粉末を得た。得られた正極活物質粉末90重量%、導電材としてカーボン6重量%、結着剤としてN−メチル−2−ピロリドンに溶解したPVDFが4重量%の組成となるように混合して正極合材を得た。得られた正極合材をAl箔に塗布し乾燥させた後、ローラープレスで圧縮成型して帯状の正極板を得た。
Examples 3-10
A polar solvent slurry was obtained in the same manner as in Example 1. As shown in Table 2, the obtained polar solvent slurry was completely dried at 80 ° C., and then degreased at 200 ° C., 300 ° C., and 400 ° C. for 1 h, 5 h, and 7 h, respectively. Got. The positive electrode active material powder 90% by weight, 6% by weight of carbon as a conductive material, and 4% by weight of PVDF dissolved in N-methyl-2-pyrrolidone as a binder were mixed to form a positive electrode mixture Got. The obtained positive electrode mixture was applied to an Al foil and dried, followed by compression molding with a roller press to obtain a belt-like positive electrode plate.

表1に示すように本発明に係る正極活物質スラリー(実施例1)又は正極活物質粉末(実施例2)を用いた電池と正極廃材(比較例1)を用いた電池のサイクル特性を比較した。正極廃材を用いた比較例1の電池は、1サイクル目の放電容量は最も高い値を示したが、サイクル数が増えるにつれて、放電容量が大きく低下した。一方、実施例1の電池は、1サイクル目の放電容量は比較例1の電池と同等の値を示し、更にサイクル数を重ねても、放電容量の低下の幅が少なかった。   As shown in Table 1, the cycle characteristics of the battery using the positive electrode active material slurry (Example 1) or the positive electrode active material powder (Example 2) according to the present invention and the battery using the positive electrode waste material (Comparative Example 1) are compared. did. The battery of Comparative Example 1 using the positive electrode waste material showed the highest discharge capacity at the first cycle, but the discharge capacity greatly decreased as the number of cycles increased. On the other hand, in the battery of Example 1, the discharge capacity at the first cycle showed the same value as that of the battery of Comparative Example 1, and even when the number of cycles was repeated, the range of decrease in the discharge capacity was small.

正極廃材を用いた比較例1の電池のサイクル特性の低下は、正極廃材に用いられていた正極活物質が本来持っていた特性が、常温常湿の環境で保存されていたことにより劣化したものであると考えられる。本発明によれば、正極廃材から正極活物質をそのまま回収し、その特性を回復させることができた。   The deterioration of the cycle characteristics of the battery of Comparative Example 1 using the positive electrode waste material was deteriorated due to the fact that the characteristics originally possessed by the positive electrode active material used for the positive electrode waste material were stored in an environment of normal temperature and humidity. It is thought that. According to the present invention, the positive electrode active material can be recovered as it is from the positive electrode waste material and its characteristics can be recovered.

表2に示すように、溶媒中で正極板から正極活物質を剥離して濃縮し、乾燥する工程を含まず作製した正極活物質スラリーを用いた実施例1の電池は0.1Cのレートでの放電容量が118.5mAh/gと非常に高い値を示した。また実施例1の電池はCレートの増加に関わらず高い放電容量を持続した。   As shown in Table 2, the battery of Example 1 using the positive electrode active material slurry prepared without removing the positive electrode active material from the positive electrode plate in a solvent, concentrating and drying was at a rate of 0.1 C. The discharge capacity was as high as 118.5 mAh / g. The battery of Example 1 maintained a high discharge capacity regardless of the increase in C rate.

スラリーを乾燥させて得た正極活物質粉末を用いた実施例2〜10の電池であっても高いレベルで充放電可能であった。なかでも、0.1Cのレートでの放電容量は、温度300℃で脱脂した試料が最も高く、脱脂時間5h.で115.5mAh/gを示した。ただし、温度200℃以上で脱脂した試料はCレートが大きくなるに従い、放電容量の低下が大きかった。それに対して、温度80℃で乾燥した試料は、Cレートの増加の影響を受けにくく放電容量の低下率は少ないことが示された。   Even the batteries of Examples 2 to 10 using the positive electrode active material powder obtained by drying the slurry could be charged and discharged at a high level. Among them, the discharge capacity at a rate of 0.1 C is highest in the sample degreased at a temperature of 300 ° C., and the degreasing time is 5 h. Was 115.5 mAh / g. However, the sample degreased at a temperature of 200 ° C. or higher had a large decrease in discharge capacity as the C rate increased. On the other hand, it was shown that the sample dried at a temperature of 80 ° C. was not easily affected by the increase in C rate, and the rate of decrease in discharge capacity was small.

参考例
10mm角に裁断した正極廃材250g、ボール529gを1Lのボールミル反応器に入れ、極性溶媒としてN−メチル−2−ピロリドンを0.3L加えて、液温30℃で3時間撹拌し、Al箔から活物質、導電材及び結着剤を剥離した。ボールミルのボールは、球径10mmのフッ素樹脂被覆された鉄製ボールを使用した。Al箔と活物質等に分離したスラリーを篩(目開き53μm)に通し、Al箔(篩上)と極性溶媒スラリーに分別した。得られた極性溶媒スラリーを80℃で全量乾燥した後、それぞれ300℃から700℃まで100℃刻みで結着剤や導電材の脱脂を5h.行って正極活物質粉末を得た。得られた正極活物質粉末について粉末X線回折を行った回折図を図2に示す。正極廃材から回収された正極活物質粉末は400℃を超える領域での加熱で正極活物質の品質変化が起こった。400℃を超える加熱でカチオンミキシングが起こり、500℃以上での加熱でニッケル酸リチウムから酸化ニッケルの分離が起こっている。また、600℃以上での加熱になるとニッケル酸リチウム中のリチウムがマンガン酸リチウムへ取り込まれる反応が起こった。従って、高温領域で熱エネルギーを与えることは、活物質の変質を引き起こし、特に複数の活物質が混合された正極活物質においては、活物質間のLiの移動が進行するため電極の失活が起こる。
Reference Example 250 g of positive electrode waste material cut to 10 mm square and 529 g of balls were placed in a 1 L ball mill reactor, 0.3 L of N-methyl-2-pyrrolidone was added as a polar solvent, and the mixture was stirred at a liquid temperature of 30 ° C. for 3 hours. The active material, conductive material and binder were peeled from the foil. As the ball mill ball, an iron ball coated with a fluorine resin having a spherical diameter of 10 mm was used. The slurry separated into the Al foil and the active material was passed through a sieve (aperture 53 μm) and separated into an Al foil (on the sieve) and a polar solvent slurry. The entire amount of the obtained polar solvent slurry was dried at 80 ° C., and then the binder and the conductive material were degreased in increments of 100 ° C. from 300 ° C. to 700 ° C. for 5 h. To obtain a positive electrode active material powder. A diffraction diagram obtained by performing powder X-ray diffraction on the obtained positive electrode active material powder is shown in FIG. The positive electrode active material powder recovered from the positive electrode waste material changed the quality of the positive electrode active material by heating in a region exceeding 400 ° C. Cationic mixing occurs when the temperature exceeds 400 ° C., and nickel oxide is separated from lithium nickelate when heated above 500 ° C. Further, when heating was performed at 600 ° C. or higher, a reaction in which lithium in lithium nickelate was taken into lithium manganate occurred. Therefore, applying thermal energy in a high temperature region causes deterioration of the active material. In particular, in the positive electrode active material in which a plurality of active materials are mixed, the movement of Li between the active materials proceeds, and thus the electrode is deactivated. Occur.

本発明によれば、正極の基板と活物質の剥離が容易であり、正極廃材から正極活物質を回収する工程において一貫して高温領域での熱エネルギーを加えないため、より簡易な方法で高い性能を維持した正極板を再生することを可能にする。   According to the present invention, it is easy to peel off the positive electrode substrate and the active material, and in the process of recovering the positive electrode active material from the positive electrode waste material, the heat energy in the high temperature region is not consistently applied, so that it is high by a simpler method. It is possible to regenerate the positive electrode plate maintaining the performance.

Claims (7)

極性溶媒中で正極廃材を圧延及び攪拌して基板から活物質、導電材及び結着剤を剥離し、基板を取り除いて、活物質、導電材及び結着剤を含む極性溶媒スラリーを得る正極活物質スラリーの製造方法。 The positive electrode active material is obtained by rolling and stirring the positive electrode waste material in a polar solvent to peel off the active material, the conductive material and the binder from the substrate, and removing the substrate to obtain a polar solvent slurry containing the active material, the conductive material and the binder. A method for producing a material slurry. 液温が80℃以下の極性溶媒中で基板から活物質、導電材及び結着剤を剥離する請求項1に記載の正極活物質スラリーの製造方法。 The manufacturing method of the positive electrode active material slurry of Claim 1 which peels an active material, a electrically conductive material, and a binder from a board | substrate in a polar solvent whose liquid temperature is 80 degrees C or less. 極性溶媒がN−メチル−2−ピロリドンである請求項1又は2に記載の正極活物質スラリーの製造方法。 The method for producing a positive electrode active material slurry according to claim 1, wherein the polar solvent is N-methyl-2-pyrrolidone. 極性溶媒スラリーを乾燥する工程を含まない、請求項1〜3のいずれかに記載の正極活物質スラリーの製造方法。 The manufacturing method of the positive electrode active material slurry in any one of Claims 1-3 which does not include the process of drying polar solvent slurry. 請求項1〜3のいずれかに記載の正極活物質スラリーの製造方法によって得られた、活物質、導電材及び結着剤を含む極性溶媒スラリーを全量乾燥する正極活物質粉末の製造方法。 The manufacturing method of the positive electrode active material powder which dries the polar solvent slurry containing the active material, the electrically conductive material, and the binder obtained by the manufacturing method of the positive electrode active material slurry in any one of Claims 1-3. 乾燥温度が100℃以下である請求項5に記載の正極活物質粉末の製造方法。 The method for producing a positive electrode active material powder according to claim 5, wherein the drying temperature is 100 ° C. or less. 請求項1〜4のいずれかに記載の製造方法によって得られた正極活物質スラリー又は請求項5、6に記載の正極活物質粉末のいずれかを含む正極合材を基板に塗布し乾燥する正極板の製造方法。 The positive electrode active material slurry obtained by the manufacturing method in any one of Claims 1-4, or the positive electrode compound material containing either the positive electrode active material powder of Claim 5, 5 is applied to a board | substrate, and is dried. A manufacturing method of a board.
JP2013085247A 2013-04-15 2013-04-15 Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate Pending JP2014207192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085247A JP2014207192A (en) 2013-04-15 2013-04-15 Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085247A JP2014207192A (en) 2013-04-15 2013-04-15 Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate

Publications (1)

Publication Number Publication Date
JP2014207192A true JP2014207192A (en) 2014-10-30

Family

ID=52120586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085247A Pending JP2014207192A (en) 2013-04-15 2013-04-15 Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate

Country Status (1)

Country Link
JP (1) JP2014207192A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069078A (en) * 2017-03-24 2017-08-18 中航锂电(洛阳)有限公司 A kind of recovery method of electrodes of lithium-ion batteries material
CN109465232A (en) * 2018-10-15 2019-03-15 江西星盈科技有限公司 The treatment process of pole piece
WO2019216646A1 (en) * 2018-05-11 2019-11-14 주식회사 엘지화학 Recycling method for cathode material
JP7176707B1 (en) * 2021-06-24 2022-11-22 Dowaエコシステム株式会社 Recycled positive electrode material precursor, recycled positive electrode material, production method thereof, and recycled lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069078A (en) * 2017-03-24 2017-08-18 中航锂电(洛阳)有限公司 A kind of recovery method of electrodes of lithium-ion batteries material
WO2019216646A1 (en) * 2018-05-11 2019-11-14 주식회사 엘지화학 Recycling method for cathode material
KR20190129594A (en) * 2018-05-11 2019-11-20 주식회사 엘지화학 Method for recycling positive electrode material
CN111512492A (en) * 2018-05-11 2020-08-07 株式会社Lg化学 Method for recycling positive electrode material
KR102227311B1 (en) 2018-05-11 2021-03-15 주식회사 엘지화학 Method for recycling positive electrode material
US20210083336A1 (en) * 2018-05-11 2021-03-18 Lg Chem, Ltd. Method of reusing positive electrode material
CN111512492B (en) * 2018-05-11 2023-08-08 株式会社Lg新能源 Recycling method of positive electrode material
US12021205B2 (en) 2018-05-11 2024-06-25 Lg Energy Solution, Ltd. Method of reusing positive electrode material
CN109465232A (en) * 2018-10-15 2019-03-15 江西星盈科技有限公司 The treatment process of pole piece
JP7176707B1 (en) * 2021-06-24 2022-11-22 Dowaエコシステム株式会社 Recycled positive electrode material precursor, recycled positive electrode material, production method thereof, and recycled lithium ion secondary battery
WO2022270393A1 (en) * 2021-06-24 2022-12-29 Dowaエコシステム株式会社 Recycled positive electrode material precursor, recycled positive electrode material, method for producing same, and recycled lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN102751548B (en) Method for recovering and preparing lithium iron phosphate from waste lithium iron phosphate battery
KR101349900B1 (en) Recycling method of electrode active material of metal oxide, electrode active material of metal oxide for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery fabricated thereby
US20130266855A1 (en) Method of fabricating cathode for lithium ion secondary battery by recycling cathode active material and lithium ion secondary battery fabricated thereby
CN102170036B (en) Recycling method of lithium iron phosphate cathode materials
CN111224187B (en) Method for directly repairing and regenerating waste lithium iron phosphate battery positive electrode material
JP2023510361A (en) Method for reusing active material using positive electrode scrap
CN108736056B (en) Lithium metal interface protection structure and preparation and application thereof
JP7278475B2 (en) Method for reusing active material using positive electrode scrap
JP7357799B2 (en) How to reuse active materials using cathode scraps
Jia et al. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery
JP2014207192A (en) Process of manufacturing positive electrode active material slurry, process of manufacturing positive electrode active material powder, and process of manufacturing positive electrode plate
Chen et al. Comparison study on regeneration of spent ternary materials by molten salt solid-liquid method and traditional solid-solid method
JP7406006B2 (en) Active material recovery device and active material reuse method using the same
JP7350185B2 (en) How to reuse active materials using cathode scraps
US8343668B2 (en) Porous tin particles and the preparation for the same
EP2869365A1 (en) Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
KR20210147597A (en) Reuse method of active material of positive electrode scrap
JP2023524700A (en) Method for reusing active material using positive electrode scrap
JP5969554B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2023512620A (en) Method for reusing active material using positive electrode scrap
JP7457871B2 (en) How to reuse active materials using cathode scraps
JP2023510900A (en) Method for reusing active material using positive electrode scrap
JP2024515170A (en) Method for reusing positive electrode active material
CN114883538A (en) Composite cathode material and preparation method and application thereof
CN117163930A (en) Method for repairing lithium iron phosphate positive electrode material by wet method